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Abstract: 
This paper is concerned with controller design for H-

infinity disturbance rejection in continuous-time 
Takagi-Sugeno models. The control law belongs to a 
more general class than the well-known parallel 
distributed compensation: it is based on a recent 
approach which employs progressively more complex 
nested convex sums while preserving the use of a 
quadratic Lyapunov function. The results thus obtained 
are parameter-dependent linear matrix inequalities 
which allow logarithmic search of feasible solutions. 
Examples are provided to illustrate the aforementioned 
contributions. 
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1 Introduction 
 
Originally appeared in the fuzzy context, 
Takagi-Sugeno models (TS) [1] have been 
increasingly used as a legitimate nonlinear 
control tool altogether with linear matrix 
inequalities (LMIs) and the direct Lyapunov 
method [2]. In the modern context, a TS model 
is an exact convex rewriting of a nonlinear 
model within a compact of the state space 
(region of interest), which can be 
systematically constructed via the sector 
nonlinearity approach [3]. Convexity is 
guaranteed by capturing the system 
nonlinearities within membership functions 

(MFs) which hold the convex sum property 
inside the region of interest [4]. Once a TS 
model is obtained, the direct Lyapunov 
method comes at hand to take advantage of the 
convex structure which allows stability 
conditions to be expressed in terms of LMIs 
[5]. Expressing stability conditions in terms of 
LMIs constitutes a numerical advantage over 
many other methods since they can be solved 
via convex optimization techniques which are 
already implemented in a number of toolboxes 
[6]–[8]. As for controller design, parallel 
distributed compensation (PDC) generalizes 
ordinary linear state feedback for TS models 
while preserving the LMI approach [5]. 
Thanks to the latter, performance requirements 
such as bounds on the control input, decay rate 
specification or disturbance rejection, can be 
easily included [2], [5]. 
The last two decades have witnessed a 
tremendous effort to extend the scope of the 
TS-LMI framework to larger families of 
problems, since most of the conditions are 
only sufficient [9], [10]. The continuous-time 
case have proved to be particularly difficult to 
deal with since piecewise generalizations of 
the quadratic Lyapunov function require extra 
conditions to guarantee its continuity [11], 
[12] while basis-dependent Lyapunov 
functions lead to the time-derivative of the 
MFs, which is hard to cast as a convex 



problem [13], [14]. Recently, several results 
which do not necessarily require a different 
sort of Lyapunov function have appeared; they 
are based on matrix properties and nested 
convex sums which progressively lead to 
better results in the form of parameter-
dependent LMIs [15]–[20]. This work follows 
the same line of the latter for H infinity 
disturbance rejection; it is shown that multi-
index controllers perform better than former 
approaches without any need of a different 
Lyapunov function, i.e., all the schemes are 
quadratic. 
The results are organized as follows: section 2 
introduces the sector nonlinearity methodology 
to construct TS models, provides notations for 
convex sums as well as several properties this 
work is based on; the main results on 
disturbance rejection are developed in section 
3: first showing how to decouple the 
Lyapunov function from the control law 
design, then extending the previous result via 
an increasingly complex non-PDC control law; 
section 4 illustrates the advantages of the 
proposed control technique over some others; 
the paper concludes in section 5 with some 
final remarks. 
 
2 Definitions and notations 
 
Consider a nonlinear model of the form: 
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with  if   ,  g  , and  id   being nonlinear 

functions,   nx t   the state vector, 

  mu t   the input vector,   oy t   the 

output vector,   qw t   an external 

disturbance, and    pz x t   the premise 

vector assumed to be bounded and smooth in a 
compact set C  of the state space including the 
origin. 

Let   ,j j jnl nl nl     ,  1, ,j p   be the set 

of bounded nonlinearities in (1) belonging to 

C . Employing the sector nonlinearity 
approach [3], the following weighting 
functions can be constructed 

   
0

j jj

j j

nl nl
w

nl nl

 
 


,    1 01j jw w     

with  1, ,j p  . 

From the previous weights, the following 
membership functions (MFs) are defined: 
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with  1, , 2 pi  ,  0,1ji  . These MFs 

satisfy the convex sum property  
1

1
r

ii
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
   

and   0ih    in C . For simplicity, convex 
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Based on the previous definitions, an exact 
representation of (1) in C  is given by the 
following continuous-time TS model: 
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with 2 pr    representing the number of 
linear models in (3) and pairs 
 , , , ,i i i i iA B C D E , 1, ,i r  , the set of 

matrices of proper dimensions at the polytope 
vertex 1ih  . 

The following non-PDC control law in [17] is 
adopted: 
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with m n
iF  , 1, ,i r   the controller gains 

and n n
iH  , 1, ,i r   matrices which 

allow decoupling the Lyapunov function from 
the control law design, as shown later. 
 The closed-loop TS model is then written as: 
 

  
 

1
hh h h

h h

x A H x E w

y t C x G w
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 


,  (5) 

 
with hh h h h hA A H B F  . 

 
2.1 Properties 

 
We present some convenient properties to be 
used in the development of the main results of 
this study. 
 
Property 1 (Schur complement) [6]: Let 

m mP R   be a positive definite matrix, 
m nX R   and n nQ R  , then  

 

          
 1 0,

0
0

T QQ X P X

X PP

    
     

 (6) 

 
Property 2 [19]: Given 0TP P  , then  
 
  1T TQ P Q Q Q P      (7) 
 
It is well-known that a TS-LMI based 
controller design usually leads to inequalities 
containing multiple nested convex sums. For 
instance, given matrix expressions 

0 1 qi i i  , 

 0 1, , , 1, ,qi i i r  , the following inequality 

may arise: 
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0 1 0 1

0 11 1 1

0
q q

q
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h z h z h z
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The sign of such expressions should be 
established via LMIs, which implies that the 
MFs therein should be adequately retired: 
conditions thus obtained will be therefore only 
sufficient. This is why selecting a proper way 
to perform this task is important to reduce 

conservatism. When double sums are involved 
( 1q  ), a good compromise for guaranteeing 
(8) without adding slack variables is given by 
the following lemma: 
Relaxation 1 [21]: Let 

0 1i i ,  0 1, 1, ,i i r   be 

matrices of the same size. Condition (8) is 
verified for 1q   if : 
 
       

0 1 1 0 0 1 00,   ,i i i i i i i        (9) 

 
Should more than two nested convex sums be 
involved, a generalization of the sum 
relaxation in [22] will be used [23]: 
Relaxation 2 [23]: Let 

0 1 qi i i  , 

 0 1, , , 1, ,qi i i r   be matrices of the same 

size and  0 1, , , qi i i   be the set of all 

permutations of the indexes 0i , 1i ,..., qi . 

Condition (8) is verified if: 
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An asterisk    for inline expressions denotes 

the transpose of the terms on its left-hand side; 
for matrix expressions denotes the transpose of 
its symmetric block-entry. When convenient, 
arguments will be omitted. 
 
3 Main results 
 
Consider the following quadratic Lyapunov 
function candidate: 
 

             1T
V x t x t P x t ,          (11) 

 
with 0TP P  . 
The TS model (5) satisfies the H infinity 
attenuation criterion 0   if  the following 
well-known condition holds [2] 
 

        2 0
T T

V y t y t w t w t   . (12) 

 



3.1 Quadratic Lyapunov function 
 

Theorem 1: The TS model (3) under the 
control law (4) is globally asymptotically 
stable with disturbance attenuation   if there 

exists 0   and matrices 0TP P  , and 
1i

F , 

1i
H , 1 1, ,i r   of proper dimensions such that 

(9) holds where 
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with  
0 1 1 0 1 0 1

12
i i i i i i iH A H B F     and 

0 1 1 1

22 T
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Proof: The time-derivative of (11) is: 
 
   1 1 0T Tx P x x P x              (14) 
 
and taking into account (5), (12) can be 
rewritten as: 
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which can be rewritten as: 
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with 
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The condition in (12) is satisfied if: 
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and applying Schur's complement gives: 
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By congruence property with  , ,diag P I I  the 

previous inequality yields, 
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Considering a small enough 0  , (15) holds 
if: 
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which is straightforwardly equivalent to: 
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or rewritten: 
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Thus by Schur complement the previous 
inequality is equivalent to: 
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Congruence property with full-rank matrix 

 , , ,T
hdiag I H I I  gives: 
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Using property (7) then (17) holds if: 
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(18) holds if relaxation (9) is applied with 

0 1i i  

defined as in (13), which concludes the 
proof.□ 
 
3.2 Quadratic Lyapunov function: 

expanded indexes 
 

Now, the main advantage of decoupling the 
control law from matrix P  can be stated. 
Expanding hF  to h hF   for a PDC law has very 

few interest because the first term will remain 

hA P . 

Consider now expanding using multiple 
indexes, the control law (4): 
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following theorem can be derived. 
 

Theorem 2: The TS model (3) under the 
control law (19) is asymptotically stable with 
disturbance attenuation   if it exists 0  , 

and matrices  0TP P  , 
1 qi iF   and 

1 qi iH  , 

 1, , 1, ,qi i r   such that (10) holds with: 
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with  0 1 1 0 1 0 1
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 Proof: It follows directly from (14)-(18) 
considering the control law in (19)□. 
 
Remark 1: Conditions in this work are 
parameter-dependent LMI; their result depend 
on the choice of  . Nevertheless, it has been 
proved in [24] and [25] that a logarithmically 
spaced family of values, for instance 

 6 5 610 ,10 , ,10    , is adequate to avoid an 

exhaustive search of feasible solutions, thus 
outperforming existing results. 
Remark 2: Conditions in (13) are a particular 
case of conditions in (20) and it occurs when 

1q  . 
  
4 Example 
 
The proposed results are illustrated via the 
following numerical example.  
 
Example 1: Consider the following TS model: 
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T

C
 

   
, 2

0.1

0.1

T

C
 

   
, 3

0.2

0.1

T

C
 

  
 

, 

4

0.1

0.4

T

C
 

   
, 1 3

0.15

0.1 0.05
E E


 

    
, 

2 4

0.15

0.1 0.05
E E


 

    
, 1 3 0.1G G   , 

2 4 0.1G G    , 1 2
0 1w x , 

2
2 2
0 4

x
w  , 

1 1
1 01w w  , 2 2

1 01w w  , 1 2
1 0 0h w w , 

1 2
2 0 1h w w , 1 2

3 1 0h w w , 1 2
4 1 1h w w , and  is a 

real-valued parameter. 
 

Table 1.- Comparison of H  performances. 

Approach 0   0.5   1   

QS 3.0260 2.4911 2.0262
Th. 1, 

Th. 2 ( 1q  ) 1.9039 1.6172 1.3764

Th. 2 ( 2q  ) 0.2363 0.1936 0.1748
Th. 2 ( 3q  ) 0.1794 0.1425 0.1394

 
The performance bounds obtained by 
Theorems 1 and 2 in this work as well as QS 
approach for differrents values of  are 
provided in Table 1 with 0.1  .  
Table 1 shows that the performance of 
Theorem 2 is clearly better than results in 
Theorem 1 and the QS approach when the 
parameter q  is increased. Also, it is possible 
to note that Theorem 1 is a particular case of 
Theorem 2 ( 1q  ). 
Figure 1 is presented in order to illustrate the 
behavior of the parameter   with respect to 
increasing the parameter q  in Theorem 2. The 
minimal value for   is calculated for 

 0,1  . 
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Figure 1.   values in Example 1 for Theorem 
2 with 1q  , 2q  , and 3q  . 
 
It is possible to observe in Fig. 1 that if 
parameter q  increase the minimal value of   
decrease. 
 
5 Conclusions 
 
A novel approach for controller design for H-
infinity disturbance rejection for continuous-
time nonlinear models in the TS form has been 
presented. Taking advantage of a Tustin-like 
transformation, the controller design has been 
decoupled from the quadratic Lyapunov 
function it is based on. The nested convex 
structure in the control law permits to obtain 
progressively better performance on 
disturbance attenuation. Examples are 
provided to illustrate the effectiveness of the 
proposed approach. 
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