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Grid Synchronization in
Three-Phase Power Converters

8.1 Introduction

One of the lessons learned from the intensive research conducted on distributed power systems
during last few years is that the electricity networks of the future will be based to a large extent
on new power electronics and ICT applications, some of which have already been in use in
other sectors of industry for decades [1]. This implies that grid-connected power converters
applied in distributed power generation systems should be carefully designed and controlled
in order to achieve even better performance than the conventional power plants they replace.
One of the most important aspects to consider in the control of power converters connected
to electrical grids is the proper synchronization with the three-phase utility voltages. This
three-phase synchronization is not just a matter of multiplying by three the synchronization
system used in single-phase applications, since the three phases of a three-phase system do
not work autonomously but do it in a coordinated way, keeping particular relationships in
terms of phase shifting and phase sequencing. Therefore, the three-phase voltage should be
understood as a vector consisting of three voltage components, which provides the capability
of generating and consuming power in a three-phase system.

The module and the rotation speed of the three-phase grid voltage vector keep constant
when balanced sinusoidal waveforms are present in the three phases of the system – with
equal amplitude, frequency and relative phase shifting. As shown in Figure 8.1, under such
ideal operating conditions, the voltage vector describes a circular locus on a Cartesian plane,
generally known as the αβ plane.

In power systems, this rotating voltage vector is mainly supplied by big synchronous gen-
erators, and the electrical equipments located at the transmission, distribution and utilization
levels are designed assuming that such a voltage vector has both a constant module and
a constant positive rotation speed. In practice, however, there are multiple nonidealities in
power systems that originate disturbances on the three-phase voltage vector. These voltage
disturbances can be classified according to their harmonic spectrum, duration and amplitude
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Figure 8.1 Ideal three-phase voltage vector

and give rise to undesirable effects on electrical equipments, such as resonances, increasing
power losses or premature ageing [2].

A grid-connected power converter is particularly sensitive to voltage disturbances since its
control system might lose controllability on the power signals under such distorted operating
conditions, which could trip any of its protection systems or might even destroy the power con-
verter. Moreover, a power converter can interact with the grid at the point of common coupling
in order to attenuate the voltage disturbances and reduce their undesirable effects. For these
reasons, the voltage vector disturbances should be properly detected by the synchronization
system, and the control system of the power converter should react to both ride-through such
operating conditions and provide some support to the grid.

In the case where the voltage vector at the connection point of the power converter is dis-
torted by high-order harmonics with reasonable amplitude, the detection system bandwidth
can be reduced in order to cancel out the effect of these harmonics on the output. Despite
this bandwidth reduction, the detection system should still operate satisfactorily in the pres-
ence of slow voltage fluctuations. In the case where the voltage vector is unbalanced, the
bandwidth reduction is not an acceptable solution since the overall dynamic performance of
the detection system would become unsatisfactorily deficient. In such a case, the sequence
components of the unbalanced voltage vector should be identified by using specific detection
techniques and passed as inputs to the control system to react accordingly to such voltage
disturbance.

Therefore, grid synchronization of three-phase power converters entails the usage of ad-
vanced detection systems, specially designed to both reject high-order harmonics and identify
the sequence components of the voltage vector in a fast and precise way. Particularly, the
real-time detection of the sequence components of the voltage vector in three-phase networks
is an essential issue in the control of distributed generation and storage systems, flexible AC
transmission systems (FACTS), power line conditioners and uninterruptible power supplies
(UPS) [3, 4]. In such systems, the magnitude and phase angle of the positive- and negative-
sequence voltage components are generally used for the synchronization of the converter
output variables, calculation of the power flow or transformation of stationary variables into
rotating reference frames [5–7].

This chapter presents some three-phase synchronization systems suitable to be applied under
unbalanced and distorted grid operating conditions.
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8.2 The Three-Phase Voltage Vector under Grid Faults

Three-phase voltages can become unbalanced and distorted because of the effect of nonlinear
loads and transient grid faults. Ideally, power converters used in distributed generation should
be properly synchronized with the grid under such adverse operating conditions to stay actively
connected, supporting the grid services (voltage/frequency) and keeping up generation. The
faulty three-phase voltages can be generically understood as a summation of unbalanced
harmonic components. Therefore, in a general way, the three-phase voltage vector can be
written as

vabc =
⎡⎣ va

vb

vc

⎤⎦ = ∞�
n=1

�
v+n

abc + v−n
abc + v0n

abc

�
, (8.1)

where

v+n
abc = V+n

⎡⎢⎣ cos(nωt + φ+n)

cos(nωt − 2π
3 + φ+n)

cos(nωt + 2π
3 + φ+n)

⎤⎥⎦ (8.2.a)

v−n
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⎡⎢⎣ cos(nωt + φ−n)

cos(nωt + 2π
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cos(nωt − 2π
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v0n
abc = V 0n

⎡⎢⎣ cos(nωt + φ0n)

cos(nωt + φ0n)

cos(nωt + φ0n)

⎤⎥⎦ (8.2.c)

In (8.1) and (8.2), superscripts +n, −n and 0n respectively represent the positive-, negative-
and zero-sequence components of the nth harmonic of the voltage vector v.

Distributed generators are usually linked to three-phase networks by using a three-wire
connection and hence they do not inject zero-sequence current into the grid. Thus, the zero-
sequence component of the voltage vector will be intentionally ignored in the equations
describing the synchronization systems presented in this chapter since it is not necessary to
synchronize any current with such a zero-sequence voltage component. Nonetheless, if nec-
essary, the zero-sequence component could be easily extracted from the voltage vector by
applying the Clarke transformation, defined by (A.14) in Appendix A, and its characteristic
module and phase angle can be determined by using any of the single-phase synchronization
systems presented in Chapter 4. Moreover, three-phase power converters used in WT and
PV systems generally inject positive-sequence currents at the fundamental frequency into
the grid and only intentionally inject negative-sequence and harmonics currents in unusual
cases, i.e. either avoiding power oscillations to protect the power converter or injecting un-
balanced reactive currents to compensate the unbalanced grid voltage at the point of common
coupling. Therefore, the correct detection of the positive-sequence component at the funda-
mental frequency of the three-phase grid voltage can be considered as the main task of the
synchronization system of a grid-connected three-phase power converter.
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In a general form, a positive-sequence voltage vector at the fundamental frequency inter-
acting with either a positive- or negative-sequence nth-order component can be expressed by

vabc = v+1
abc + vn

abc = V+1

⎡⎢⎢⎣
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cos(ωt − 2π
3 )
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where n > 0 means a positive-sequence component and n < 0 a negative-sequence one. The
voltage vector of (8.3) can be expressed on the Cartesian αβ stationary reference frame by
using a reduced version of the Clarke transformation, resulting in
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The voltage vector of (8.3) can also be expressed on a Cartesian dq rotating reference frame
by using the Park transformation as

vdq =
�
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vq
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2
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where

�
Tdq
� = � cos(θ �) sin(θ �)

− sin(θ �) cos(θ �)

�
(8.7)

with θ � the angular position of the dq rotating reference frame.
As an illustrative example, Figure 8.2 shows the evolution of the three-phase voltage vector

of (8.3) in two different cases. Figure 8.2(a) shows the interaction of the fundamental frequency
positive-sequence component with a fundamental frequency negative-sequence component
(n = −1), whereas Figure 8.2(b) shows the interaction of the fundamental fre-
quency positive-sequence component with a fifth harmonic negative-sequence component
(n = −5).

Assuming that the dq reference frame rotates synchronously with the positive-sequence
voltage vector, with the d axis in the same direction as the positive-sequence voltage vector
v+1, i.e. with θ

� = ωt, the expression of (8.6) gives rise to
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Figure 8.2 Locus of (a) an unbalanced and (b) a distorted voltage vector

From (8.8), the module and angular position of the three-phase voltage vector, |v| and θ
respectively are given by

|v| =
�
v2
α + v2

β =
�

3

2

��
V+1
�2 + �V n

�2 + 2V+1V n cos ((n − 1)ωt)
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(8.9)
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�
V n sin ((n − 1)ωt)
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�
(8.10)

Equations (8.9) and (8.10) are evidence that the compound voltage vector v has neither constant
module nor rotational frequency. Moreover, these equations show that both the amplitude and
the angular position of the positive-sequence component cannot be extracted by just filtering
the detected module and phase angle of the compound voltage vector v.

As an example, Figure 8.3(a) shows the phase voltage waveforms of a three-phase system
affected by a phase-to-phase grid fault. Just the positive- and negative-sequence components
are considered in this example, being V+1 = 0.75 p.u. and V−1 = 0.25 p.u. (it is assumed
here that the pre-fault voltage amplitude is equal to 1 p.u.). Therefore, the module and angular
position of the voltage vector during the grid fault are given by

|v| =
�

0.9375 + 0.5625 cos (2ωt) (8.11)

θ = ωt + tan−1

�
0.25 sin (−2ωt)

0.75 + 0.25 cos (2ωt)

�
(8.12)

Figure 8.3(b) shows the locus described by the voltage vector normalized with respect to the
pre-fault vector module. In this figure, the instantaneous value of the angular frequency of the
voltage vector, dθ /dt, has been represented on a vertical axis, orthogonal to the αβ plane. It can
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Figure 8.3 Space vector evolution in a phase-to-phase grid fault

be appreciated in this figure how the voltage vector locus changes from a circle to a completely
different shape once the fault happens. However, the projection of this three-dimensional shape
on the αβ plane matches the ellipse plotted in Figure 8.2(a). This figure highlights that the
instantaneous angular frequency of the voltage vector is not a constant during the grid fault,
which should be taken into account when a three-phase synchronization system is designed.

Figure 8.3(c) shows the evolution of the voltage vector module |v|, normalized with respect
to the pre-fault vector module. The average value of the voltage vector module during the
grid fault, |v|avg, is plotted by a dashed line, whereas the module of the positive-sequence
voltage vector, |v+1|, is plotted by a thin continuous line. Figure 8.3(d) shows the evolution of



Grid Synchronization in Three-Phase Power Converters 175

the voltage vector phase angle θ . Both figures show that the information about the positive-
sequence voltage vector v+1 cannot be properly obtained by just applying conventional filtering
techniques to the module and phase-angle signals of the compound vector v.

8.2.1 Unbalanced Grid Voltages during a Grid Fault

Before presenting some solutions for detecting the sequence components of an unbalanced
voltage vector, an example of how such unbalanced voltages are generated during a grid fault
will be presented here. The analysis procedure presented in the following can be applied to any
kind of grid fault to obtain its characteristic parameters (three-phase, three-phase to ground,
phase to ground, etc.). Nevertheless, a more detailed explanation about this topic can be found
in the literature [8–10].

The phase-to-phase grid fault that originated the unbalanced waveforms of Figure 8.3(a)
can be represented by the circuit of Figure 8.4, where it is assumed that the line impedance is
equal for all three phases and the voltage supplied by the three-phase generator is sinusoidal,
balanced with positive-sequence components, at the fundamental frequency.

The phase voltages and current in the faulty lines of Figure 8.4 verify that

vb� = vc� ; ib� = −ic� ; ia� = 0 (8.13)

From (8.13) and using phasors, the positive-, negative- and zero-sequence voltage compo-
nents at the fault point, �V+a� , �V−a� , �V 0

a� , can be calculated by equation (A.1) of Appendix A,
resulting in

V+−0(a�) =

⎡⎢⎣
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3

⎡⎢⎣
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�Va� − �Vb�

�Va� + 2 �Vb�

⎤⎥⎦ (8.14)

where α = e j2π/3 = 1∠120◦ is the Fortescue operator [11]. Voltage phasors of (8.14) indicate
that the positive- and negative-sequence voltage components at the fault point are equal, i.e.
�V+a� = �V−a� .
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Figure 8.4 Three-phase circuit of a phase-to-phase grid fault
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Figure 8.5 Sequence components based on the equivalent circuit of a phase-to-phase grid fault

Likewise, from (8.13), the positive-, negative- and zero-sequence components of the line
currents during the grid fault are given by
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3
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0
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Current phasors of (8.15) indicate that the zero-sequence current component is equal to zero
and, consequently, the addition of the positive- and negative-sequence current components are
equal to zero as well, namely �I 0

a� = 0 and �I+a� + �I−a� = 0.
Once the relationships between the sequence components of voltages and currents during

the grid fault are defined, the actual three-phase circuit of Figure 8.4 can be transformed into
the equivalent circuits of Figure 8.5 based on the sequence components. In this figure, �V+Sa
represents the pre-fault voltage vector of the phase a, i.e. one of the three phase voltages of
the positive-sequence balanced pre-fault voltage vector.

Assuming that the positive- and negative-sequence line impedances at the source side are
equal, i.e. �Z+S = �Z−S = �Z S , which is true in most cases, the circuit of Figure 8.5 gives rise to
the following sequence voltages at the point of common coupling (PCC):

�V+a =
�ZS +

�
�Z+F + �Z−F

�
2 �Z S +

�
�Z+F + �Z−F

� �V+Sa (8.16a)

�V−a =
�Z S

2 �Z S +
�
�Z+F + �Z−F

� �V+Sa (8.16b)

�V 0
a = 0 (8.16c)
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The severity of the grid fault seen from the PCC can be assessed by the dip parameter �D,
which defines the relationship between the line impedances at the fault side and the source
side, i.e.

�D = D∠ρD =
�
�Z+F + �Z−F

�
2 �ZS +

�
�Z+F + �Z−F

� (8.17)

It is worth highlighting here that the magnitude of the faulty voltage depends on the distance
from the PCC to the fault point, namely it mainly depends on the module of �D. The difference
in the phase angle between the pre-fault and the faulty voltage depends on the phase angle
of �D. If the X/R ratio of the impedances at both sides of the PCC remains constant, i.e. if
the phase angle of �ZS is equal to that of �Z+F + �Z−F , there is no phase-angle jump between the
pre-fault and the faulty voltage.

Substituting (8.17) in (8.16), the sequence voltages at the PCC can be written as
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⎡⎢⎣
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a
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2
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1− �D

0

⎤⎥⎦ (8.18)

From (8.18), the phase voltages at the PCC can be calculated by using equation (A.4) of
Appendix A, resulting in
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√
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⎤⎥⎥⎥⎥⎦ (8.19)

In this example, the voltage phasors of (8.19) describe the unbalanced voltage waveforms of
Figure 8.3(a), which are related to a phase-to-phase grid fault.

8.2.2 Transient Grid Faults, the Voltage Sags (Dips)

A voltage sag, also called a voltage dip, is a sudden reduction of the grid voltage at the PCC,
generally between 10 and 90 % of the rated value, during a period lasting from half a cycle
to a few seconds. Voltage sags usually happen as a consequence of short-circuits, faults to
ground, transformers energizing and connection of large induction motors. Depending on both
the type of grid fault and the transformer connections along the power lines, it is possible to
distinguish between different types of voltage sags.

The definition of guidelines to classify voltage sags is a matter that remains under discussion
still today [12]. The product �D �V+Sa is known as the ‘characteristic voltage’ of the voltage sag
and represents either the phase voltage in phase-to-ground faults or the line-to-line voltage in
phase-to-phase faults. Likewise, the phase angle of �D is known as the ‘characteristic phase
angle jump’ of the voltage sag. Figure 8.6 shows four types of voltage sag resulting from
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Figure 8.6 Voltage sags due to grid faults in three-phase systems with �D = 0.5∠0◦
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Figure 8.7 Voltage sag type C with �D = 0.5∠ − 30◦

different grid faults in which the characteristic phase angle jump was assumed equal to zero.
In this figure, the voltage sags have been typified according to the nomenclature proposed in
reference [8]. The characteristic parameters of the voltage sags of Figure 8.6 can be calculated
by following a similar procedure to the one described in the previous example for a phase-to-
phase fault. A more detailed explanation about this mathematical procedure can be found in
reference [9].

There are many practical cases in which the X/R ratio of the impedances at both sides of the
PCC of Figure 8.4 does not keep constant during a fault, which implies a phase-angle jump is
different to zero. This is particularly true when the fault affects to power lines consisting of
sections with different impedances, or when big induction motors are connected to the grid.
In such a case, the voltage phasors during the grid fault lose the symmetry, shown by the sags
of Figure 8.6. As an example, Figure 8.7 shows a voltage sag type C with �D = 0.5∠− 30◦.

8.2.3 Propagation of Voltage Sags

The type of sag experienced by a system connected to a given AC bus not only depends on the
number of phases affected by the grid fault but it is also influenced by the transformers located
in between the AC bus and the fault point. The amplitude and phase angle of the unbalanced
voltage resulting from a given grid fault will be modified when propagated through regular
three-phase transformers used in power systems, which will give rise to new types of voltage
sags different to the ones shown in Figure 8.6. Moreover, the zero-sequence component,
generally present in phase-to-ground faults, will be removed. As an example, Figure 8.8 shows
how the line-to-line voltages of a sag type C applied to the primary of a Dy transformer are
propagated to the secondary winding with different voltage amplitudes and phase angles,
which results in a new type of voltage sag (type D).

To identify the different types of voltage sag existing in a generic distribution system,
voltage on the buses of a power line like the one shown in Figure 8.9 are analysed in this
section. In this analysis, three possible points of common coupling (PCC1, PCC2 and PCC3)
are considered, which result from the cascade connection of two Dy transformers. An analysis
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Figure 8.8 Propagation of a voltage sag type C ( �D = 0.5∠ − 0◦) through a Dy transformer

SZ

FZ
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Figure 8.9 Voltage sag propagation along three points of common coupling (PCC1, PCC2 and PCC3)
in a power line with two cascade-connected Dy transformers

of the voltages measured on PCC2 and PCC3 allows three new types of voltage sags (types D,
F and G) to be identified from the original voltage sags (types A, B, C and E) existing on bus
PCC1 as a consequence of different types of faults occurred at bus F.

The relationship between the different types of voltage sag is summarized in Table 8.1. The
sequence components and phase-voltages of the voltage sag types D, F and G are shown in
Figure 8.10.

Table 8.1 Propagation of voltage sags through Dy transformers

Point of common coupling

Fault type PCC1 PCC2 PCC3

Three-phase/three-phase to ground A A A
Single-phase to ground B C D
Two-phase C D C
Two-phase to ground E F G



Grid Synchronization in Three-Phase Power Converters 181

   Sag type D. Propagation of a sag type C

(a) 
aV

bV

cV

0 0.02 0.04 0.06 0.08 0.1
-1.5

-1

-0.5

0

0.5

1

1.5

t [s]

v ab
c

 [
pu

]

( )

( )

31
2 2

31
2 2

1
2

1
2

0

,

1

1

0

a

aSb

c

a

aSa

a

DV

V D j V

V D j

DV

V D V

V

+

+

+−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤+⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Sag type F. Propagation of a sag type E

(b) 
aV

bV

cV

0 0.02 0.04 0.06 0.08 0.1
-1.5

-1

-0.5

0

0.5

1

1.5

t [s]

v ab
c

 [
pu

]

( )

( )

( )

( )

1 2
2 12

1 2
2 12

1
3

1
3

0

,

1 2

1

0

a

D
aSb

Dc

a

a

a

DV

V D j V

V
D j

DV

V D

V

++

+

+

− −

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ − +⎢ ⎥⎣ ⎦

⎡ ⎤+⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
Sag type G. Propagation of a sag type F

(c) 
aV

bV

cV

0 0.02 0.04 0.06 0.08 0.1
-1.5

-1

-0.5

0

0.5

1

1.5

t [s]

v ab
c

 [
pu

]

( )

( )

( )

1
3

32
6 2

32
6 2

1
3

1
3

0

2

,

1 2

1

0

a

D
aSb

D
c

a

aSa

a

DV

V j D V

V j D

DV

V D V

V

++

+

+

+−

⎡ ⎤+⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢− + ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤+⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Figure 8.10 Voltage sags due to the propagation of grid faults in three-phase systems with �D = 0.5∠0◦
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8.3 The Synchronous Reference Frame PLL under Unbalanced and
Distorted Grid Conditions

The most extended technique used for frequency-insensitive grid synchronization in three-
phase systems is the PLL based on the synchronous reference frame (SRF-PLL) [13]. The
conventional SRF-PLL translates the three-phase voltage vector from the abc natural reference
frame to the dq rotating reference frame by using Park’s transformation [Tθ ], as shown in Figure
8.11. The angular position of this dq reference frame is controlled by a feedback loop that
regulates the q component to zero. As shown in (8.20), the [Tθ ] transformation in this PLL
has been rescaled by using a 2/3 factor in order to detect the amplitude of the sinusoidal input
signal instead of the module of the input voltage vector. Therefore, in the steady state, the
d component depicts the amplitude of the sinusoidal positive-sequence input voltage (V+1)
and its phase angle is determined by the output of the feedback loop (θ �).

�
vd

vq

�
= [Tθ ]

⎡⎣ va

vb

vc

⎤⎦ , [Tθ ] = 2

3

⎡⎣ cos(θ �) cos(θ � − 2π
3 ) cos(θ � + 2π

3 )

− sin(θ �) − sin(θ � − 2π
3 ) − sin(θ � + 2π

3 )

⎤⎦ (8.20)

[Tθ ] =
�
Tdq
� · �Tαβ� , �Tdq

� =
⎡⎣ cos(θ �) sin(θ �)

− sin(θ �) cos(θ �)

⎤⎦ , �Tαβ� = 2

3

⎡⎣1 − 1
2 − 1

2

0
√

3
2 −

√
3

2

⎤⎦ (8.21)

Under ideal grid conditions, i.e. when the grid voltage is not affected by either harmonic
distortion or unbalances, setting a high bandwidth for the SRF-PLL feedback loop yields a fast
and precise detection of the phase angle and amplitude of the grid voltage. Column (a) of Figure
8.12 shows some waveforms illustrating the response of an SRF-PLL, tuned with a high gain,
i.e. a high bandwidth, in the presence of a voltage sag type A. As shown in this figure, the SRF-
PLL almost instantaneously detects the amplitude and phase angle of the balanced input voltage
vector by making vq = 0. Column (b) of Figure 8.12 shows the response of the SRF-PLL when
the voltage sag type A is polluted by a fifth-order harmonic (V−5 = 0.1V+1). In this case, the
SRF-PLL makes a small error in tracking the instantaneous position of the input voltage vector
and consequently vq �= 0. This is in fact an advantage, since the PLL automatically will reduce
the effect of the fifth-order harmonic on the angular position of the dq reference frame. Hence,
the average value of the voltage on the d axis will match the amplitude of the positive-sequence
fundamental voltage, i.e. v̄d = V+1. Therefore, it can be concluded that a slight reduction in
the PLL bandwidth improves its response, almost completely rejecting the effect of high-order
harmonics on the PLL output signals. Column (c) of Figure 8.12 shows the response of an SRF-
PLL when the grid voltage experienced a sag type C with �V +1

a = 0.75∠0◦ and �V−1
a = 0.25∠0◦.

In this SRF-PLL, the control loop bandwidth was high enough to make vq ≈ 0, which means
that the SRF-PLL was able to instantaneously track the evolution of the unbalanced voltage
vector applied to its input. Therefore, the detected phase angle, shown in the second plot of
Figure 8.12(c), matches the one calculated by (8.12) and presents oscillations at twice the input
frequency. On the other hand, the voltage vd, shown in the third plot in Figure 8.12(c), matches
the value calculated by the expression (8.11) – multiplied by

√
2/3 since the Park transfor-

mation of (8.20) was rescaled. Consequently, as commented in Section 8.2, the amplitude of
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the positive-sequence component cannot be properly evaluated by just using conventional
filtering techniques to extract the average value of vd.

As previously mentioned, a reduction of the PLL bandwidth can help to attenuate the ef-
fect of the distorting components on the SRF-PLL output signals. Figure 8.13 shows some
representative plots from an SRF-PLL, tuned with a low bandwidth, when the grid volt-
age is affected by the same amount of fifth harmonic as in the case of Figure 8.12(b). It
can be appreciated in Figure 8.13(c) how the PLL is not able to instantaneously track the
angular position of the fifth-order component and thus it gives rise to an oscillating error
signal on both axes of the dq reference frame. Therefore, a simple low-pass filter can be
used to obtain the average value of the voltage on the d axis, v̄d . Figure 8.13(c) shows
the result of applying a second-order low-pass filter with a cut-off frequency of 20 Hz to
extract v̄d . It is possible to appreciate in this figure how v̄d almost perfectly matches the
positive-sequence voltage amplitude V+1. Figure 8.13(d) and (e) shows the reconstruction of
the detected positive-sequence voltage and its spectrum respectively. These figures confirm
that reduction of the PLL bandwidth is an effective measure to obtain high-quality signals at
the SRF-PLL output when synchronizing with three-phase voltages polluted by high-order
harmonics [14].

However, as evidenced in the following, limitation of the PLL bandwidth is not the most
effective solution to extract the positive-sequence component from the unbalanced three-phase
voltages resulting from an asymmetrical grid fault.

After applying the rescaled [Tαβ ] transformation of (8.21), the unbalanced grid voltage can
be expressed on the αβ reference frame as

vαβ =
�
vα
vβ

�
= V+1

�
cos(ωt)
sin(ωt)

�
+ V−1

�
cos(−ωt)
sin(−ωt)

�
(8.22)

Therefore, if it is assumed that the PLL bandwidth is low enough only to allow tracking the
evolution of the positive-sequence component of the input voltage, which means that the dq
reference frame rotates at the positive-sequence fundamental frequency, the voltage on the dq
axes, resulting from applying the [Tdq] transformation of (8.21) on the vector of (8.22), will
be given by

vdq = V+1

�
1
0

�
+ V n

�
cos (−2ωt)
sin (−2ωt)

�
(8.23)

In (8.23), it has been additionally assumed that the d axis of the SRF perfectly matches the
angular position of the positive-sequence component of the input voltage vector. Therefore,
(8.23) indicates that the amplitude of the positive-sequence component might be easily obtained
by just using any filtering technique to cancel out the oscillation at 2ω present on the d axis
signal.

Figure 8.13 allows the performance of the SRF-PLL to be evaluated when a second-order
low-pass filter with a cut-off frequency of 20 Hz is used to extract v̄d . Figure 8.13(a) shows the
unbalanced input voltage (sag type C with �V+1

a = 0.75∠0◦, �V−1
a = 0.25∠0◦). Figure 8.13(b)

shows the phase angle detected by the PLL, confirming that the low bandwidth set to the
PLL only allows tracking of the positive-sequence component of the unbalanced input voltage
vector. Figure 8.13(c) shows in thin lines the voltages on the dq axes of the SRF and in thick
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Figure 8.13 Representative waveforms of an SRF-PLL with a low bandwidth: (a, f) three-phase in-
put voltage, (b, g) detected phase angle, (c, h) detected amplitude for the positive-sequence voltage
component, (d, i) positive-sequence detected voltage and (e, j) spectrum of the three-phase detected
voltage
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line the signal v̄d extracted by the second-order low-pass filter. Using an estimation of the
amplitude and phase angle, the positive-sequence voltage waveforms can be reconstructed as
shown in Figure 8.13(d). The spectrum of these waveforms is shown in Figure 8.13(e). As
appreciated in these last two plots, the detection of the positive-sequence component of the
input voltage vector is not accurately detected since the detection of both the amplitude and
phase angle is just based on an approximation, i.e. on the attenuation of the oscillation at 2ω
generated by the negative-sequence component, and not in the accurate cancellation of such
oscillation. Of course, the better the filtering technique applied to cancel out oscillations at 2ω
on the dq voltages the better is the synchronization system that will be obtained [15], which
is necessary to guarantee that the selected filtering technique presents a frequency adaptive
response [16]. The next section of this chapter presents an enhanced synchronization technique
based on decoupling the effects of the positive- and negative-sequence components of the input
voltage vector.

8.4 The Decoupled Double Synchronous Reference
Frame PLL (DDSRF-PLL)

This section presents an improved three-phase synchronous PLL based on using
two synchronous reference frames, rotating with positive and negative synchronous
speeds,respectively. The usage of this double synchronous reference frame allows decou-
pling of the effect of the negative-sequence voltage component on the dq signals detected by
the synchronous reference frame rotating with positive angular speed, and vice versa, which
makes possible accurate grid synchronization even under unbalanced grid faults [17].

8.4.1 The Double Synchronous Reference Frame

Figure 8.14 shows the positive- and negative-sequence components of the unbalanced voltage
vector together with a double synchronous reference frame (DSRF) consisting of two rotating
reference frames: dq+1, rotating with the positive speed ω� and whose angular position is θ �,
and dq−1, rotating with the negative speed −ω� and whose angular position is −θ �.
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Figure 8.14 Voltage vectors and axes of the DSRF
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If it is assumed that the angular position of the positive reference frame dq+1 matches the
angular position of the positive-sequence voltage vector v+1, i.e. if θ � = ωt, the unbalanced
input voltage vector v can be expressed on the DSRF, yielding

vdq+1 =
�
vd+1

vq+1

�
= �Tdq+1

� · vαβ = V+1

�
1

0

�
+ V−1

�
cos(−2ω t)

sin(−2ω t)

�
(8.24)

vdq−1 =
�
vd−1

vq−1

�
= �Tdq−1

� · vαβ = V+1

�
cos(2ω t)

sin(2ω t)

�
+ V−1

�
1

0

�
(8.25)

where

�
Tdq+1

� = �Tdq−1

�T = � cos(θ �) sin(θ �)
− sin(θ �) cos(θ �)

�
(8.26)

Expressions of (8.24) and (8.25) are evidence that the DC values on the dq+1 and the
dq−1 frames correspond to the amplitude of the sinusoidal signals of v+1 and v−1, while the
oscillations at 2ω correspond to the coupling between axes appearing as a consequence of
the voltage vectors rotating in opposite directions. Therefore, instead of using any filtering
technique for attenuating oscillations at 2ω, a decoupling network is presented in the following
to completely cancel out the effect of such oscillations on the synchronous reference frame
voltages of the PLL.

8.4.2 The Decoupling Network

To generalize the explanation of the decoupling network used in the DSRF, one supposes a
voltage vector consisting of two generic components rotating with nω and mω frequencies
respectively, where n and m can be either positive or negative. Therefore, this generic voltage
vector is given by

vαβ =
�
vα

vβ

�
= vn

αβ + vm
αβ = V n

�
cos(nω t + φn)

sin(nω t + φn)

�
+ V m

�
cos(mω t + φm)

sin(mω t + φm)

�
(8.27)

Additionally, two rotating reference frames are considered, dqn and dqm, whose angular
positions are nθ � and mθ � respectively, where θ � is the phase angle detected by the PLL. If a
perfect synchronization of the PLL is possible, i.e. if θ � = ωt, with ω the fundamental grid
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frequency, the voltage vector in (8.27) can be expressed on the dqn and dqm reference frames
as follows:

vdqn =
�
vdn

vqn

�
=
�
vdn

vqn

�
+
�
ṽdn

ṽqn

�
= V n

�
cos(φn)
sin(φn)

�
� �� �

DC terms

+ V m cos(φm)

�
cos((n − m)ω t)
− sin((n − m)ω t)

�
+ V m sin(φm)

�
sin((n − m)ω t)
cos((n − m)ω t)

�
� �� �

AC terms

(8.28)

vdqm =
�
vdm

vqm

�
=
�
vdm

vqm

�
+
�
ṽdm

ṽqm

�
= V m

�
cos(φm)
sin(φm)

�
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DC terms

+ V n cos(φn)

�
cos((n − m)ω t)
sin((n − m)ω t)

�
+ V n sin(φn)

�− sin((n − m)ω t)
cos((n − m)ω t)

�
� �� �

AC terms

(8.29)

As shown by (8.28) and (8.29), the amplitude of the AC terms in the dpn axes depends on
the DC terms of the signals on the dqm axes, and vice versa. Therefore, once the coupling
terms between both reference frames are identified, a decoupling cell, such as the one shown
in Figure 8.15, can be designed to cancel out the oscillations generated by the voltage vector
vm on the dqn axes signals. To cancel out the oscillations in the dqm axes signals, the same
structure may be used, but with swapping of the m and n indexes in it. In Figure 8.15,
the DC terms on the dqm axes are represented as v̄dm and v̄qm . As shown in Figure 8.16, a
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Figure 8.16 Decoupled double synchronous reference frame (DDSRF)

cross-feedback decoupling network is used to estimate the value of these DC terms on the
positive and negative reference frames. In this decoupling network, the estimated DC terms
are named as v∗dm , v∗qm , v∗dn and v∗qn and the LPF block is a low-pass filter such as

LPF(s) = ω f

s + ω f
(8.30)

The decoupled double synchronous reference frame (DDSRF) of Figure 8.16 allows free-
oscillation signals to be obtained on the dqm and dqn reference frames. By setting n =+1 and
m = −1, this network decouples information about the positive- and negative-sequence com-
ponents of either voltage or current in unbalanced three-phase systems, which makes it a useful
tool for synchronous controllers during unbalanced grid faults. This network can be also used
to decouple other frequency/sequence components simply by setting the proper values for the
m and n coefficients.

8.4.3 Analysis of the DDSRF

The state-space model of the DDSRF and some relevant expressions showing its performance
have already been presented in reference [17], so this section will present a more intuitive
analysis on the complex-frequency domain to improve understanding about the DDSRF per-
formance during unbalanced grid faults. From (8.27), the unbalanced voltage during a grid
fault, consisting of positive- and negative-sequence components at the fundamental frequency,
can be generically described as

vαβ =
�
vα

vβ

�
= v+1

αβ + v−1
αβ = V+1

�
cos(ω t + φ+1)

sin(ω t + φ+1)

�
+ V−1

�
cos(−ω t + φ−1)

sin(−ω t + φ−1)

�
(8.31)
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The projection of this voltage vector on the dq+1 and dq−1 reference frames can be easily
obtained simply by setting n = +1 and m = −1 in (8.28) and (8.29). After rearranging
equations, the dq signals on the positive and negative reference frames are given by

vdq+1 =
�
vd+1

vq+1

�
= V+1

�
cos(φ+1)

sin(φ+1)

�
+ V−1

�
cos(2ω t) sin(2ω t)

− sin(2ω t) cos(2ω t)

��
cos(φ−1)

sin(φ−1)

�
(8.32)

vdq−1 =
�
vd−1

vq−1

�
= V−1

�
cos(φ−1)

sin(φ−1)

�
+ V+1

�
cos(2ω t) − sin(2ω t)

sin(2ω t) cos(2ω t)

��
cos(φ+1)

sin(φ+1)

�
(8.33)

These expressions clearly give evidence that the AC terms in the dq+1 axes result from the DC
terms in the dq−1 axes being affected by a rotating transformation matrix at 2ω frequency. A
similar conclusion can be obtained for AC signals on the dq−1 reference frame. These rotating
transformation matrices are given by

�
Tdq+2

� = �Tdq−2

�T = � cos(2ω t) sin(2ω t)

− sin(2ω t) cos(2ω t)

�
(8.34)

Therefore, (8.32) and (8.33) can be rewritten as

vdq+1 =
�
vd+1

vq+1

�
= vdq+1 + �Tdq+2

�
vdq−1 (8.35)

vdq−1 =
�
vd−1

vq−1

�
= vdq−1 + �Tdq−2

�
vdq+1 (8.36)

where

vdq+1 =
�
vd+1

vq+1

�
= V+1

�
cos(φ+1)

sin(φ+1)

�
and vdq−1 =

�
vd−1

vq−1

�
= V−1

�
cos(φ−1)

sin(φ−1)

�

represent the amplitude of sequence components applied to the input of the DDSRF. Thus,
(8.35) and (8.36) give evidence that the relationship between the signals on the positive and
negative reference frames are given by

vdq+1 = �Tdq+2

�
vdq−1 and vdq−1 = �Tdq−2

�
vdq+1 (8.37)

As a result, the estimated values at the output of the DDSRF can be written as:

v∗dq+1 =
�
v∗d+1

v∗q+1

�
= [F]

�
vdq+1 − �Tdq+2

�
v∗dq−1

�
(8.38)

v∗dq−1 =
�
v∗d−1

v∗q−1

�
= [F]

�
vdq−1 − �Tdq−2

�
v∗dq+1

�
(8.39)
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Figure 8.17 Block diagram of the DDSRF with n = +1 and m = −1

where

[F] =
�

LPF(s) 0

0 LPF(s)

�

Therefore, the DDSRF of Figure 8.16 can be represented for the particular case of the positive-
and negative-sequence components at the fundamental frequency, as Figure 8.17 shows.

In order not to extend excessively the analysis of the DDSRF, only an estimation of the
positive-sequence component will be considered in the following. Therefore, substituting
(8.39) in (8.38) we obtain

v∗dq+1 = [F ]
�
vdq+1 − �Tdq+2

�
[F ]
�
vdq−1 − �Tdq−2

�
v∗dq+1

��
(8.40)

and using the relationships of (8.37), we arrive at

v∗dq+1 = [F]
�
vdq+1 − �Tdq+2

�
[F]
��

Tdq−2

�
vdq+1 − �Tdq−2

�
v∗dq+1

��
(8.41)

v∗dq+1 = [F]
�
vdq+1 − �Tdq+2

�
[F]
�
Tdq−2

� �
vdq+1 − v∗dq+1

��
(8.42)

A very amusing academic exercise is to determine the matrix resulting from
�
Tdq+2

�
[F ]
�
Tdq−2

�
. Some useful directions regarding how these matrices should be operated can

be found in references [18] and [19]. As a result of such operations it can be concluded that

[F−2] = �Tdq+2

�
[F ]
�
Tdq−2

�
= 1

2

�
(LPF(s + j2ω)+ LPF(s − j2ω)) j (−LPF(s + j2ω)+ LPF(s − j2ω))

j (LPF(s + j2ω)− LPF(s − j2ω)) (LPF(s + j2ω)+ LPF(s − j2ω))

�

[F−2] = [F+2]T = 1

2

⎡⎢⎢⎢⎣
ω f
�
s + ω f

�
s2 + 2sω f + ω2

f + (2ω)2 − ω f ω

s2 + 2sω f + ω2
f + (2ω)2

ω f ω

s2 + 2sω f + ω2
f + (2ω)2

ω f (s + ωF )

s2 + 2sω f + ω2
f + (2ω)2

⎤⎥⎥⎥⎦ (8.43)
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Therefore, (8.42) can be simplified as

v∗dq+1 = [F]
�
vdq+1 − [F−2]

�
vdq+1 − v∗dq+1

��
(8.44)

and regrouping terms yields

{[I ]− [F] [F−2]} v∗dq+1 = [F] {[I ]− [F−2]} vdq+1 (8.45)

where [I] is the identity matrix. As a result, the following expression describes the relationship
between the signals on the positive-sequence frame and the estimated value for the positive-
sequence component at the output of the DDSRF:

v∗dq+1 = {[I ]− [F] [F−2]}−1 [F] {[I ]− [F−2]} vdq+1 (8.46)

After operating, this relationship is given by

v∗dq+1

vdq+1
=
�

H11 H12

H21 H22

�
;

�
H11 = H22 = H

�
s3 + 2ω f s2 + 4ω2s + 4ω fω

2
�

H12 = −H21 = −H
�
2ω fωs

� (8.47)

where

H = ω f

s4 + 4ω f s3 + 4
�
ω2

f + ω2
�

s2 + 8ω f ω2s + 4ω2
fω

2
(8.48)

The transfer function for the negative-sequence output of the DDSRF is given simply by
transposing the matrix shown in (8.47), and is obtained by following the same steps as in the
positive-sequence case.

The DDSRF is a very useful tool when dealing with three-phase systems, since it is a
sequence separator that allows independent control of the positive- and negative-sequence
components of voltage and/or current during unbalanced grid faults. For this reason, the
transfer functions shown in (8.47) are very important for correct implementation of the low-
voltage ride-through capability in power converters under unbalanced grid fault conditions.

In the transfer functions of (8.47), it is supposed that the frequency ω is given by a PLL and
matches the fundamental frequency of the grid, while the cut-off frequency of the low-pass
filer, ωf, is properly set in design time to obtain the required performance of the system. Figure
8.18 shows the evolution of the signal on the d+1 axis of the positive-sequence reference frame
of the DDSRF, v∗d+1 , when vdq+1 is suddenly applied to its input in the form of a unitary step for
different values of ωf. From this figure, it can be concluded that a reasonable trade-off between
the time response and oscillation damping can be achieved by setting ω f = ω/

√
2 rad/s [17].

8.4.4 Structure and Response of the DDSRF-PLL

The block diagram of the DDSRF-PLL is shown in Figure 8.19. As shown in the figure, this
PLL is an extension of the conventional three-phase SRF-PLL structure. In this PLL, in order to



Grid Synchronization in Three-Phase Power Converters 193

0 25 50 75 100
0

0.5

1

1.5

t [ms]

v 
 [

p.
u.

]
d

1

2
f ωω =

f ωω <<

f ωω >>

Figure 8.18 Step response of the signal v∗d+1 at the output of the DDSRF

obtain a similar dynamic response for different grid voltage amplitudes, the phase-angle error
signal vq

+1 is adaptively normalized to the amplitude of the positive-sequence input vector.
Moreover, the rated grid frequency is added as a feed-forward parameter, ωff, to accelerate the
pulling process of the PLL. However, the most significant performance improvement in this
PLL comes from the decoupling network added to the DSRF.

The decoupling network of the DDSRF-PLL completely cancels out the oscillations at
2ω on the dq+1 and dq−1 reference frame signals. Therefore, there is no need to reduce the
bandwidth of the PLL to attenuate such oscillations and the real amplitude of the unbalanced
input voltage sequence components are indeed exactly detected.
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Figure 8.20 shows the response of the DDSRF-PLL when used in the estimation of the se-
quence components of the grid voltage during a sag type C with �V+1

a = 0.5∠− 30◦ and �V−1
a =

0.25∠+ 60◦. In this study case, the fundamental grid frequency is ω= 314.1 rad/s. Therefore,
the cut-off frequency of the low-pass filter was set to ω f = ω/

√
2 = 222.1 rad/s and the pa-

rameters of the PI controller were set to kp= 222.1 and ki= 9× 10−3, which results in a settling
time around 40 ms according to the guidelines given in [20] and in Section 4.2.2 of Chapter 4.

The plot of Figure 8.20(a) shows the three-phase unbalanced voltages, which experience
a jump in the phase angle, as evidenced by the vector locus shown in Figure 8.20(b). The
actual and the detected phase angle are plotted in Figure 8.20(c). This figure shows how the
PLL is able to lock the phase-angle jump after a transient period, which roughly matches
the settling time of the PLL calculated by the expression (4.37) in Chapter 4. This settling
time, approximately 40 ms, can be clearly observed in Figure 8.20(d), which represents the
frequency detected by the DDSRF-PLL. From this figure, it is worth highlighting the fact that
the large amplitude of the transient oscillation in the detected frequency as a consequence of the
phase-angle jump occurred in the grid voltage. The existence of such significant oscillations in
the detected frequency, which is indeed one of the most stable magnitudes in power systems,
can be considered as a drawback of the DDSRF-PLL in certain applications. Figure 8.20(e)
shows the dq+1 signals on the axes of the positive reference frame (thin traces) and the resultant
signals at the output of the DDSRF (thick traces). Likewise, the dq−1 signals on the negative-
sequence reference frame are shown Figure 8.20(f). In this last figure, the d−1 component is
equal to zero because of a geometrical coincidence. Since the PLL is controlling the position
of the dq+1 reference frame, only the q+1 signal at the output of the DDSRF is forced to be
equal to zero. Both d−1 and q−1 signals at the output of the DDSRF can take any arbitrary
value depending on the relative angular position between the positive- and negative-sequence
voltage vectors. Figure 8.20(e) and (f) shows how the DDSRF perfectly decouples the positive-
and negative-sequence voltage components and obtains free oscillation signals describing the
amplitude of the positive- and negative-sequence voltage vectors applied to its input. From the
detected phase angle and amplitudes, the positive- and negative-sequence three-phase voltages
can be readily reconstructed as shown in Figure 8.20(g) and (h).

The DDSRF-PLL is an effective synchronization solution for the implementation of syn-
chronous controllers for three-phase power converters, mainly if they provide low-voltage
ride-through capabilities under unbalanced grid faults. However, as presented in Chapter 9,
the power converter controllers can also be implemented on the stationary reference frame
by using resonant controllers. In such a case, the grid voltage phase angle is not the most
important synchronization variable – the grid frequency is. Since the grid frequency is a more
stable variable than the grid phase angle, it is intuitive to think that controllers based on grid
frequency detection will present a more robust performance than those based on phase-angle
detection during grid faults. In the next section, a synchronization system based on adaptive
filters working on the stationary reference frame is presented as a suitable technique to be
applied in the implementation of resonant controllers for three-phase converters.

8.5 The Double Second-Order Generalized Integrator FLL
(DSOGI-FLL)

The DSOGI-FLL exploits the instantaneous symmetrical components method by using adap-
tive filters based on the second-order generalized integrator [21, 22]. As previously presented
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Figure 8.20 Representative waveforms of a DDSRF-PLL: (a) three-phase input voltage, (b) voltage
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sequence component, (f) detected dq signals for the negative-sequence component, (g) detected positive-
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in this chapter, an unbalanced three-phase system can be systematically analysed by transform-
ing its unbalanced phasors into a set of symmetrical components according to the Fortescue
transformation matrix shown in (8.14) [23]. The symmetrical components method can also
be applied in the time domain analysis by using the Lyon transformation [24]. According
to this method, a voltage vector vabc consisting of three unbalanced sinusoidal waveforms
can be split up into its instantaneous positive-, negative- and zero-sequence components,
vabc = v+abc + v−abc + v0

abc, by applying the following transformations:

v+abc = [T+] vabc;

⎡⎢⎣ v
+
a

v+b
v+c

⎤⎥⎦ = 1

3

⎡⎢⎣ 1 a a2

a2 1 a

a a2 1

⎤⎥⎦
⎡⎢⎣ va

vb

vc

⎤⎥⎦ (8.49)

v−abc = [T−] vabc;

⎡⎢⎣ v
−
a

v−b
v−c

⎤⎥⎦ = 1

3

⎡⎢⎣ 1 a2 a

a 1 a2

a2 a 1

⎤⎥⎦
⎡⎢⎣ va

vb

vc

⎤⎥⎦ (8.50)

v0
abc = [T0] vabc;

⎡⎢⎣ v
0
a

v0
b

v0
c

⎤⎥⎦ = 1

3

⎡⎢⎣1 1 1

1 1 1

1 1 1

⎤⎥⎦
⎡⎢⎣ va

vb

vc

⎤⎥⎦ (8.51)

where a is a particular version of the Fortescue operator and represents a kind of time-shifting
over the instantaneous sinusoidal input signals at the fundamental grid frequency, equivalent
to a 120◦ phase-shifting.

In three-phase three-wire grid-connected power converters, the main interest lies in control-
ling the positive- and negative-sequence components of the injected current. In turn, the grid
synchronization system should be focused on perfectly tracking the positive- and negative-
sequence components of the grid voltage at the point of common coupling.

The sequence components of vabc can be expressed on the αβ reference frame by using
either the transformation matrix of (8.5) or its rescaled version of (8.21), yielding

v+αβ =
�
Tαβ
�
v+abc

v−αβ =
�
Tαβ
�
v−abc

(8.52)

Substituting (8.49) and (8.50) we obtain

v+αβ =
�
Tαβ
�

[T+] vabc

v−αβ =
�
Tαβ
�

[T−] vabc

(8.53)

and applying the inverse transformation
�
Tαβ
�−1

we have

v+αβ =
�
Tαβ
�

[T+]
�
Tαβ
�−1
vαβ

v−αβ =
�
Tαβ
�

[T−]
�
Tαβ
�−1
vαβ

(8.54)
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Finally, after operating these transformation matrixes we arrive at the following
expressions:

v+αβ =
�
Tαβ+
�
vαβ ;

�
Tαβ+
� = 1

2

�
1 −q
q 1

�
(8.55)

v−αβ =
�
Tαβ−
�
vαβ ;

�
Tαβ−
� = 1

2

�
1 q
−q 1

�
(8.56)

where q = e−jπ/2 is a 90◦-lagging phase-shifting operator applied on the time domain to obtain
an in-quadrature version of the input waveforms.

8.5.1 Structure of the DSOGI

Different techniques to implement a quadrature signal generator (QSG) were presented in
Chapter 4. In the DSOGI, the operator q of (8.55) and (8.56) is implemented by using the
second-order AF based on a SOGI (SOGI-QSG), which was presented in Section 4.5.3 of
Chapter 4 as an effective method to obtain a set of two in-quadrature output signals from a
given sinusoidal input signal. Moreover, the filtering characteristic of the SOGI-QSG attenuates
the effect of the distorting high-order harmonics from the input to the output.

The structure of the DSOGI is presented in Figure 8.21. As observed in this figure, two
SOGI-QSGs are in charge of generating the direct and in-quadrature signals for the α and
β components of the input vector, i.e. v�α , v

�
β , qv�α and qv�β respectively. These signals are

vα
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Figure 8.21 Structure of the DSOGI
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provided as inputs to a positive-/negative-sequence calculation block (PNSC), which computes
the sequence components on the αβ reference frame according to (8.55) and (8.56).

8.5.2 Relationship between the DSOGI and the DDSRF

According to (8.55), the transfer function from the unbalance input voltage vector to the
positive-sequence component detected by the DSOGI is given by

v+αβ =
�
Tαβ+
�
vαβ = 1

2

�
D(s) −Q(s)

Q(s) D(s)

�
vαβ = 1

2

kω�

s2 + kω�s + ω�2
�

s −ω�
ω� s

�
vαβ

(8.57)
where D(s) and Q(s) are the characteristic transfer functions of the SOGI-QSG and were
already presented in Section 4.5.3 of Chapter 4. The negative-sequence component at the
output of the DSOGI can be calculated by simply transposing the matrix of (8.57).

The DDSRF was analysed in Section 8.4.3 and its transfer function on the synchronous
reference frame was presented in (8.47). To translate the transfer function of the DDSRF from
the synchronous reference frame to the stationary one it is necessary to operate the following
transformation:

v+αβ =
�
Tdq+
� � H11 H12

H21 H22

� �
Tdq+
�−1
vαβ (8.58)

Taking into account that H11 = H22 and H12 = −H21, we arrive at

v+αβ =
1

2

�
Ha − jHb jHc + Hd

−jHc − Hd Ha − jHb

�
vαβ (8.59)

where

Ha =
�
H11
�
s + jω�

�+ H11
�
s − jω�

��
Hb =

�
H12
�
s + jω�

�− H12
�
s − jω�

��
Hc =

�
H11
�
s + jω�

�− H11
�
s − jω�

��
Hd =

�
H12
�
s + jω�

�+ H12
�
s − jω�

�� (8.60)

Expanding and regrouping (8.59), the following transfer functions are obtained to describe the
performance of the DDSRF on the stationary αβ reference frame:

v+αβ =
ω f

s2 + 2ω f s + ω�2
�

s −ω�
ω� s

�
vαβ (8.61)

where ωf is the cuf-off frequency of the first-order low-pass filter and ω’ is the frequency
detected by the PLL.

Expressions (8.57) and (8.61) show that the DSOGI and the DDSRF are two equivalent
systems, which perform the same function – sequence separation – on two different reference
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frames. In principle, the DSOGI and the DDSRF would have the same dynamic response when
k = 2ω f /ω

� in (8.57). However, it is worth remarking that the DSOGI performance depends
on the frequency detected by the FLL, while the DDSRF depends on the phase angle detected
by the PLL. Therefore, the response of the DSOGI-FLL and the DDSRF-PLL will not exactly
be equal in practice since the FLL and the PLL are two completely different systems with a
different dynamic response.

To analyse the frequency response of the DSOGI, the expression of (8.57) can be written in
the frequency domain (s = jω) as follows:�
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(8.62)

Considering that the αβ components of a balanced positive-sequence voltage vector at fre-
quency ω keep the following steady-state relationship on the frequency domain:

vβ(jω) = −jvα(jω) (8.63)

Therefore, the steady-state transfer function of the DSOGI on the frequency domain can be
written as �

v+α
v+β

�
= 1

2

kω�
�
ω + ω��

kω�ω + j
�
ω2 − ω�2�

�
vα

vβ

�
(8.64)

This transfer function describes the relationship between the amplitude of the positive-
sequence component detected by the DSOGI and the actual amplitude of a given positive-
sequence voltage vector applied to its input. This transfer function is plotted in the Bode
diagram of Figure 8.22 as P( jω) = |v+αβ �|/|v+αβ |. By simply substituting ω by −ω in (8.64),
another transfer function N ( jω) = |v+αβ �|/|v−αβ | can be defined. This second transfer func-
tion, also plotted in the Bode diagram of Figure 8.21, describes the relationship between the
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Figure 8.23 Structure of the FLL for the DSOGI.

detected amplitude for the positive-sequence component and the actual amplitude of a given
negative-sequence voltage vector applied to the input of the DSOGI. As this Bode diagram
shows, the DSOGI acts either as a low-pass filter or as a notch filter in the detection of the
positive-sequence component, depending on whether the input voltage shows either a positive
or a negative sequence respectively.

8.5.3 The FLL for the DSOGI

As presented in Section 4.6 of Chapter 4, a SOGI-QSG needs an FLL to become frequency
adaptive. Moreover, the gain of the FLL has to be normalized in runtime according to the
amplitude of the input signal in order to linearize the response of the frequency adaptation
loop. Although mathematically correct, the use of two independent FLLs in the DSOGI-FLL
might, however, seem conceptually odd since its two input signals, vα and vβ , have the same
frequency. For this reason, the DSOGI uses a single FLL (see Figure 8.23) in which the
frequency error signals generated by the QSGs of the α and β signals have been combined by
calculating an average error signal, i.e.

ε f = ε f (α) + ε f (β)

2
= 1

2

�
εαqv

�
α + εβqv�β

�
(8.65)

The gain of this two-dimensional FLL is normalized by using the square of the amplitude of
the positive-sequence component, i.e. (v+α )2 + (v+β )2, which results in a first-order exponential
linearized response with a settle time that still matches very well that one calculated by (4.109)
in Chapter 4. In this manner, the DSOGI-FLL permits a decoupled estimation to be carried out
of the symmetrical components of the input three-phase voltage on the αβ reference frame,
as well as the value of the grid frequency, something that is essential to implement power
converter controllers on the stationary reference frame by using generalized integrators.

8.5.4 Response of the DSOGI-FLL

To evaluate the response of DSOGI-FLL the same unbalanced grid voltage as in the case
of the DDSRF-PLL is applied to its input, i.e. a sag type C with �V+1

a = 0.5∠− 30◦ and
�V−1

a = 0.25∠+ 60◦. In this study case, the gain of the SOGI-QSGs was set to k = √2 to
have the same tuning conditions as in the case of the evaluation of the DDSRF response
(ω f = ω/

√
2). The gain of the FLL was set to � = 100, which results in a settling time of

around 45 ms according to the guidelines given in Section 4.6.1 of Chapter 4.



Grid Synchronization in Three-Phase Power Converters 201

 (a) 

-1.5

-1

-0.5

0

0.5

1

1.5

v ab
c

 [p
.u

.]

11 −+ + vv

(b) 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

v
alpha

 [p.u.]

v be
ta

 [
p.

u.
]

(c) 

0

1

2

3

4

5

6

7

ω
t, 

θ′
 [

ra
d]

tωθ ′=

(d) 

0

100

200

300

400

ω
  ω

′
,

 [
ra

d/
s]

ω ′

ω

(e) 

-0.5

0

0.5

1

1.5

v 
, v+

αβ+
 [

p.
u.

]

v+1′v
α+1′ v

β +1′

(f) 

-0.5

0

0.5

1

1.5

v 
, v-

αβ-
 [p

.u
.] v−1′v

β −1′ v
α−1′

(g) 

100 125 150 175 200
-1.5

-1

-0.5

0

0.5

1

1.5

t [ms]

v ab
c

+
′

 [
p.

u.
]

+1′v

(h) 

100 125 150 175 200
-1.5

-1

-0.5

0

0.5

1

1.5

t [ms]

v ab
c

-′
 [

p.
u.

]

1− ′v

Figure 8.24 Representative waveforms of a DSOGI-FLL: (a) three-phase input voltage, (b) voltage
vector locus, (c) detected phase angle, (d) detected frequency, (e) detected positive-sequence amplitude
and αβ signals, (f) detected negative-sequence amplitude and αβ signals, (g) detected positive-sequence
three-phase voltages and (h) detected negative-sequence three-phase voltages
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The plot of Figure 8.24(a) shows the three-phase unbalanced voltages, which experience
a jump in the phase angle as evidenced by the vector locus shown in Figure 8.24(b). The
frequency detected by the FLL is shown in Figure 8.24(d). It is possible to appreciate in
this figure how the detected frequency does not present high oscillations as in the case of
the DDSRF-PLL. Moreover, the settling time in frequency adaptation matches the theoretical
calculations. The amplitude and the phase angle of the sequence components detected by the
DSOGI-FLL can be calculated by

��v��� = ��v�α�2 + �v�β�2
; θ � = tan−1

v�β
v�α

(8.66)

The actual and the detected phase angle of the positive-sequence component of the unbalanced
input voltage are plotted in Figure 8.24(c). This figure shows that the DSOGI-FLL completely
cancels the steady-state error in the detected phase angle. Figure 8.24(e) shows the amplitude
of the positive-sequence component together with the αβ +1 signals. The amplitude of the
negative-sequence component, together with the αβ −1 signals are shown in Figure 8.24(f). The
positive- and negative-sequence three-phase voltages can be reconstructed from the detected
phase angle and amplitudes, and are shown in Figure 8.24(g) and (h).

After comparing the plots shown in Figures 8.20 and 8.24, it is possible to highlight the fact
that the waveforms of the DSOGI-FLL are smoother than those of the DDSRF-PLL when the
same unbalanced voltage is applied to their inputs and an equivalent set of parameters are used
in both systems. This difference in the response of both synchronization systems gives rise to
a significant divergence between the performances of power converter controllers working on
the synchronous reference frame and on the stationary one, mainly when they operate under
unbalanced grid faults.

8.6 Summary

This chapter has studied the characteristics of the three-phase voltage vector under unbalanced
grid faults and presented expressions to determine its sequence components as a function of
both the type of fault and the grid impedances.

The conventional SRF-PLL, although commonly used as a essential building block in the
implementation of controllers for grid-connected converters, has demonstrated that it is not a
suitable solution when a fast and precise grid synchronization is required during unbalanced
grid faults, as is the case of the controllers for wind turbines and photovoltaics generators
implementing the low-voltage ride-through functionality.

The DDSRF-PLL and the DSOGI-FLL, two advanced grid synchronization systems, have
been presented in this chapter as suitable solutions to be used in the implementation of
synchronous and stationary controllers for power converters respectively. The fundamental
variable estimated by the DDSRF-PLL is the grid phase-angle, whereas the grid frequency
is the one for the DSOGI-FLL. Since the grid frequency is a more stable variable than the
grid phase-angle, the DSOGI-FLL use to present a smoother response than the DDSRF-PLL
during transient faults.
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