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Synthesis of Averaged Circuit Models for
Switched Power Converters

Seth R. Sanders and George C. Verghese

Abstract —Averaged circuit models for switching power con-
verters are useful for analysis and simulation, and for obtaining
engineering intuition into the operation of these switched cir-
cuits. This paper develops averaged circuit models for switching
converters using a direct circuit averaging method. The method
proceeds in a systematic fashion by determining appropriate
averaged circuit elements that are consistent with the averaged
circuit waveforms. The averaged circuit models that are ob-
tained are syntheses of the state-space averaged models for the
underlying switched circuits. An important feature of our method
is that it is applicable to switched circuits whose non-switch
elements may be nonlinear. Our approach is compared and
contrasted with the results on averaged circuit models currently
available in the literature.

1. INTRODUCTION

HIS paper studies the existence and synthesis of

non-switched circuits that exhibit the dynamics de-
scribed by the state-space averaged model of a given
switching power converter. An averaged circuit represen-
tation for a switching converter is useful for analysis, for
circuit-based simulation, and for obtaining engineering
intuition into the operation of the switching converter. In
order that the averaged circuit be most useful, it is
desired that this model resemble as closely as possible
the underlying switched circuit. The method of in-place
or direct circuit averaging pioneered by Wester and
Middlebrook [18] is a natural approach for obtaining
averaged circuit models. With this method, one attempts
to replace cach element of the switched converter circuit
by an appropriate “averaged element.” The main contri-
bution of this paper is in extending the earlier results of
[18] (and others) on averaged circuit synthesis. In particu-
lar, we give a systematic approach for synthesizing aver-
aged circuit models that realize their respective state-
space averaged models. Our synthesis procedure, unlike
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earlier work, is applicable to switched circuits whose
non-switch elements may be nonlinear.

The paper is organized as follows. Section II presents
background on modeling of switching power converters;
an up-down converter is used as the main example in
that section and in the remainder of the paper. Undoubt-
edly, the ideas developed in this paper are applicable to
other areas where switched circuits are used, but we focus
our attention on switching power converters since this
application area motivated our research. As mentioned
above, there has been significant previous work on the
synthesis of averaged circuit models. We give a brief
summary of previous work in Section III. The relation-
ships between our results and previous ones are also
discussed as our development proceeds. Our main results
on averaged circuit synthesis are contained in Section IV
along with a number of examples. Summarizing remarks
are included in Section V.

I1. STATE-SPACE MODELS FOR POWER
ELecTrONIC CIRCUITS

This section develops a state-space model for an
up—down converter to illustrate the nature of state-space
models for power electronic circuits. This model and
certain variants of it are used extensively as examples in
the remainder of the paper. For more details on modeling
of power electronic circuits; see [1]-[3], [20].

Consider the up—-down converter shown in Fig. 1(a).
The nominal steady-state operation of such a converter
involves a cyclic process. The transistor is turned on in the
first part of the cycle, so that the inductor current ramps
up. During this time, the diode is reverse biased (a
nonconducting state) so that the capacitor voltage decays
into the load. Then, in the second part of the cycle, the
transistor is turned off and the diode becomes forward
biased (a conducting state), so that the inductor current
flows through the diode into the capacitor and the load.
Typical waveforms are displayed in Fig. 1(b). The switch-
ing frequency is invariably picked high enough to yield a
small switching ripple.

With this type of cyclic operation, the average value of
the capacitor voltage v in the steady state can be made
gither larger or smaller in magnitude than the source
voltage V,. This is why the circuit is termed an up-—down
converter. Note also that if the transistor and diode func-
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Fig. 1. (a) Up-down converter. (b) Typical waveforms.

tion essentially as ideal switches, then the power dissipa-
tion is mainly in the load, i.e., the converter operates at
high efficiency. One can determine the approximate steady
state transfer ratio from source voltage to average capaci-
tor voltage by noting that the average voltage across the
inductor is zero in steady state, and hence

(), +(1-d)v, =0 (1)
where v, is the nominal steady state value of the capaci-
tor voltage and d is the duty ratio, that is, the fraction of
each cycle that the transistor is on. From (1), we readily
obtain

d

it srid® (2

Under the restriction that the inductor current i is
always positive (so-called continuous conduction), we can
model the transistor-diode pair as a single pole, double
throw (SPDT) switch. Note that the position of the switch
can always be dictated by turning the transistor on (. =1)
or off (u=0). When either switch position is specified,
the circuit can be characterized by a linear, time-invariant
(LTI) model. Suppose that under u=1, a state-space
model is given by

x'=Ax+Bw 3)
and under u = 0, is given by
x'=Ayx + Bgw (4)

where x is a state vector comprising the capacitor voltage
and the inductor current, x’ is its time derivative, and w is
the vector of voltage and current source values. Note that
we have not explicitly noted the time dependence in the
state x and its derivative x’, and we shall continue this
omission throughout the paper when such dependence is
clear from the context. An ensemble model in bilinear
form can be obtained by combining (3) and (4) as

x'=[Ag+u(A,— Ay)]x+[By+u(B,— By)]w. (5)

For the up-down converter of Fig. 1, the state-space

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 38, NO. 8, AUGUST 1991

representation takes the form

[zl;"]z{[—lo/c 1/L +u

~-1/RC

ye o]

v,/L 0
+u[ / st/c]- (6)
Note that the control variable u takes on only the values 0
and 1.
In the more general case where nonlinear circuit ele-

ments are present in a switching converter, the ensemble
model (5) would take the more general form

x'= fo(x)+ul fi(x) = fo(x)]. (N
Terms corresponding to independent sources may be ab-
sorbed into fy(-) and f(-) in (7). In some applications
involving time-varying source and /or load waveforms, the
vector-valued functions fo(+) and f,(+) may be time de-
pendent. For all cases of interest in this paper, f,(-) and
fi(+) will be continuous functions of their arguments.

There are many converters of interest that admit more
than two switch configurations. For details on modeling
these converters and on deriving averaged circuit repre-
sentations, see [31].

State-Space Averaged Models: To facilitate the use of
well-established control design methods based on state-
space models that have a continuously variable input,
state-space averaged models for switching converters have
been developed [4], [5], [20]. A state-space averaged model
is an approximation to a model that contains discrete
control inputs (such as (6)), and can be obtained by
replacing the instantaneous values of all state and control
variables by their one-cycle averages, i.e.,

1
)'c(t)=?f'_Tx(s)ds (8)

1 .
d(t):ﬁ(r)=7['_Tu(s)ds (9)

in the case where the converter is operated cyclically with
period 7. The symbol d is used to represent the duty
ratio, that is, the one-cycle averaged value of u. See [18]
and [20] for discussions on the use of one-cycle averaging
for developing state-space averaged models.

To develop some intuition on the approximations in-
volved, consider applying the one-cycle average to the
model (7). We obtain

x'=fo(x) +ul fi(x) = fo(x)]. (10)
Note that the one-cycle averaging operation commutes
with differentiation (as demonstrated in Section IV), and
hence the left-hand side of (10) is equal to x'. Under the
conditions that the states do not vary much over any
interval of duration T (small ripple assumption), and that
the functions fy(-), f,(-) are continuous, the right-hand
side of (10) can be approximated as

fo(®) +d[ (%) - fo(3)] (11)

for small enough 7. This approximation can be justified
by first noting that the small ripple and continuity condi-
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tions assure that the relative variation in the functions
S0<- 2 1<) is small over the interval of duration 7, and
hence

“[fl(x)_fo(x)] zﬁ[fl(x)—-fo(x)]
=d[f(x)-fou(®»)]. (12)

The small ripple and continuity conditions also permit the
approximations

fo(x) = fo(%)
F(X) = f1(%) (13)

which lead to our result. (Note that in the case where the
functions f,(-), f,(+) are linear or affine, (13) involves no
approximation.) In summary, the state-space averaged
model for (7) takes the form

' = fo(®) +d[ fi(X) ~ fo(2)]- (14)

Note that this type of averaging is used in many disci-
plines in the systems and control literature including
convergence analysis of adaptive control schemes (e.g.,
[28]) and sliding mode control (e.g., [6]). For the up—down
converter, the state-space averaged model has an identi-
cal form to that of (6), except that the discrete input u is
replaced with the continuous duty ratio d, which can take
on any value satisfying 0 < d < 1. In the remainder of the
paper, we shall omit (except where otherwise indicated)
the overbar notation when considering state-space aver-
aged models, to simplify the presentation. The nature of
the model of interest should be clear from the context.

In the case where the functions f,(-) and fi(+) possess
bounded and continuous first partial derivatives with re-
spect to x, the trajectories of the averaged model can be
shown to approximate those of the underlying switched
system model on a finite interval with arbitrarily small
error, for sufficiently small 7. See [28], [29], and [37]
for results of this type. Also see [4], [5], and [13] for
discussions of the approximations involved in averaging.
References [28] and [37] also essentially prove that the
underlying switched system is exponentially stable for all
sufficiently small T if the state-space averaged system is
exponentially stable. Our focus in this paper is not on the
approximations involved in averaging, but on the relation-
ship between state-space averaged models and circuit
realizations for these. Therefore, we omit further discus-
sion of the approximations involved in averaging. For a
preview of our results, see Fig. 5, which shows a circuit
realization of the state-space averaged model of a varia-
tion of our up~down converter.

A control law d = — h(¥) designed using the state-space
averaged model is typically implemented in the switched
system by comparing the quantity h(x) to a ramp wave-
form r(¢) of the form shown in Fig. 2. The switched
control law might then take the form

u={(1): h(x) <r(t)

h(x)=>r(1). (15)
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Fig. 2. Ramp waveform used to implement control based on state-
space averaged model.

1I1. PrEViOUs WORK ON AVERAGED CIRCUITS

The earliest work on averaged circuit models for
switching converters was that of Wester and Middlebrook
[18]. In [18}, the technique used to obtain an averaged
circuit realization for a given switching converter could be
termed an in-place averaging scheme, where the averag-
ing is performed directly on the circuit. In particular, [18]
suggested the construction of an averaged circuit model
whose branch variables are one-cycle averages (see Sec-
tion II) of the corresponding branch variables of the
underlying switched circuit. This very physical approach
results in an averaged circuit that closely resembles the
underlying circuit. However, [18] did not adequately real-
ize the elements required to replace the switch branches.
Rather, each ideal switch pair was simply replaced by an
ideal transformer. A consequence of this is that the
state-space model that governs the dynamics of the ob-
tained averaged circuit is not always equivalent to the
state-space averaged model for the underlying switched
circuit. The later averaged circuit synthesis method of
Middlebrook and Cuk [5], [13], termed “hybrid modeling,”
is based on the state-space averaged model (and proceeds
apparently by inspection). This technique results in circuit
syntheses that do indeed realize the state-space averaged
models for their underlying models. The development by
Cuk and Middlebrook in [21] illustrated an analogous
approach for synthesizing averaged circuits for switching
converters operating in the discontinuous conduction
mode. It is claimed in [5)], [13], and [21] that the technique
is applicable to any converter; however, syntheses are only
given for a set of example converters.

The recent work of Vorperian [15], [16] and Tymerski
et al. [14] follows the in-place averaging approach in
constructing averaged circuit models. Reference [15] does
adequately realize the elements needed to replace the
switch branches when parasitic effects such as equivalent
series resistance (ESR) are present. Reference [16] devel-
ops a model for operation in the discontinuous conduc-
tion mode that is essentially different from other existing
models. More discussion of this will be given in Section
4.2. The paper of Lee [17] also has many similar ideas and
results.

Some recent publications have extended the in-place
averaging approach to quasi-resonant type circuits. See
{33] and [34] for details on this development. Another
challenge is the development of averaged circuit models
for the resonant type converters. Some results in this
direction can be found in [32], [35], [36), and [38].

Averaged circuit models have also been developed for
the analysis of switched-capacitor filters. In particular, the
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paper of Tsividis [22] illustrates the replacement of a
capacitor and switch pair by a simple resistor. This equiv-
alent circuit modeling involves a reduction of the order of
the state-space, as is required in modeling a switching
converter operating in the discontinuous conduction
mode. Similar ideas were applied by other authors [23],
[24] for the analysis of switched-capacitor circuits.

IV. AvERAGED CIRCUIT SYNTHESIS
viA IN-PLACE AVERAGING

The in-place averaging method is based on the applica-
tion of the one-cycle averaging operation to each branch
variable in a switched circuit, e.g.,

- 1 t
i(t)=-ift_Ti(s)ds (16)

for some branch current where the averaging interval T is
selected to be equal to the fundamental period of the
cyclic operation of the switches. A fundamental property
of the resulting averaged branch variables is that these
variables satisfy the same topological constraints, namely
Kirchhoff’s current and voltage laws (KCL and KVL), as
the respective variables in the nonaveraged circuit. This
follows from the facts that the constraints imposed on the
circuit branch variables by KCL and KVL are inherently
linear algebraic constraints, and apply identically at each
time instant. A first step in the synthesis of an averaged
circuit is then to consider a circuit that is topologically
equivalent to the underlying switched circuit. In order to
complete the synthesis, we need to specify averaged cir-
cuit elements that are consistent with the one-cycle aver-
aged branch variables.

The reactive elements of the underlying circuit are
preserved intact in the averaged circuit. To see why, we
can consider without loss of generality a nonlinear multi-
port capacitor, represented by the state-space description

q'=i
v=f(q) a7

where f(-) (assumed to be continuous) is the gradient of
a scalar function, i.e., f(q)=VW(q) where W(q) is the
internal energy of the capacitor to within an additive
constant. Consider the application of the one-cycle aver-
aging operation (16) to this element. The averaging oper-
ation commutes with differentiation with respect to time
since

¢ t)y—-q(t-T
70-5 7] aw=2072"0
-+ ) 6-TD (1®)

and therefore, we have §'=i. In general, 7 # f(@). How-
ever, for continuous waveforms and for continuous f(-) in
(17), the approximation T = f(g) approaches equality ar-
bitrarily closely for sufficiently small T. This approxima-
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Fig. 3. Partitioned switching converter.

tion is identical to that made in state-space averaging [4],
[5] in the context of state-space models for power circuits.

The linear resistive elements and sources of the under-
lying circuit are also preserved intact in the averaged
circuit, which can be demonstrated by the application of
the one-cycle averaging operation to the terminal wave-
forms of these elements. The following two subsections
treat the respective cases where only LTI resistive ele-
ments are present in the circuit and where nonlinear
resistive elements may be present.

4.1. Averaged Circuit Synthesis with LTI Resistive Elements

The preceding discussion motivates the following theo-
rem for circuits built from LTI resistive elements, ideal
sources, and one controlled switch. The theorem refers to
a circuit partitioned as in Fig. 3, and requires the follow-
ing two assumptions.

Assumption 4.1: Each branch voltage and each branch
current in the underlying switching converter circuit has a
unique solution corresponding to each value of the state
vector of capacitor charges (or voltages) and inductor
fluxes (or currents).

Assumption 4.2: There exists a hybrid representation
for the resistive multiport (Hy) in Fig. 3 with controlling
port variables taken as currents for those ports connected
to current source or inductive ports, as voltages for those
ports connected to voltage source or capacitive ports, and
with exactly one current-controlled switch port and one
voltage-controlled switch port.

Theorem 4.1: Suppose Assumptions 4.1 and 4.2 hold,
then an averaged circuit model for the partitioned circuit
of Fig. 3 can be obtained by replacing the two-port switch
network with a resistive two-port with hybrid representa-
tion

d
Hy(d)= 1=7H= (19)

for d # 1, where H,, is the hybrid immittance seen by the
switch two-port when all current source and inductive
branches are replaced by open circuits and all voltage
source and capacitor branches are replaced by short cir-
cuits. (The switch positions must be labeled so that u =0
corresponds to the position where the current-controlled
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Fig. 4. Up-down converter with source resistance.
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Fig. 5. Averaged circuit for up—down converter with source resistance.

switch port is open and the voltage-controlled switch port
is shorted.) Further, the resulting averaged model is a
synthesis of the state-space averaged model for the under-
lying switched converter circuit.

Proof: See Appendix A. Actually, Assumption 4.2 is
not required, but results in the simple synthesis rule (19).
We give a more general synthesis procedure in the follow-
ing subsection that is independent of any specific coordi-
nate system.

To obtain the averaged model, one therefore only needs
to compute the hybrid immittance H,, seen by the switch
two-port, and then determine a synthesis for a scaled
version of this hybrid immittance function. The linear
resistive two-port synthesizing H(d) is passive (recipro-
cal) if the resistive multiport Hj is also passive (recipro-
cal), since scaling a hybrid matrix by a positive real
number preserves these properties. The following exam-
ple illustrates the use of this result.

Example: Up-Down Converter: Fig. 4 shows a model
of an up-down converter that includes parasitic resis-
tance in series with the voltage source. It is straightfor-
ward to evaluate the immittance seen by the switch two-

port:
r, -1
H,=|"* .
27 3

To realize the resistive two-port that replaces the switch
network, we synthesize a resistive two-port (see [9]) for
H(d)=(d/1—d)H,, The resulting averaged circuit is
shown in Fig. 5. Note that the averaged circuit includes
one more two-terminal resistor than the original switched
circuit. This “extra” resistance is required to appropri-
ately realize the one-cycle averaged behavior. Some previ-
ous work [14], [18] on this problem resulted in averaged
circuit models that did not include this resistance, but
simply replaced the switch pair with an ideal transformer.
The main contribution of Theorem 4.1 is in streamlining
the procedure for constructing the averaged model, and
in making explicit the dependence of the averaged switch
network on the non-switch circuit elements such as equiv-
alent series resistance (ESR) associated with a voltage
source or capacitor.

(20)

Fig. 6. Locus of operation for a nonlinear resistor.

S
SEDH

Fig. 7. Partitioned nonlinear switched network.

4.2. Averaged Circuit Synthesis with Nonlinear
Resistive Elements

As previously discussed, nonlinear reactive elements,
linear resistive elements, and d¢ sources are preserved
intact by the one-cycle averaging procedure. The type of
element that can present difficulty is a nonlinear resistive
element. To see why, consider the current-voltage plot of
the operating characteristic for a nonlinear resistor as
depicted in Fig. 6. Evidently, the average of the two
operating points corresponding to the two different switch
configurations is not a point on the operating characteris-
tic for the nonlinear resistor. For this reason, nonlinear
resistors need to be treated with care in constructing an
averaged circuit. Actually, it is only the nonlinear resistive
elements that have discontinuous waveforms that need to
be treated differently from the other elements. If the
terminal waveforms for a nonlinear resistor are continu-
ous, the waveform trajectory will lie on a connected
section of the resistor current-voltage characteristic.
Therefore, the nonlinear resistor characteristic will be
preserved by the one-cycle averaging operation in the
limit of infinitesimally small T, provided the resistor char-
acteristic is smooth. In light of this requirement, we need
the following.

Assumption 4.3: All network constitutive relations are
Ccl.

We shall demonstrate a procedure for constructing an
averaged circuit model for a switched power converter
that contains nonlinear resistive elements that have dis-
continuous terminal waveforms. The method lumps the
nonlinear resistive element into a multiport network with
the switch branches. To carry out the averaged circuit
synthesis, Assumptions 4.1 and 4.3 are required.

Consider the partitioned switched circuit of Fig. 7 where
all sources are absorbed into the nonlinear resistive multi-
port. The multiport on the right-hand side of the figure
includes all the nonlinear resistive elements that have
discontinuous waveforms (switches included as well). For
convenience, we shall refer to this multiport as the switch
multiport, since it contains at least the switch branches.
Let x denote the vector of switch port variables, v denote
the vector of inductor currents and capacitor voltages,

—
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and y denote the vector of inductor voltages and capaci-
tor currents. The development will use constraint rela-
tions [19] and [25] for the various subnetworks in Fig. 7.
We shall construct the constraint relation for the nonlin-
ear resistive multiport (centered in Fig. 7) in two stages.
Firstly, denote the constraints imposed by this network on
the switch port variables with the relation

Cy(v,x)=0 (21)

where the vector of controlling reactive port variables v is
viewed as a parameter. Secondly, let the constraints im-
posed by the resistive multiport on the reactive port
variables (v, y) be written in the form

—y=Cy(v,x). (22)

This can be done as a consequence of Assumption 4.1,
which guarantees an explicit solution for y, the vector of
inductor voltages and capacitor currents. The constraint
imposed by the switch multiport will be represented by
the relation

Cs,(x)=0 (23)

where the dependence upon the switch configuration is
noted with the subscript u. The composite constraint
imposed by the interconnection of the three multiport
networks takes the form

—y=C(v,x)
0=Cxv,x)
0=0Cs,(x). (24)

The composite constraint relation (24) determines the
state-space model since for each value of v, this con-
straint determines a unique value of y. Further, this set of
constraints uniquely determines the vector x of switch
variables for each value of v.

With the in-place averaging method, the one-cycle av-
eraged switch variables take the form

X=(d)xlu=1+(1—-d)xlu=0 (25)

where x|, is the value of the vector of switch branch
variables when the switch configuration is u. Since, by
hypothesis, each branch variable in the circuit is well
defined for each switch configuration, we can determine
the functional form of x|, in terms of the vector v from
the constraints (24), i.e.,

xlu=g,(v). (26)

We conclude that the averaged switch vector ¥ assumes
the functional form

T=24(0)=(d)g(0) +(1-d)ge(D). (27)

Now we require conditions under which we can character-
ize a manifold in which the vector ¥ is constrained to lie.
This characterization should be independent of the vector
v of the reactive circuit variables. The characterization
can be made implicitly via a constraint relation, i.e.,

Cs,(%)=0 (28)

o +Vsi-
|

. )

Fig. 8. Up-down converter with nonlinear source resistance.

or with an explicit parametrization. In the previous sub-
section where we considered the case in which the resis-
tances were linear, this manifold was a subspace of R*.

Our main result is the following.

Theorem 4.2: A sufficient condition for the construc-
tion of an explicit characterization of the manifold in
which the averaged switch vector ¥ must lie is that the
function C,(v, x) that appears in the second constraint of
(24) is separable into two additive terms, i.e.,

0=CZ(U7x)=C2v(U)+C2x(x)' (29)

Note that a representation C,(v, x) is not unique, and
the separability property may depend upon the particular
choice for this representation. However, the statement
holds as long as there exists some representation C,(v, x)
that is separable.

Proof: To demonstrate sufficiency, we give a con-
structive procedure for characterizing the desired mani-
fold. Begin by forming the two functions g,(-) and g,(-)
which give the explicit solution x for each value of v.
Note that these functions take the form (for u = 0,1)

2)=0;'([¢]) (30)
where
D(x) = [fjé"z (31)

and w = — C,,(v). Next, compute the function g,(-) ac-
cording to (27), which takes the form

gd(5)=§d(w)=D‘;l([g/])
=(a-api* +@or)([5]):

The image of §,(-) where W ranges over R? (more
properly the subset of R? where &,(-) is well defined)
defines the manifold in which the vector ¥ of averaged
switch port variables must lie. This is typically a two-
dimensional manifold embedded in R*, and is certainly
two-dimensional for the extreme cases d =0, 1.

Equation (32) gives an explicit parametrization of the
manifold in which the vector ¥ of averaged switch port
variables must lie. In many cases, it is possible to deter-
mine a global implicit representation for this manifold of
the form (28) by eliminating the parameter w in (32).

Example: Converter with Nonlinear Source Resistance:
Consider the up—down converter with nonlinear source
resistance that is shown in Fig. 8. In this example, it is
possible to lump the nonlinear resistive branch that has

(32)

B -
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discontinuous waveforms with the switch network, but
without increasing the number of ports of this network.
This is illustrated in the figure. With the modified port
variables, we obtain the following constraint relation im-
posed by the remainder of the circuit:

—lC=_Is+l52
—'UL=_UC+U52
0=i,—iy—iy

==V, +vc+v,—v,,. (33)

The first two lines in (33) form the constraint —y =
C(v,x). The last two lines of (33) form the constraint
relation 0= C,(v, x), which can clearly be expressed in
the form C,,(x)= — C,,(v) = w, as follows:
Igtip=i,=w
U= U=V, = Uc=w,. (34)

To proceed, we form the constraint relations imposed by
the modified switch network:

Csyif =0 35

So+ Usz=0 ( )
. Usl—r(isl)zo

Csl.{is2 —o. (36)

Next, form the two functions Dy!(:) and D;(:) by
combining (34) and (35) and by combining (34) and (36),
respectively. We obtain

ig=0
1 Ust = W2
D), 37
v, =0
i =Wy
s Joa=rOwy)
LI OR M (38)
Vo =—w,+r(wy).

The function
D' (wy,wy) = (1= d) Do (wy,wy) +(d) Dy (wy,w;)

gives an explicit parametrization of the desired two-
dimensional manifold in terms of the parameters w, and
w,. This function takes the form

ig=(d)w,
Uy =(1—d)w, +(d)r(w;)
is2=(1_d)wl

v =(d)(—wy+r(wy)). (39)
The characterization (39) in terms of the variables w; and
w, is an adequate representation of the two-dimensional
manifold to which the average switch variables are con-
strained. However, it is possible to eliminate the parame-
ters w, and w, by combining the lines of (39) to obtain an

911

Fig. 9. Average circuit realization for up—down converter with nonlin-
ear source resistance.

o T
V+6A«v+== i \} =\ ¢1':
s 0 1] 1
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Ca>—; =
;T_\ || .
aT T 2T

Fig. 10. Model and waveforms for discontinuous conduction mode of
up—down converter.

implicit representation of the manifold, i.e., a constraint
relation. The constraint relation takes the form

0=(1—d)isl_(d)is2

i:l
0=(1-d)v, +(d)v, —(d)r(;).

We can obtain an equivalent hybrid representation for
the resistive network described by (40) as follows:

. 1 - d .

2= T’sl

1-d iy
Vg =— p U52+r(7).

The hybrid representation suggests a synthesis involving
an ideal transformer and a two-terminal nonlinear resis-
tor. This synthesis is shown in Fig. 9.

The method of circuit averaging developed in this pa-
per can be applied to converters operating in the discon-
tinuous conduction mode, as demonstrated in the follow-
ing example. This problem was addressed in the paper of
Cuk and Middlebrook [21] using the so-called “hybrid
modeling” technique. Our approach is somewhat more
systematic. The recent work of Vorperian [16] on this
problem also relies on in-place averaging, but proceeds
somewhat differently.

Example: Converter Operating in the Discontinuous
Conduction Mode: Consider the up—down converter and
the typical inductor current waveform for operation in the
discontinuous conduction mode shown in Fig. 10. The
other state variable waveforms exhibit relatively small
ripple, and so are not shown. The diode in the figure is
necessary to capture the circuit behavior in the discontin-
uous conduction mode. In order to apply any averaged

(40)

(41)

More — on the OIIE[ﬂC.
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circuit synthesis technique for such a circuit, we need to
recognize that a switching converter operating in the
discontinuous conduction mode is governed by a reduced
order state-space averaged model. This statement can be
justified by the idea that an averaged model should have
the same order as an exact sampled-data model for the
underlying circuit. (Ideally, sampled-data models derived
from the averaged circuit and the underlying circuit should
be identical.) Since the L, inductor current is identically
zero during a portion of each cycle, a sampled-data model
for the circuit would not include the inductor current as a
state variable. Therefore, in our scheme, we treat this
inductor as a nonlinear resistive element. In contrast, the
averaged circuit model of Vorperian [16] retains the in-
ductor whose current enters the discontinuous conduction
mode. This practice may be considered nonphysical if one
attempts to identify a sampled-data model for the result-
ing averaged circuit with a sampled-data model for the
underlying switched circuit.

Our method proceeds by lumping the L, inductor with
the switch branches and the diode into a modified two-port
switch network as shown in Fig. 10. With the indicated
partitioning, it is now straightforward to apply our proce-
dure. The constraint C,(v, x) = 0 takes the form

Uy —0g=0

U5, — U =0. (42)

This constraint clearly satisfies the separability condition,
and can easily be expressed in the form C,.(x)=
- C,,(v)=w as follows:

Ust = U =W,
Ugp = Uy =W, (43)

The next step is to obtain the constraints imposed by the
extracted (and modified) switch network for each of the
two switch configurations. Since the inductor current i,
varies significantly over each cycle, we shall compute an
averaged constraint for each of the two configurations.
When the switch is in the 0 position during an interval
[t;,t; +dT), the current i, =0 and the current i is
equal to the L, inductor current. The average value of
the latter current over this interval can readily be seen to
be (v, dT /2L,) from the form of the waveform in Fig. 10.
Hence we obtain the averaged constraint for this interval
as

i 0
Csp{ ' 2L, (44)

With a similar calculation for the interval [¢; + dT,t; + T)
when the switch is in the 1 position, we obtain

iy=0
Cs:y . + v;d’T _ (45)
2T L L(1-d)

I

Next, we form the two functions Dy () and Dy '(-) by
combining (43) and (44) and by combining (43) and (45),
respectively.

Vg =W,
Usa =W,
D), T (46)
s 2L,
i,,=0
U =W,
Uy =W,
_ i=0
OB RN
poo__mdT
20 2w,L(1-d)°

We can then form the function D;(w,,w,) as in the
previous example, i.e.,

U1 =wy
Ugy =W,
. ow, dT
D', ) =L (48)
. wid*T
o=~ .
2w, L,

The function D '(w,,w,) gives an explicit parametriza-
tion of the manifold in which the modified switch port
variables are constrained to lie. It is possible to obtain a
voltage controlled representation for this two-port net-
work by eliminating w, and w, in (48). This representa-
tion takes the form

v, d*T
g = 5L
1
) v d’T 49
I = 2U:2L1 . ( )

With this type of representation for a resistive two-port
network that replaces the modified switch network in Fig.
10, we readily obtain the averaged circuit representation
shown in Fig. 11.

It is of interest that the resistive two-port model (49) is
an incrementally passive model. This can be seen by
evaluating the Jacobian matrix for this model, i.e.,

da’T
EAE I
dv v,d’T v d*T

- ULy 2051,

This Jacobian matrix is evidently positive semi-definite
(where it is well defined), leading to the conclusion that
the two-port is incrementallly passive.

More — on the OIIE[ﬂC.
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Average circuit model for discontinuous conduction mode.

Fig. 11.

V. SUMMARY

We have illustrated a systematic approach for synthe-
sizing averaged circuit models for switching converters.
The averaged circuit models that are obtained are realiza-
tions of the state-space averaged models for the underly-
ing circuits, and further, resemble very closely the under-
lying circuits. None of the methods for averaged circuit
synthesis that are presently available in the literature
offers as systematic an approach to averaged circuit syn-
thesis. Further, our approach to averaged circuit synthesis
is applicable to circuits whose non-switch elements may
be nonlinear. This feature is not shared by any previous
work on averaged circuit models.

APPENDIX A
Proor oF THEOREM 4.1

Define the controlling port variable of the reactive
multiport to be the inductor currents and the capacitor
voltages (elements of vector x,), the controlling port
variables of the source multiport to be voltages for voltage
sources and currents for current sources (elements of
vector x,), and select one of the two ports of the switch
network to be current-controlled and the other to be
voltage-controlled, as shown in Fig. 3.

Partition Hjy to reflect the three sets of ports to which
it is connected, i.e.,

Hll H12 H13
Hp=1Hy Hy Hy (51)
Hy H; Hj

where the first set of ports are those connected to the
reactive network, the second set consists of the ports
connected to the switch network, and the third set corre-
sponds to the ports connected to the source network. For
the two-port switch network, with the controlling vari-
ables and switch positions (x = 0, 1) indicated in Fig. 3, we
obtain for u =0
0 0
H,(0) = [ 0 0]. (52)
For u=1, the hybrid representation is not well defined,
but it is clear that the controlling port variables are
constrained to be zero, i.e., x,=0.
A first step in deriving the required constitutive rela-
tion is to determine the explicit solution for the vector of
switch port variables for each switch configuration, i.e.,

X5lu
YZ‘u

913

where x,|, is the vector of controlling port variables and
¥,l. is the vector of complementary noncontrolling port
variables. (The subscript « indicates which switch configu-
ration is present.) For this purpose, consider the applica-
tion of the network constraints (KCL and KVL) at the
switch ports, i.e.,

Hyx +[H(u)+ Hy|x,lu+ Hyx; =0, (53)

With (53) and the relations imposed by the hybrid model
Hyj, for the resistive subnetwork in Fig. 3, it is possible to
solve for x,|, and y,l,. In particular, for u =0, we have

‘ Xlu=0=— Hp'[ Hy x, + Hyx;]
yZ|u=0 =0. (54)

The first line in (54) is obtained by noting that H,(0) =0
in (53), and that H,! must exist, or else there would not
exist an unique solution x,|,-o. The second line is a
simple consequence of the fact that H(0) = 0, or equiva-
lently, that y,|,-¢ is constrained to be zero by the switch
network. For u =1, we obtain

le,,;l =0

Yolu=1=Hyx; + Hpx;. (55)

The first line in (55) is a consequence of the constraint
imposed by the switch network, and the second line is
obtained by considering the hybrid relationship for the
resistive subnetwork.

With the above formulas for the switch port variables in
each switch configuration, it is possible to determine the
one-cycle averaged values for the switch port variables,
ie.,

%= (1—d)xyluz0+(d) X5luc1=—(1—d)H3'w
¥2=(1=d)yslu-o+(d)yolu-1=(d)w (56)
where w=[H,,x,+ Hyx;]. Note that (56) gives an ex-
plicit parametrization of the subspace of R* that contains
the vector of one-cycle averaged switch port variables.
This subspace is parametrized by the vector w € R2. (This
type of parametrization is essential in the case where
nonlinear resistive elements are present in the switched
circuit. See Section 4.2.) In the actual operation of the
circuit, the port variables may not attain any arbitrary
point in the subspace parametrized by w in (56), since
evidently w may not assume any arbitrary value in R
For our purposes, it is adequate to characterize a two-port
resistive network that constrains its port variables to lie in
the defined subspace. Such a characterization is sufficient
because it constrains the averaged switch port variables as
required in the averaged circuit. It will be demonstrated
that such a characterization will result in an averaged
circuit that realizes the state-space averaged model.
A more familiar functional relationship can be obtained
by elimination of w in (56), i.e.,

d

y2= ‘T__dezfz (57)

for d # 1. The relationship (57) suggests that the two-port

I
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switch network should be replaced in the averaged circuit

by a resistive two-port with hybrid representation given by
(19), i.e.,

d
H{(d)= mH 22
for d + 1. (A sign reversal is required to account for the
opposing polarities of the noncontrolling port variables of
the switch and resistive subnetworks in the original
switched circuit.)

To see that the resulting averaged circuit model is a
realization of the state-space averaged model, consider
the following explicit solution for ¥, the negative of the
averaged vector of inductor voltages and capacitor cur-
rents (the noncontrolling reactive port variables):

(58)

Vi=HyuX + HpX, + HizX,y

=H,x, _(1 - d)HIZHZ—ZI[HM'il + stfS] + H3%;
(39

where the form of ¥, in the second line of (59) is
obtained from (56). The state-space averaged model can
be obtained from (59) by simply writing

(60)

since ¥, can in turn be written in terms of ¥, =Q~(g,)
and X, using (59). This is readily verified to be the form
of the state-space averaged model, by noting that it varies
with d on the chord connecting the two extreme state-
space models obtained by solving the network equations
under u=0 and u=1.

a=-%
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