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Introduction

Section 1

Introduction

Prof. Leo Torres Laplace Transforms March, 2024 3 / 97



Introduction

Motivation

Why use Laplace Transforms?

Short answer: your life will be easier after learning this subject!

Long answer: you will be able to interpret the responses of Linear and Time
Invariant (LTI) dynamic systems from another very powerful perspective,
improving your understanding about what is happening and how you can
change it (a.k.a how to design automatic controllers).

Caveat: it will take some time to really learn this subject...
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Introduction

LTI responses – Time-domain

The LTI system response y(t) to an input u(t) can be seen as a mapping
from the space U of input signals to the space Y of output signals.

A signal can be described as a function of time, such as u(t) and y(t), and
we say they are represented in the time-domain.
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Introduction

LTI responses – Frequency-domain

Signals can also be represented in the frequency-domain. We do this by
working with coefficients that describe how a signal is formed by a linear
combination of basic oscillatory components. In this case, U(s) encodes the
coefficients for the input signal u(t), and Y (s) encodes the coefficients for
the output signal y(t).
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Introduction

Expression of the Output I

Consider a system described by the following equations, with the
input-output relations highlighted:


ẋ = −x+ u(t),

x(0) = 0,

y(t) = x.

=⇒

y(t) =

∫ t

0

e−(t−τ)u(τ)dτ.

or

Y (s) =
1

s+ 1
U(s).

Using the second expression (frequency-domain) on the right it is easier to
see what will happen if the input is a fast oscillatory signal such that the
complex frequency s→∞: the output will go to zero. It is much harder to
see this using the convolution integral in the first expression.
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Introduction

Expression of the Output II

In the time-domain, considering zero initial conditions, we have that

y(t) =

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t)

where (A,B,C,D) are matrices used in the state-space representation of the
system, with u(t) ∈ Rm, and y(t) ∈ Rp (m scalar inputs and p scalar
outputs).

In the frequency-domain, considering zero initial conditions, we have that

Y (s) = G(s)U(s)

where G(s) ∈ Cp×m is a matrix of rational functions of the complex variable
s ∈ C.
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Introduction

Expression of the Output III

Therefore we can see that we are trading the complexity of computing a
convolution integral in the time-domain by the simplicity of performing a
simple multiplication of rational functions in the frequency-domain.

At the same time, we are abandoning the well-known time-domain, and
starting to work in a much more abstract setting: the complex frequency
s−domain.

To do this, we first need to build the bridges that interconnect these two
lands: the time-domain and the frequency-domain.
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Introduction

The Laplace Transform Way
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Building the Bridges: time-domain and s-domain

Section 2

Building the Bridges: time-domain and s-domain
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Building the Bridges: time-domain and s-domain

The Laplace Transform I

The idea of a “Transform” is to transform the representation of the
information from a domain to another domain. But the information itself
should be preserved in this process.
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Building the Bridges: time-domain and s-domain

The Laplace Transform II

One way of doing this is to use integral transforms, where we compute an
integral of the signal u(t) depending on a variable “parameter” s, such that
the result becomes dependent on this parameter s:

Laplace Transform:

U(s) =

∫ ∞

0−
u(t)e−stdt = L{u(t)}

where 0− represents the limit from the left in the time axis to capture any
discontinuities at t = 0. Notice that:

1 All values of u(t), with t ≥ 0, are necessary to produce just one single value of
U(s).

2 The parameter s is a complex number: s = σ + iω, and therefore the result is
a complex number too: U(s) = Re {U(s)}+ i Im {U(s)}.

3 We are assuming that this improper integral converges for the chosen values of
the parameter s.
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Building the Bridges: time-domain and s-domain

The Laplace Transform III

Let’s do some examples (all functions are such that u(t) = 0 for t < 0):
1

u(t) = c ⇔ U(s) =
c

s
.

2

u(t) = t ⇔ U(s) =
1

s2
.

3

u(t) = e−λt ⇔ U(s) =
1

s+ λ
.

4

u(t) = sin(ω0t) ⇔ U(s) =
ω0

s2 + ω2
0

.

5

u(t) = e−αt cos(ω0t) ⇔ U(s) =
s+ α

(s+ α)2 + ω2
0

.
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Building the Bridges: time-domain and s-domain

The Laplace Transform IV

In practice, we consult a Table of Laplace Transforms like this one to
obtain the expressions for a given function of time u(t).

In addition, we also rely on a series of very nice properties of the Laplace
Transform, as we will see next.
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Building the Bridges: time-domain and s-domain Laplace Transform: properties

Subsection 1

Laplace Transform: properties
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Building the Bridges: time-domain and s-domain Laplace Transform: properties

Linearity

L{a1u1(t) + a2u2(t)} = a1L{u1(t)}+ a2L{u2(t)} ,
= a1U1(s) + a2U2(s).

with a1, a2 ∈ R.
With this property we can factor the components from a given signal in the
frequency-domain, and easily see what will be the corresponding components
in the time domain:
Example:

U(s) =
3s+ 5

s2 + 4s+ 3
=

1

s+ 1︸ ︷︷ ︸
U1(s)

+2
1

s+ 3︸ ︷︷ ︸
U2(s)

u1(t) = e−t,

u2(t) = 2e−3t,

u(t) = e−t + 2e−3t.
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Building the Bridges: time-domain and s-domain Laplace Transform: properties

Laplace Transform: Time Derivation

L
{
du(t)

dt

}
= sL{u(t)} − u(0−),

= sU(s)− u(0−).

with u(0−) the initial value of u(t), considering the limit from the left
limt→0− u(t) to capture any discontinuity at t = 0.

Notice that, if the initial value u(0−) = 0, to differentiate a function in the
time-domain is equivalent to multiply its Laplace transform by s in the
frequency-domain:

s ≡ d

dt
(·)
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Building the Bridges: time-domain and s-domain Laplace Transform: properties

Laplace Transform: Integration

L
{∫ t

0−
u(τ)dτ

}
=

1

s
L{u(t)} ,

=
1

s
U(s).

This means that to integrate a signal in the time-domain is equivalent to
multiply its Laplace Transform by 1

s in the frequency-domain:

1

s
≡
∫ t

0

(·)dτ
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Building the Bridges: time-domain and s-domain Laplace Transform: properties

Frequency Shifting

L
{
e−atu(t)

}
= U(s+ a).

This is immediate from the definition

L
{
e−atu(t)

}
=

∫ ∞

0−
e−atu(t)e−stdt =

∫ ∞

0−
u(t)e−(s+a)tdt = U(s+ a),

and it will be very useful later.

Prof. Leo Torres Laplace Transforms March, 2024 20 / 97



Transfer Functions

Section 3

Transfer Functions
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Transfer Functions

Transfer Functions – Motivation I

Suppose that we have the following LTI system described by the set of
differential equations

ẋ1 = x2,

ẋ2 = ax1 + bx2 + cu,

where u ≡ u(t) is the input, and x1 ≡ x1(t) and x2 ≡ x2(t) are state
variables, and by the algebraic output equation

y = x1.
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Transfer Functions

Transfer Functions – Motivation II

We can use the Laplace Transform (and its properties) to write that

L{ẋ1} = L{x2} ⇒sX1 − x1(0) = X2,

L{ẋ2} = L{ax1 + bx2 + cu} ⇒sX2 − x2(0) = aX1 + bX2 + cU,

L{y} = L{x1} ⇒Y = X1.

where U ≡ U(s), X1 ≡ X1(s), X2 ≡ X2(s), and Y ≡ Y (s).
Notice that the differential equations were transformed into algebraic
equations in the variable s. If we assume zero initial conditions, then

sX1 = X2,

sX2 = aX1 + bX2 + cU,

Y = X1.
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Transfer Functions

Transfer Functions – Motivation III

Now we can manipulate the previous algebraic relations to get

sX1 = X2,

sX2 = aX1 + bX2 + cU, ⇒ s(sX1) = aX1 + b(sX1) + cU,

X1 =
c

s2 − bs− a
U,

Y = X1, ⇒ Y (s) =

[
c

s2 − bs− a

]
︸ ︷︷ ︸

G(s)

U(s).
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Transfer Functions

Transfer Functions – Motivation IV

This means that we can determine the output of the system due to any input
by knowing the so-called Transfer Function

G(s) =
c

s2 − bs− a
,

since Y (s) = G(s)U(s).

If we are interested in y(t), we can compute the inverse Laplace Transform of
the resulting Y (s):

y(t) = L−1 {Y (s)} = L−1 {G(s)U(s)} .
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Transfer Functions

Transfer Functions – Motivation V

Example:

Consider the mass-spring-damper system below, where x is the block position,
M is the block mass, k is the spring elastic constant, bf is the damper viscous
friction coefficient, and u is the applied force:

Mẍ = u− kx− bfẋ,
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Transfer Functions

Transfer Functions – Motivation VI

By defining the first state variable to be the position x1 = x, and the second
one to be the block’s speed x2 = ẋ = ẋ1, and the position of the block as the
output (the signal in which we are interested), we have that:

ẋ1 = x2,

ẋ2 = − k

M
x1 −

bf
M

x2 +
1

M
u,

y = x1,

which has exactly the same structure as before, with c = 1
M
, a = − k

M
, and

b = − bf
M
, and therefore we know that the Transfer Function will be:

G(s) =
1
M

s2 + bf
M
s+ k

M

.
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Transfer Functions

Transfer Functions – Motivation VII

Suppose bf = 0.5 [N/m/s], k = 1N/m, and M = 0.5 kg. What happens if we
apply a constant force u(t) = 1 [N] at t = 0, assuming that the block is
initially at rest?

U(s) = L{u(t)} = L{1} =
1

s
,

Y (s) = G(s)U(s) ⇒ Y (s) =

[
2

s2 + s+ 2

](
1

s

)
.

The denominator polynomial of the resulting rational function is
s(s2 + s+ 2) = s[s− (−0.5 + i

√
1.75)][s− (−0.5− i

√
1.75)] =

s
[
(s+ 0.5)2 + 1.75

]
.

Using this information we can expand Y (s) as a sum of partial fractions:

Y (s) =
1

s
− s+ 1

s2 + s+ 2
=

1

s
− s+ 1

(s+ 0.5)2 + 1.75
,

=
1

s
− s+ 0.5

(s+ 0.5)2 + 1.75
− 0.5

(s+ 0.5)2 + 1.75
,
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Transfer Functions

Transfer Functions – Motivation VIII

By using the previous properties of the Laplace Transform (particularly the
Linearity and Frequency Shifting Properties), and a Table of Laplace
Transforms, we have that

Y (s) =
1

s︸︷︷︸
1

− s+ 0.5

(s+ 0.5)2 + 1.75︸ ︷︷ ︸
e−0.5t cos(

√
1.75t)

− 0.5√
1.75

[ √
1.75

(s+ 0.5)2 + 1.75

]
︸ ︷︷ ︸

0.5√
1.75

[e−0.5t sin(
√
1.75t)]

,
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Transfer Functions

Transfer Functions – Motivation IX

And we have a typical response from an underdamped second order linear
system:

y(t) = 1− e−0.5t cos(
√
1.75t)− 0.5√

1.75
e−0.5t sin(

√
1.75t).
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Transfer Functions

Transfer Functions Definition

Definition: Transfer Function

The p×m matrix G(s) of rational functions of the variable s that relates the
Laplace Transform of the input U(s) ∈ Cm to the Laplace Transform of the
output Y (s) ∈ Cp, for a LTI system with zero initial conditions, such that:

Y (s) = G(s)U(s)

There is another interpretation to the Transfer Function (the Laplace
Transform of the system’s impulse response), but we are not going to use it.

We will see later that there is also a very interesting interpretation of the
Transfer Function as a “generalized frequency-dependent gain”.
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Transfer Functions

Transfer Functions in MATLAB I

It is quite easy to represent LTI systems by their Transfer Functions in
MATLAB:

1 % Tran s f e r Func t i on s can be r e p r e s e n t e d
2 % us i ng the c o e f f i c i e n t s o f the numerator and denominator
3 % po l y nom i a l s .
4 %
5 % For example : n ( s ) = 2 , d ( s ) = s ˆ2 + s + 2 .
6

7 G = t f ( [ 2 ] , [ 1 1 2 ] )

Output:

1

2 G =
3

4 2
5 ===========

6 s ˆ2 + s + 2
7

8 Cont inuous=t ime t r a n s f e r f u n c t i o n .
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Transfer Functions

Transfer Functions in MATLAB II

This creates an object from the class t f (Transfer Function) with the
attributes:

1 get (G)
2 Numerator : { [0 0 2 ]}
3 Denominator : { [1 1 2 ]}
4 Va r i a b l e : ’ s ’
5 IODelay : 0
6 I npu tDe l ay : 0
7 OutputDelay : 0
8 Ts : 0
9 TimeUnit : ’ s e conds ’

10 InputName : { ’ ’}
11 I n pu tUn i t : { ’ ’}
12 InputGroup : [ 1 x1 s t r u c t ]
13 OutputName : { ’ ’}
14 OutputUnit : { ’ ’}
15 OutputGroup : [ 1 x1 s t r u c t ]
16 Notes : [ 0 x1 s t r i n g ]
17 UserData : [ ]
18 Name : ’ ’
19 Sampl ingGr id : [ 1 x1 s t r u c t ]
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Transfer Functions

Transfer Functions in MATLAB III

This object allows for direct manipulation and simulation of common
situations such as the application of unit step inputs (the same scenario
considered previously in the mass-spring-damper example):

1 s t e p (G)
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Transfer Functions

Transfer Functions: Frequency Response I

A Transfer Function G(s) can also be seen as a “generalized gain” that varies
with the frequency s.

Indeed, we can determine the long-term behavior of the system output as a
result of being driven by sinusoidal inputs with frequency ω∗ just by
examining the absolute value and the argument of the complex number
G(iω∗) = G(s)|s=iω∗ .

Stable LTI systems excited by sinusoidal signals with frequency ω∗ will have
as outputs, after a sufficiently long time, sinusoidal signals with the same
frequency ω∗, and:

1 Output amplitude: |Y (iω∗)| = |G(iω∗)|︸ ︷︷ ︸
Amplitude gain

Ain︸︷︷︸
Input amplitude

,

2 Output phase: arg{Y (iω∗)} = arg{G(iω∗)}︸ ︷︷ ︸
Additional phase

+ ϕin︸︷︷︸
Input phase

,
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Transfer Functions

Transfer Functions: Frequency Response II

Consider the following simulations in MATLAB in which the amplitude of the
input is kept constant, but the frequency is changed:

1 % Frequency r e s pon s e example .
2 c l c ;
3 c l o s e a l l ;
4

5 G = t f ( 2 , [ 1 1 2 ] ) ;
6

7 t = l i n s p a c e (0 ,30 ,10 e3 ) ;
8

9 u1 = 2* s i n ( 0 . 2* t ) ;
10 u2 = 2* s i n (2* t ) ;
11 u3 = 2* s i n (20* t ) ;
12

13 y1 = l s im (G, u1 , t ) ;
14 y2 = l s im (G, u2 , t ) ;
15 y3 = l s im (G, u3 , t ) ;
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Transfer Functions

Transfer Functions: Frequency Response III

We can predict the amplitude of the output signal after the transient period:

G(i0.2) = 1.0099 − i0.1031 ⇒ Gain: |G(i0.2)| = 1.015.

G(i2) = −0.5 − i0.5 ⇒ Gain: |G(i2)| = 0.707.

G(i20) = 0.005 − i0.0003 ⇒ Gain: |G(i20)| = 0.005.

Prof. Leo Torres Laplace Transforms March, 2024 37 / 97



Transfer Functions

Transfer Functions: Frequency Response IV

Actually, it is easy to compute the gains of the system for each excitation
frequency:

Notice that there is a resonance around ω = 1.22 rad/s.
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Transfer Functions

Transfer Functions: Frequency Response V

From this last property, we can determine what is the long-term behavior of
the output when we have a constant input driving a stable LTI system: you
have just to imagine that this constant signal is a sinusoidal signal with
frequency ω∗ = 0, such as u(t) = a = a sin(0t+ π/2):

Long-term output: |Y (0)| = G(0) a,

and G(0) is called the DC-gain of the system (DC = Direct Current, an
Electric Engineering term used for gain at zero frequency).

In the last example (G = 2
s2+s+2 ) we know that G(0) = 1 and the system is

stable. Therefore the final value the output will reach, after the initial
transient period, has the same numerical value of the constant input value.
Check the previous figures on the step response to verify this claim!
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Transfer Functions

Transfer Functions: General Case I

The Transfer Function G(s) can be directly obtained from any state-space
representation of the LTI system, in the following way:

L{ẋ} = L{Ax+Bu} ,

sL{x} −���*
0

x(0) = AL{x}+BL{u} ,
sX(s) = AX(s) +BU(s),

[s1−A]X(s) = BU(s),

X(s) = [s1−A]−1BU(s),

L{y} = L{Cx+Du} ,
L{y} = CL{x}+DL{u} ,
Y (s) = CX(s) +DU(s),

Therefore, Y (s) =
{
C[s1−A]−1B +D

}
U(s), and

G(s) = C[s1−A]−1B +D.
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Transfer Functions

Transfer Functions: General Case II

It is interesting to notice that

[s1−A]−1 =
1

det {s1−A}
Adj {s1−A} ,

such that

G(s) = C
[Adj {s1−A}]
det {s1−A}

B +D

where Adj {M} is the so-called Adjugate Matrix of M , which is the
transpose of the Cofactor Matrix of M : a n× n matrix whose elements are
the determinants, multiplied by (−1)i+j , of (n− 1)× (n− 1) submatrices
left after removing the i-th row and j-th column of the matrix M .

Prof. Leo Torres Laplace Transforms March, 2024 41 / 97



Transfer Functions

Transfer Functions: General Case III

As a result, we can show that Adj {s1−A} will be a matrix of polynomial
functions of order at most n− 1. And det {s1−A} will be a polynomial of
order n.

Therefore, the general expression for G(s) is a p×m matrix of rational
functions of the variable s, all of them with the same polynomial denominator
(if we do not allow further simplifications):

G(s) =


z11(s)
d(s)

z12(s)
d(s) · · · z1m(s)

d(s)
z21(s)
d(s)

z22(s)
d(s) · · · z2m(s)

d(s)
...

...
. . .

...
zp1(s)
d(s)

zp2(s)
d(s) · · · zpm(s)

d(s) ,

 , d(s) = det {s1−A} ,

where p is the number of outputs, and m is the number of inputs.
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Transfer Functions

Transfer Functions: General Case IV

Notice that each element in the G(s) matrix, such as

Gij(s) =
zij(s)

d(s)
,

is a “generalized gain” in the frequency-domain that relates the input Uj(s)
to the output Yi(s), with

Y (s) =


Y1(s)
Y2(s)
...

Yp(s)

 , U(s) =


U1(s)
U2(s)

...
Um(s)

 ,

and
Yi(s) = Gi1(s)U1(s) +Gi2(s)U2(s) + · · ·+Gim(s)Um(s).
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Transfer Functions

Transfer Functions: General Case V

Example of a system G(s) with 3 inputs and 2 outputs:

G
21

G
22

G
12

G
11

G
13

G
23

Y
1

Y
2

3
U

1
U

2
U
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Transfer Functions

Transfer Functions: General Case VI

Example for the Cessna 182 Longitudinal Model with 2 inputs (Elevator
deflection and Thrust command) and 1 output (True Airspeed), trimmed at
VT = 100 km/h ≈ 54 knots and h = 1, 140m ≈ 3740 ft:

G
12

G
11 Y

1

1
U

2
U

G11 =
−0.1696s3 + 82.53s2 + 174.1s+ 2.46× 10−5

s5 + 4.222s4 + 12.26s3 + 0.6056s2 + 1.119s− 2.187× 10−16
,

G12 =
9.908s4 + 41s3 + 108.6s2 − 24.63s+ 3.971× 10−5

s5 + 4.222s4 + 12.26s3 + 0.6056s2 + 1.119s− 2.187× 10−16
.
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Transfer Functions

Transfer Functions: General Case VII

Given a rational function Gij(s), we say that

Gij(s) =
n(s)

d(s)
⇒

{
roots of n(s)→ Zeros of Gij(s)

roots of d(s)→ Poles of Gij(s)

with n(s) the numerator polynomial, and d(s) the denominator polynomial.
In general, we can write that

Gij(s) =
n(s)

d(s)
= K

(s− z1)(s− z2) · · · (s− zq)

(s− p1)(s− p2) · · · (s− pn)
,

with K ∈ R a constant, and z1, z2, . . . , zq the zeros of Gij(s), and
p1, p2, . . . , pn the poles of Gij(s).

Warning: if a zero and a pole are equal (or very close in practice); i.e.,
zi ≈ pj for some i and j; then there can be a Zero/Pole cancellation.
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Transfer Functions

Transfer Functions: General Case VIII

From the previous discussion, without considering possible further
simplifications, the poles of the Transfer Function must be values s that
satisfy

d(s) = det {s1−A} = 0,

and this means that the roots of d(s) are the values of s that render the
matrix (s1−A) singular (i.e., there is no associated inverse matrix).

Notice that, by definition, the eigenvalues λ of matrix A associated with
non-zero eigenvectors v are such that

Av = λv ⇒ (λ1−A)v = 0,

and in order to have non-zero solutions for the eigenvectors v, one needs to
guarantee that

d(λ) = det {λ1−A} = 0.
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Transfer Functions

Transfer Functions: General Case IX

Therefore, if there is no cancellations of Zeros and Poles, the poles of the
Transfer Function are precisely the eigenvalues of the matrix A!
Consequently, in this case, by looking at the poles of the Transfer Function,
we can determine if the system is dynamically stable or not.

In the general case, we have that

Poles{Gij(s)} ⊆ Eigenvalues{A}
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Transfer Functions

Transfer Functions: Residues and Model Order Reduction I

The poles of the Transfer Function of a LTI system are as important as the
eigenvalues of the matrix A.

Besides helping to determine the dynamic stability of the Local LTI model of
the aircraft, we can consider that each real pole and each pair of complex
conjugate poles constitute a dynamic mode of response, in the same way
we considered the eigenvalues of the matrix A.
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Transfer Functions

Transfer Functions: Residues and Model Order Reduction II

This can be better revealed by considering the Partial Fraction
Decomposition of the Transfer Function Gij(s). When there are no repeated
poles (or eigenvalues), the decomposition generates:

Gij(s) = K
(s− z1)(s− z2) · · · (s− zq)

(s− p1)(s− p2) · · · (s− pn)
,

Gij(s) = Dij +
r1

s− p1
+

r2
s− p2

+
r3

s− p3
+ · · ·+ rn

s− pn
,

with rk ∈ C, k = 1, 2, . . . , n, the so-called “residue” associated with the pole
pk ∈ C.
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Transfer Functions

Transfer Functions: Residues and Model Order Reduction III

When the system is excited by a nonzero input Uj(s), the output Yi(s) will be
the sum of the contributions of each mode of response to the final response:

Yi(s) = Gij(s)Uj(s),

= DijUj(s)

+

(
r1

s− p1

)
Uj(s)

+

(
r2

s− p2

)
Uj(s)

+ · · ·+
(

rn
s− pn

)
Uj(s),

such that their relative importance can be assessed by comparing the values
of the resiudes rk.
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Transfer Functions

Transfer Functions: Residues and Model Order Reduction IV

For example, if abs{r1} ≪ abs{rk}, for all k ̸= 1, the contribution of the
mode of response 1 could be eventually neglected.

Notice that, since the residues associated with complex conjugate poles are
also complex conjugate, the elimination of a complex pole due to its
negligible residue will automatically lead to the elimination of the
corresponding conjugate pole. That is, we always eliminate real poles, or
pairs of complex conjugate poles, never just one complex pole.

The possible elimination of a mode of response from the dynamics of the
system reflects an “almost cancellation” of poles and zeros.
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Transfer Functions

Transfer Functions: Residues and Model Order Reduction V

Example: Cessna 182 Longitudinal Dynamics.

In MATLAB, we can obtain the Zero-Pole-Gain representation for a Transfer
Function by using the command G = zpk(sys), with sys a tf (transfer function)
or a ss (state space) object:

1 G =
2

3 From inpu t ” d e l t a e l e v ” to output ”VTAS” :
4 =0.16963 ( s=488.6) ( s +2.101) ( s +1.413e=07)
5 ==================================================

6 s ( s ˆ2 + 0.0179 s + 0 .09258) ( s ˆ2 + 4.204 s + 12 .09 )
7

8 From inpu t ” d e l t a t h r u s t ” to output ”VTAS” :
9 9 .9078 ( s=0.2095) ( s=1.612e=06) ( s ˆ2 + 4.348 s + 11 .87 )

10 ======================================================

11 s ( s ˆ2 + 0.0179 s + 0 .09258) ( s ˆ2 + 4.204 s + 12 .09 )
12

13 Cont inuous=t ime z e r o / po l e / ga i n model .

Notice that the pairs of complex conjugate poles and zeros were grouped
together in second order polynomials for both rational functions G11 and G12.
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Transfer Functions

Transfer Functions: Residues and Model Order Reduction VI

We can better see how close some zeros are from some poles, leading to
“almost cancellations”, by using the command pzmap(G), particularly for
G12(s):
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Transfer Functions

Transfer Functions: Residues and Model Order Reduction VII

The process of eliminating modes can be automated in MATLAB by using the
command Gnew = minreal(G,0.1), in which we selected the cancellation of zeros
and poles within a distance of 0.1 from each other:
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Transfer Functions

Transfer Functions: Residues and Model Order Reduction VIII

A comparison of the step-responses (abrupt change in the Thrust command
leading to changes in the True Airspeed) for the original model G12(s) and the
new model is provided below:

G12 =
9.9078(s− 0.2095)(s− 1.612× 10−6)(s2 + 4.348s+ 11.87)

s(s2 + 0.0179s+ 0.09258)(s2 + 4.204s+ 12.09)
,

Gnew =
9.9078(s− 0.2095)

(s2 + 0.0179s+ 0.09258)
, → Much Simpler!!
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Transfer Functions

Transfer Functions: Residues and Model Order Reduction IX

We should be extra-careful when peforming such cancellations. We can
accidentally cancel a pole on the right-hand side of the complex plane, that is,
we can accidentally cancel an unstable pole!

Even if the residue associated to an unstable mode of response is very small,
the presence of the unstable mode would become evident sooner or later
because the unstable mode grows exponentially in the time-domain.

In the present example, we cancelled a pole at zero with a zero on the
right-hand side very close to it (z = 1.612× 10−6). No cancellations of
right-hand side poles were effected.

To cancel right-hand poles is forbidden!
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Transfer Functions

Transfer Functions: 1st and 2nd Order Step Responses I

In the Partial Fractions Decomposition of Gij(s), very often we group every
pair of fractions associated with complex conjugate poles in just one second
order fraction, while taking into consideration that the corresponding residues
are also complex conjugate numbers, such that

Gij(s) = Dij +
r1

s− p1
+

α23s+ β23

(s− σ2)2 + ω2
2

+
r4

s− p4
+ · · ·

and all the coefficients in the numerator polynomials will be real numbers.
In this example it was assumed that p2 = conj{p3}, and therefore
α23 = 2Re {r2} = 2Re {r3}, and β23 = −2Re {r2p3}.
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Transfer Functions

Transfer Functions: 1st and 2nd Order Step Responses II

This means that we can have a good understanding about how the output
Yi(s) of the LTI system will respond to abrupt changes (step changes) in the
input Uj(s) by knowing how first-order and second-order systems respond to
this kind of input Uj(s) =

1
s (unit step input):

Yi(s) = Dij
1

s

+

[(
r1

s− p1

)
1

s

]
+

[(
α23s+ β23

(s− σ2)2 + ω2
2

)
1

s

]
+

[(
r4

s− p4

)
1

s

]
+ · · ·
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Transfer Functions

Transfer Functions: 1st and 2nd Order Step Responses III

For 1st Order modes of response, we have that

Y (s) =

(
r

s− p

)
1

s
=

(
Gdc

τs+ 1

)
1

s
,

with the DC-Gain Gdc = −r/p, and the time constant τ = −1/p.
The step-response is given by

y(t) = Gdc

(
1− e−t/τ

)
,

and usually one assumes that after ts = 5τ the output will be in steady-state
(notice that, mathematically, the output never completely settles down).
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Transfer Functions

Transfer Functions: 1st and 2nd Order Step Responses IV

Notice that the final variation of the output (its amplitude) is equal to Gdc

multiplied by the input’s amplitude, and the Settling Time ts = 5τ .
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Transfer Functions

Transfer Functions: 1st and 2nd Order Step Responses V

For 2nd Order dynamic modes one usually considers a simplified behavior
(called a standard second-order system) that captures much of the essential
information:

Y (s) =

(
Gdcω

2
n

s2 + 2ζωns+ ω2
n

)
1

s
,

where
(s− σ)2 + ω2 = s2 + 2ζωns+ ω2

n,

and, therefore,
Real Part: σ = −ζωn,

Imaginary Part: ω = ωn

√
1− ζ2.

with the dimensioless Damping Ratio ζ, and the Natural Frequency ωn in
[rad/s]. Together with the DC-Gain Gdc, we can describe the step-response
relying only on these 3 parameters.
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Transfer Functions

Transfer Functions: 1st and 2nd Order Step Responses VI

y(t) = Gdc

(
1− 1√

1− ζ2
e−ζωnt sin(ωn

√
1− ζ2 t+ ϕ)

)
;ϕ = cos−1(ζ).
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Transfer Functions

Transfer Functions: 1st and 2nd Order Step Responses VII

y(t) = Gdc

(
1− 1√

1− ζ2
e−ζωnt sin(ωn

√
1− ζ2 t+ ϕ)

)
;ϕ = cos−1(ζ).
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Transfer Functions

Transfer Functions: 1st and 2nd Order Step Responses VIII

Settling time (for 2%): ts ≈
4

ζωn
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Transfer Functions

Transfer Functions: 1st and 2nd Order Step Responses IX

Percent Overshoot: Mp = e
−ζπ√
1−ζ2 ≈ 1− ζ

0.6
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Transfer Functions

Transfer Functions: 1st and 2nd Order Step Responses X

Rise time (from 10% to 90%): tr ≈
1.8

ωn
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Transfer Functions

Aircraft Dynamics Requirements I

From what we discussed about 1st and 2nd order systems step-responses, we
can say that:

1 Dynamic Modes described by real poles:

If the Time Constant τ can be reduced, the speed of the response can be
improved.

2 Dynamic Modes described by complex conjugate pairs:

As far left are the poles from the imaginary axis in the complex plane, as faster
the system will respond (ζωn → ∞ ⇒ ts → 0).

If the daming ratio 0 < ζ ≤ 1 increases, the Percent Overshoot will decrease
(there will be more damping).

The Natural Frequency determines the Rise Time. Greater values for ωn will
decrease tr.
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Transfer Functions

Aircraft Dynamics Requirements II

Therefore, if we need to design the aircraft such that requirements on
1 Maximum Settling Time tmax

s ,
2 Maximum Percent Overshoot Mmax

p , and
3 Maximum Rise Time tmax

r

are specified, we can use the former relations to find where the poles (or
eigenvalues) of the system should be located.
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Transfer Functions

Aircraft Dynamics: Desired Poles Locations

2nd Order modes of response can be characterized by complex conjugate
poles (or eigenvalues) that can be expressed as

p1,2 = −ζωn ± iωn

√
1− ζ2

Notice that:

(ζωn)
2 +

(
ωn

√
1− ζ2

)2
= ω2

n

ζ = cos(ϕ)
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Transfer Functions

Aircraft Dynamics: Desired Poles Locations

2nd Order modes of response can be characterized by complex conjugate
poles (or eigenvalues) that can be expressed as

p1,2 = −ζωn ± iωn

√
1− ζ2

Notice that:

ts ≈
4

ζωn
≤ tmax

s

ζωn ≥
4

tmax
s
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Transfer Functions

Aircraft Dynamics: Desired Poles Locations

2nd Order modes of response can be characterized by complex conjugate
poles (or eigenvalues) that can be expressed as

p1,2 = −ζωn ± iωn

√
1− ζ2

Notice that:

Mp = e
−ζπ√
1−ζ2 ≈ 1− ζ

0.6
Mp ≤Mmax

p

ζ ≳ 0.6(1−Mmax
p )︸ ︷︷ ︸

ζmin
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Transfer Functions

Aircraft Dynamics: Desired Poles Locations

2nd Order modes of response can be characterized by complex conjugate
poles (or eigenvalues) that can be expressed as

p1,2 = −ζωn ± iωn

√
1− ζ2

Notice that:

tr ≈
1.8

ωn

tr ≤ tmax
r

ωn ≳
1.8

tmax
r︸ ︷︷ ︸
Rmin
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Transfer Functions

Aircraft Dynamics: Desired Poles Locations

2nd Order modes of response can be characterized by complex conjugate
poles (or eigenvalues) that can be expressed as

p1,2 = −ζωn ± iωn

√
1− ζ2

Notice that:

ζωn ≥
4

tmax
s

ζ ≳ 0.6(1−Mmax
p )︸ ︷︷ ︸

ζmin

ωn ≳
1.8

tmax
r︸ ︷︷ ︸
Rmin
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Laplace Transform Interpretations

Section 4

Laplace Transform Interpretations
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Subsection 1

Laplace Transform as a “Generalized Fourier Transform”
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Fourier Series I

Every periodic signal in the time-domain, with period T ; i.e.,
u(t) = u(t+ T ); can be represented as an infinite sum of sines and cosines:

u(t) =
∞∑

n=0

A(n) cos

(
n
2π

T
t

)
+B(n) sin

(
n
2π

T
t

)
,

with A(n), B(n) ∈ R.
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Fourier Series II

By recognizing that sin(θ) = eiθ−e−iθ

2i and cos(θ) = eiθ+e−iθ

2 , and defining
ω0 = 2π

T , we can rewrite the previous expression as

u(t) =

∞∑
n=−∞

C(n)ei(nω0)t

where C(n) = A(n)−iB(n)
2 for n ≥ 0, and C(n) = A(n)+iB(n)

2 for n < 0.
Notice that C(n) can be a complex number for each n (if B(n) ̸= 0), i.e.,
C(n) ∈ C.
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Fourier Series III

To compute the complex coefficients C(n), we can multiply the previous
expression by e−i(nω0)t on both sides and integrate, such that

u(t)e−i(nω0)t =

∞∑
m=−∞

C(m)ei(mω0)te−i(nω0)t,

∫ T

0

u(t)e−i(nω0)tdt =

∞∑
m=−∞

∫ T

0

C(m)ei(m−n)ω0tdt

and only when m = n there will be a non-oscillatory component whose
integral is C(n)T = C(n) 2πω0

. For all other terms the corrresponding integral
is zero, and therefore

C(n) =
ω0

2π

∫ T

0

u(t)e−i(nω0)tdt
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Fourier Series IV

In preparation for what we are going to do next, we can define the coefficients
U(nω0) = C(n) 2πω0

= C(n)T , which are functions of the product nω0, such
that the pair of expressions to transform from one domain to another become

u(t) =
1

2π

∞∑
n=−∞

U(nω0)ω0e
i(nω0)t

U(nω0) =

∫ T

0

u(t)e−i(nω0)tdt

From the last two expressions, we see that a periodic signal in the
time-domain t (in [sec]) is equivalent to a countable sequence of coefficients
in the frequency-domain nω0 (in [rad/s]):

u(t) ←→ U(nω0)
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Fourier Series V

See this video (3Blue1Brown) for a magnificent application (and explanation)
of the Fourier Series!
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

From the Fourier Series to the Fourier Transform I

What if u(t) is not a periodic signal? That is, what if u(t) ̸= u(t+ T ) for
some T > 0?

In this case, we can use the previous expressions and recognize that a
non-periodic signal could be approximated by a periodic one whose period is
very large, that is

T →∞.

Prof. Leo Torres Laplace Transforms March, 2024 78 / 97



Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

From the Fourier Series to the Fourier Transform

Below you can see what happens with the Fourier Series coefficients as the period
T increases for a periodic train of pulses, each pulse with duration Tpulse:
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Fourier Transform as the Limit of the Fourier Series I

In this case, while it continues to be true that nω0 = ω, the separation
∆ω = ω0 between successive coefficients in the frequency-domain becomes
progressively smaller, or “infinitesimal” in the limit:

∆ω = ω0 7→ dω,

and the coefficients become uncountable. The summation in the Fourier
Series expansion must then be substituted by an integration:

u(t) =
1

2π

∞∑
n=−∞

U(nω0)e
i(nω0)tω0 → u(t) =

1

2π

∫ ∞

−∞
U(ω)eiωtdω.
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Fourier Transform as the Limit of the Fourier Series II

This leads to the Fourier Transform Pair:

u(t) =
1

2π

∫ ∞

−∞
U(ω)eiωtdω = F−1 {U(ω)}

U(ω) =

∫ ∞

0

u(t)e−iωtdt = F {u(t)}

A value U(ω∗) can be interpreted as the coefficient associated with the
specific frequency ω = ω∗. The absolute value |U(ω∗)| is then proportional
to the amplitude of the specific oscillation with frequency ω∗ that composes
the signal u(t) in the time-domain. The angle or argument arg {U(ω∗)} is
the phase displacement of this oscillatory component.
The continuum of values U(ω) is called the Spectrum of the signal.
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Laplace Transform I

Notice that the Fourier Transform is very interesting, but somewhat limited
in the sense that the set of functions u(t) that have well defined Fourier
Transforms U(ω) is limited.

For example,

u(t) = 1,∀t ≥ 0 ⇒ U(ω) =

∫ ∞

0

e−iωtdt =??

does not converge, because e−iωt = cos(ωt) + i sin(ωt) is an oscillatory term
that does not go to zero.

Actually, we can prove that a sufficient condition for the existence of a
Fourier Transform is that u(t) is absolutely integrable:∫ ∞

0

|u(t)|dt <∞
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Laplace Transform II

We could achieve the absolute integrability condition if we worked with
signals that go faster to zero.

One way of having this situation is by using the following “exponential
operator” Eσ [u(t)] on time-domain signals u(t), defined by the
multiplication of the signal by an exponential function, such as:

û(t) = Eσ [u(t)] ,

= u(t)e−σt,

u(t) = E−1
σ [û(t)] ,

= û(t)eσt = E−σ [û(t)] .

with σ ∈ R.
The multiplication by an exponential term that goes to zero enables the
fulfillment of the absolute integrability requirement.

Notice that an “operator” sends functions on a certain domain to functions
on the same domain (time-domain in this case).
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Laplace Transform III

Now we can define a new transform: the Fourier Transform of the
“exponentially attenuated signal”:

F {Eσ [u(t)]} = F {û(t)} =
∫ ∞

0

(
u(t)e−σt

)
e−iωtdt

In this case, notice that by the appropriate selection of σ ∈ R, we can
guarantee the convergence of the following integral

Û(ω) =

∫ ∞

0

û(t)e−iωtdt =

∫ ∞

0

u(t)e−(σ+iω)tdt

for a broad class of functions, even for functions that grow exponentially to
infinity such as u(t) = e2t (just select, for example, σ = 3).
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Laplace Transform IV

To recover the original signal u(t), we just have to reverse the steps taken
before:

(i) û(t) = F−1
{
Û(ω)

}
=

1

2π

∫ ∞

−∞
Û(ω)eiωtdω,

(ii) u(t) = E−1
σ [û(t)] = û(t)eσt =

[
1

2π

∫ ∞

−∞
Û(ω)eiωtdω

]
eσt,

u(t) =
1

2π

∫ ∞

−∞
Û(ω)e(σ+iω)tdω,

i.e., (i) compute the inverse Fourier Transform, and (ii) apply the inverse
exponential operator.
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Laplace Transform V

Combining the two previous transformations (from time-domain to
frequency-domain and vice-versa), we can define the so-called complex
frequency variable

s = σ + iω ⇒ ds = idω,

and re-label Û(ω) = U(s). We then finally have the Laplace Transform
Pair:

u(t) =
1

2πi

∫ c+i∞

c−i∞
U(s)estds = L−1 {U(s)}

U(s) =

∫ ∞

0

u(t)e−stdt = L{u(t)}

where the constant c is chosen appropriately to guarantee that σ = c is
sufficient for the convergence of both integrals.
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Laplace Transform Interpretations Laplace Transform as a “Generalized Fourier Transform”

Laplace Transform VI

This intrepretation is a powerful one, because it shows that if we select
s = iω; i.e., if σ = 0; the Laplace Transform U(s) becomes the Fourier
Transform U(iω).
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Laplace Transform Interpretations Laplace Transform as a “Generalized Power Series”

Subsection 2

Laplace Transform as a “Generalized Power Series”
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Laplace Transform Interpretations Laplace Transform as a “Generalized Power Series”

Laplace Transforms as Generalized Power Series I

Disclaimer: The following is based on the Lecture 19, from a MIT course on
Differential Equations, presented in March, 31, 2003, by Prof. Arthur Mattuck,
and available on YouTube.
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Laplace Transform Interpretations Laplace Transform as a “Generalized Power Series”

Laplace Transforms as Generalized Power Series II

Consider the following functions and their Power Series Expansions:

Exponential function:

F1 : ex = 1 + x+
1

2
x2 +

1

3!
x3 + · · ·+ 1

k!
xk + · · ·

Sine function:

F2 : sin(x) = x− 1

3
x3 +

1

5
x5 + · · ·+ (−1)2k+1 1

(2k + 1)!
x2k+1 + · · ·

A polynomial function:

F3 : 2 + 3x− 4x2 = 2 + 3x− 4x2 + 0x3 + 0x4 + · · ·+ 0xk + · · ·
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Laplace Transforms as Generalized Power Series III

We could say that the previous mathematical objects F1, F2 and F3 can be
represented in two different ways: as functions of a variable x, or as coefficientes
that are themselves functions of a variable k:

Exponential function:

F1 : x 7→ ex ←→ k 7→ a(k) =
1

k!

Sine function:

F2 : x 7→ sin(x) ←→ k 7→ a(k) = (−1)2k+1 1

(2k + 1)!

A polynomial function:

F3 : x 7→ 2 + 3x− 4x2 ←→ k 7→ a(k),

where a(0) = 2, a(1) = 3, a(2) = −4, and a(k) = 0,∀k ≥ 3.
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Laplace Transforms as Generalized Power Series IV

Consider the “set of real analytical functions of a real variable”. One element
of this set is a function:

f̂(x) : R→ R

We can define an “Equivalence Relation” between functions f̂(x) from this
set and functions a(k) (which are indeed sequences of real numbers):

f̂(x) : R→ R ←→ a(k) : {0, 1, 2, · · · } → R

by using the following equation:

f̂(x) =

∞∑
k=0

a(k)xk

Therefore, every time the above equation is true, we will say that f̂(x) is

equivalent to a(k), and we can denote this fact by f̂(x) ≡ a(k).
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Laplace Transforms as Generalized Power Series V

Now suppose we want to generalize this idea by creating an association
between functions ac(t) of a continuous variable t (instead of a(k)) and a

function f̂c(x) defined in another domain to which x belong.

A natural way of doing that is to consider substituting the summation by the
integral:

f̂(x) =

∞∑
k=0

a(k)xk ⇝ f̂c(x) =

∫ ∞

0

ac(t)x
tdt

A reasonable requirement at this point is that |x| < 1, since this would
facilitate the convergence of the integral on the right-hand side by making
xt → 0 as t→∞.
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Laplace Transforms as Generalized Power Series VI

Another natural development is to represent xt =
[
eln(x)

]t
= et ln(x) (in

terms of the exponential function) to facilitate mathematical manipulations:

f̂c(x) =

∫ ∞

0

ac(t)e
t ln(x)dt.

Relying on the previous requirement that |x| < 1, this means that
ln(|x|) < 0, and we can define a new variable

s = − ln(x), |x| < 1,

such that for real and positive values of 0 < x < 1, s will be a real and
positive number. However, for −1 < x < 0, s will be a complex number.
Let’s allow x to be a complex number such that |x| < 1, and then s will
assume whatever value we want in the complex domain

s = σ + iω, σ, ω ∈ (−∞,+∞) ⇔ s ∈ C.
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Laplace Transforms as Generalized Power Series VII

With the previous definition we have that

f̂c(x) =

∫ ∞

0

ac(t)e
−stdt = f̂c

(
e−s
)
= F (s).

Substituting now ac(t) by f(t), and f̂c(x) by F (s), we get closer to the usual
notation adopted in textbooks:

F (s) =

∫ ∞

0

f(t)e−stdt

which is the definition of the Laplace Transform of the function f(t).
Notice that for each s ∈ C the above integral (if it converges) has a definite
value in the complex plane, i.e. F (s) ∈ C.
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Laplace Transforms as Generalized Power Series VIII

Finally, it is worth observing the difference between “Operators” and
“Transforms”:

Operator (Time-domain) : u(t) 7→ y(t),

Transform : u(t) 7→ U(s),

Transform : y(t) 7→ Y (s),

Operator (Frequency-domain) : U(s) 7→ Y (s).

An Operator acts on the input signal and produces an output signal. Input
and output are in the same domain.
A Transform produces a resulting signal equivalent to the original signal
but the signals are in different domains.
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