Fundamentos de Controle Não Linear: Sistemas Dinâmicos Não Lineares — Conceitos Fundamentais

Leo Torres

PPGEE/UFMG

Março de 2023

- Visão Geral e Objetivo
- 2 Conceitos Fundamentais
- Comportamentos Não Lineares
- Existência e Unicidade de Soluções
- O Lema da Comparação
- 6 Dependência Contínua das Soluções de uma EDO

Nosso Objeto de Estudo I

Nesse curso iremos estudar sistemas dinâmicos descritos por:

$$\frac{dx}{dt} = f(t,x,u),$$
$$y = h(t,x,u),$$

em que $x\equiv x(t)\in X\subseteq \mathbb{R}^n$ são as variáveis de estado (variáveis internas, variáveis de memória, variáveis auxiliares), $u\equiv u(t)\in \mathbb{R}^m$ é o vetor de entradas (sinais que podem ser manipulados arbitrariamente), $y\equiv y(t)\in \mathbb{R}^p$ são sinais de saída, e $t\in [0,+\infty)\equiv \mathbb{R}^+$ é a variável tempo contínuo. Portanto, os sistemas serão:

- Definidos no tempo contínuo, $\forall t \geq 0$.
- De dimensão finita $(n < \infty)$.
- Descritos por meio de equações diferenciais ordinárias, usando Representações em Espaço de Estados.

Nosso Objeto de Estudo II

Interpretação escalar das equações vetoriais anteriores:

$$\dot{x} = f(t, x, u) \quad \Leftrightarrow \quad \begin{cases} \dot{x}_1 & = & f_1(t, x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_m), \\ \dot{x}_2 & = & f_2(t, x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_m), \\ \vdots & \vdots & \vdots \\ \dot{x}_n & = & f_n(t, x_1, x_2, \dots, x_n, u_1, u_2, \dots, u_m), \end{cases}$$

em que $x \in \mathbb{R}^n$; $f_i : \mathbb{R}^+ \times \{X \subseteq \mathbb{R}^n\} \times \mathbb{R}^m \to \mathbb{R}$ e $x_i \in \mathbb{R}$, $i = 1, 2, \ldots, n$; $u_k \in \mathbb{R}$, $k = 1, 2, \ldots, m$; i.e.

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix}.$$

Nosso Objeto de Estudo III

Similarmente,

$$y = h(t,x,u) \Leftrightarrow \begin{cases} y_1 &= h_1(t,x_1,x_2,\dots,x_n,u_1,u_2,\dots,u_m), \\ y_2 &= h_2(t,x_1,x_2,\dots,x_n,u_1,u_2,\dots,u_m), \\ \vdots &\vdots &\vdots \\ y_p &= h_p(t,x_1,x_2,\dots,x_n,u_1,u_2,\dots,u_m), \end{cases}$$

em que $h_i: \mathbb{R}^+ \times \{X \subseteq \mathbb{R}^n\} \times \mathbb{R}^m \to \mathbb{R}$, $i = 1, 2, \dots, p$; i.e.

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix}.$$

Nosso Objeto de Estudo IV

Neste contexto, Sistemas Dinâmicos Lineares e Invariantes no Tempo (LTI) são apenas um caso bastante particular:

$$\frac{dx}{dt} = f(t,x) + g(t,x)u, \\ y = h(t,x) + d(t,x)u,$$
Nonlinear but affine in u

$$\frac{dx}{dt} = f(t,x,u), \\ y = h(t,x,u),$$
Nonlinear/Generic
$$\frac{dx}{dt} = Ax + Bu, \\ y = Cx + Du,$$

$$\frac{dx}{dt} = f(t,x,u), \\ y = h(t,x,u), \\ y = Cx + Du,$$

$$\frac{dx}{dt} = A(\rho(t))x + B(\rho(t))u, \\ y = C(\rho(t))x + D(\rho(t))u,$$

$$\frac{dx}{dt} = A(t)x + B(t)u, \\ y = C(t)x + D(t)u,$$
Linear Time-Varying (LTV)
$$\frac{dx}{dt} = A(t)x + B(t)u, \\ y = C(t)x + D(t)u,$$
Linear Time-Varying (LTV)

Nosso Objeto de Estudo V

No caso de sistemas lineares e invariantes no tempo (SLIT), $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$ e $D \in \mathbb{R}^{p \times m}$ são constantes.

O caso SLIT é tão particular que até se tem algo muito raro em se tratando de sistemas de equações diferenciais: a expressão analítica da evolução dos estados ao longo do tempo, a partir de uma condição inicial $x(t_0)=x_0$:

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau,$$

em que $e^{At}=I+At+\frac{1}{2!}At^2+\frac{1}{3!}At^3+\cdots$. E, consequentemente

$$y(t) = Ce^{At}x_0 + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t).$$

Nosso Objeto de Estudo VI

Ao longo do curso de *Fundamentos de Controle Não Linear*, iremos estudar a estabilidade de diferentes sistemas dinâmicos, em ordem crescente de complexidade:

- Sistemas autônomos: $\dot{x} = f(x)$;
- ② Sistemas não autônomos: $\dot{x} = f(t,x)$;
- Sistemas perturbados:
 - $\bullet \ \dot{x} = f(x) + g(t,x), \ \|g(t,x)\| \le \gamma \|x\|, \ \gamma \ge 0;$
- Sistemas com entradas u limitadas: $\dot{x} = f(x,u)$, $||u(t)|| ≤ M_u$, $0 ≤ M_u < \infty$;
- ③ Sistemas com entradas u limitadas e com saídas y (sinais específicos escolhidos como sendo de especial interesse): $\dot{x} = f(x,u)$, y = h(x,u), $||u(t)|| \le M_{\rm H}$, $0 \le M_{\rm H} < \infty$.

Sistemas Dinâmicos Autônomos e Não-autônomos I

 Quando existe uma Representação em Espaço de Estados para o sistema em que a variável tempo t não aparece explicitamente na equação dinâmica, dizemos que o sistema é autônomo ou invariante no tempo:

$$\dot{x} = f(x)$$
 ou $\dot{x} = f(x, u(x))$.

Neste caso, a lei acima que determina o futuro do estado x por meio da especificação de sua taxa de variação \dot{x} não muda com o tempo, e nossas conclusões sobre a evolução do sistema independem do instante inicial (ou de partida) da nossa análise.

Sistemas Dinâmicos Autônomos e Não-autônomos II

Caso contrário, se

$$\dot{x} = f(t,x)$$
 ou $\dot{x} = f(x,u(x,t))$ ou $\dot{x} = f(t,x,u(x)),$

diz-se que o sistema é *não-autônomo* ou *variante no tempo*. Neste caso a lei que determina a evolução do estado muda ao longo do tempo, e precisamos ficar atentos ao instante inicial da nossa análise.

Um truque (às vezes útil)

Um sistema não autônomo pode ser transformado em um sistema autônomo ao custo de se introduzir mais uma variável de estado com uma condição inicial apropriada:

$$\dot{x} = f(s,x),$$

 $\dot{s} = 1, \quad s(0) = t(0).$

Pontos de Equilíbrio e Linearização I

Definition (Pontos de Equilíbrio)

Dado um sistema dinâmico expresso por

$$\dot{x} = f(t,x),$$

sendo $x \in \mathbb{R}^n$ e $t \geq t_0$, um ponto de equilíbrio x_{eq} desse sistema é um vetor constante tal que

$$\dot{x} = f(t, x_{\text{eq}}) = 0, \quad \forall t \ge t_0.$$

Portanto, se o estado inicial coincidir com um ponto ponto de equilíbrio, o estado não evoluirá, i.e. $x(t_0) = x_{\rm eq} \Rightarrow x(t) = x_{\rm eq}, \ \forall t \geq t_0.$

Pontos de Equilíbrio e Linearização II

Sem perda de generalidade, poderíamos sempre considerar que $x_{eq} = 0$.

Para ver isso, suponha que $x_{\rm eq} \neq 0$. Neste caso podemos usar uma translação de coordenadas $z = x - x_{\rm eq}$ e escrever:

$$\dot{x} = f(t,x),$$

$$\dot{z} = \dot{x} = f(t,z + x_{eq}) \equiv \hat{f}(t,z);$$

tal que $z_{
m eq}=0$ é um ponto de equilíbrio do novo sistema

$$\dot{z} = \hat{f}(t, z).$$

Pontos de Equilíbrio e Linearização III

Considerando que $f:X\subseteq\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^n$ e $h:X\subseteq\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^p$ são funções diferenciáveis; i.e. $f,h\in\mathcal{C}^1$; o comportamento Linear Local do sistema

$$\dot{x} = f(x,u),$$

$$y = h(x,u),$$

em torno de um ponto de equilíbrio, determinado por $x=x_{\rm eq}$ e $u=u_{\rm eq}$, pode ser obtido via expansão das funções não lineares $f(\cdot)$ e $h(\cdot)$ em *Séries de Taylor*, com truncamento das séries nos termos de ordem 1:

$$f(x,u) \approx f(x_{\rm eq},u_{\rm eq}) + \frac{\partial f}{\partial x} \bigg|_{\rm eq} \underbrace{(x-x_{\rm eq})}_{\delta x} + \frac{\partial f}{\partial u} \bigg|_{\rm eq} \underbrace{(u-u_{\rm eq})}_{\delta u},$$

$$h(x,u) \approx h(x_{\rm eq},u_{\rm eq}) + \frac{\partial h}{\partial x} \bigg|_{\rm eq} \underbrace{(x-x_{\rm eq})}_{\delta x} + \frac{\partial h}{\partial u} \bigg|_{\rm eq} \underbrace{(u-u_{\rm eq})}_{\delta u}.$$

Pontos de Equilíbrio e Linearização IV

Na expressão anterior, os termos correspondem a

$$\frac{\partial f}{\partial x}\Big|_{\text{eq}} = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}_{x=x_{\text{eq}}, u=u_{\text{eq}}} = A;$$

$$\frac{\partial f}{\partial u}\Big|_{\text{eq}} = \begin{bmatrix}
\frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} & \dots & \frac{\partial f_1}{\partial u_m} \\
\frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} & \dots & \frac{\partial f_2}{\partial u_m} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial u_1} & \frac{\partial f_n}{\partial u_2} & \dots & \frac{\partial f_n}{\partial u_m}
\end{bmatrix}_{x=x_{\text{eq}}, u=u_{\text{eq}}} = B;$$

Pontos de Equilíbrio e Linearização V

e, similarmente,

$$\frac{\partial h}{\partial x}\Big|_{\text{eq}} = \begin{bmatrix}
\frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} & \dots & \frac{\partial h_1}{\partial x_n} \\
\frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} & \dots & \frac{\partial h_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial h_p}{\partial x_1} & \frac{\partial h_p}{\partial x_2} & \dots & \frac{\partial h_p}{\partial x_n}
\end{bmatrix}_{x=x_{\text{eq}}, u=u_{\text{eq}}} = C;$$

$$\frac{\partial h}{\partial u}\Big|_{\text{eq}} = \begin{bmatrix}
\frac{\partial h_1}{\partial u_1} & \frac{\partial h_1}{\partial u_2} & \dots & \frac{\partial h_p}{\partial u_n} \\
\frac{\partial h_2}{\partial u_1} & \frac{\partial h_2}{\partial u_2} & \dots & \frac{\partial h_p}{\partial u_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial h_p}{\partial u_1} & \frac{\partial h_p}{\partial u_2} & \dots & \frac{\partial h_p}{\partial u_n}
\end{bmatrix}_{x=x_{\text{eq}}, u=u_{\text{eq}}} = D.$$

Note que as matrizes A, B, C e D são matrizes <u>constantes</u>, pois seus elementos são funções avaliadas em um ponto de equilíbrio específico em torno do qual a análise está sendo realizada.

Pontos de Equilíbrio e Linearização VI

Neste caso, reescrevendo a equação anterior, temos que

$$\dot{x} = f(x,u) \approx f(x_{\rm eq}, u_{\rm eq}) + A\delta x + B\delta u,$$

$$y = h(x,u) \approx h(x_{\rm eq}, u_{\rm eq}) + C\delta x + D\delta u.$$

Reconhecendo que:

- $\frac{d}{dt}(\delta x) = \frac{d}{dt}(x x_{\rm eq}) = \frac{d}{dt}(x) = \dot{x}$, pois $x_{\rm eq}$ é uma constante.
- Pela definição de ponto de equilíbrio: $f(x_{\rm eq},u_{\rm eq})\equiv 0.$
- $\delta y = y y_{eq} = y h(x_{eq}, u_{eq}).$

Podemos ecrever finalmente que:

$$\frac{d}{dt}(\delta x) \approx A\delta x + B\delta u,$$

$$\delta y \approx C\delta x + D\delta u,$$
(1)

Pontos de Equilíbrio e Linearização VII

Note que o sistema (1) representa um *Sistema Linear Invariante no Tempo* (SLIT), em relação às chamadas "variáveis desvio":

- Desvio do estado de equilíbrio: δx .
- Desvio da entrada de equilíbrio: δu .
- Desvio da saída observada na condição de equilíbrio: δy .

Neste contexto, é mais fácil entender o significado de "condições iniciais nulas". A propriedade de se ter "condições iniciais nulas", na *Análise Linear Local* de um sistema dinâmico não linear, indica que o sistema encontrava-se inicialmente em equilíbrio:

$$\delta x(t_0) = 0, \delta u(t_0) = 0 \text{ e } \delta y(t_0) = 0.$$

Pontos de Equilíbrio e Linearização VIII

Neste caso, podemos usar a Transformada de Laplace $\mathcal{L}\{\cdot\}$ para obter a Função de Transferência G(s):

$$\begin{split} \mathcal{L}\{\delta y\} &= Y(s),\\ \mathcal{L}\{\delta u\} &= U(s),\\ Y(s) &= G(s)U(s),\\ G(s) &= C(sI-A)^{-1}B + D, \end{split}$$

em que $s\in\mathbb{C}$, e G(s) é uma matriz de funções racionais da variável escalar s (frequência complexa).

Sistemas Dinâmicos e o Princípio da Superposição

Os Sistemas Dinâmicos Não Lineares (SDNL) são estudados porque todos os sistemas dinâmicos, na prática, são não lineares em alguma medida, isto é, **não obedecem** ao *Princípio da Superposição de Efeitos*.

$$u(t) = u_1(t)$$
 \longrightarrow SNL $y(t) = y_1(t)$

Figura: Sistema Não Linear genérico.

A Superposição de Efeitos é o resultado de se ter as seguintes propriedades simultaneamente satisfeitas:

- Aditividade: $u(t) = u_1(t) + u_2(t) \Rightarrow y(t) = y_1(t) + y_2(t)$;
- Homogeneidade: $u(t) = au_1(t) \Rightarrow y(t) = ay_1(t), \forall a \in \mathbb{R}.$

Sistemas Dinâmicos e o Princípio da Superposição

Os Sistemas Dinâmicos Não Lineares (SDNL) são estudados porque todos os sistemas dinâmicos, na prática, são não lineares em alguma medida, isto é, **não obedecem** ao *Princípio da Superposição de Efeitos*.

$$u(t) = u_2(t)$$
 \longrightarrow SNL $y(t) = y_2(t)$

Figura: Sistema Não Linear genérico.

A Superposição de Efeitos é o resultado de se ter as seguintes propriedades simultaneamente satisfeitas:

- Aditividade: $u(t) = u_1(t) + u_2(t) \Rightarrow y(t) = y_1(t) + y_2(t)$;
- Homogeneidade: $u(t) = au_1(t) \Rightarrow y(t) = ay_1(t), \forall a \in \mathbb{R}.$

Sistemas Dinâmicos e o Princípio da Superposição

Os Sistemas Dinâmicos Não Lineares (SDNL) são estudados porque todos os sistemas dinâmicos, na prática, são não lineares em alguma medida, isto é, **não obedecem** ao *Princípio da Superposição de Efeitos*.

$$u(t) = a_1 u_1(t) + a_2 u_2(t) \longrightarrow SNL \longrightarrow y(t) \neq a_1 y_1(t) + a_2 y_2(t)$$

Figura: Sistema Não Linear genérico.

A Superposição de Efeitos é o resultado de se ter as seguintes propriedades simultaneamente satisfeitas:

- Aditividade: $u(t) = u_1(t) + u_2(t) \Rightarrow y(t) = y_1(t) + y_2(t)$;
- Homogeneidade: $u(t) = au_1(t) \Rightarrow y(t) = ay_1(t), \forall a \in \mathbb{R}.$

Princípio da Superposição

Note que, de acordo com essa definição, mesmo os Sistemas Lineares Invariantes no Tempo (SLIT) apresentam comportamento "verdadeiramente linear", apenas se considerarmos condições iniciais apropriadas:

$$\text{LTI} \Rightarrow \begin{cases} y_1(t) = Ce^{At}x_0 + C\int_o^t e^{A(t-\tau)}Bu_1(\tau)d\tau + Du_1(t), \\ y_2(t) = Ce^{At}x_0 + C\int_o^t e^{A(t-\tau)}Bu_2(\tau)d\tau + Du_2(t), \end{cases}$$

Se $Ce^{At}x_0 \neq 0$, então a saída devido à soma de duas entradas não corresponderá à soma das saídas devidas a cada uma das entradas:

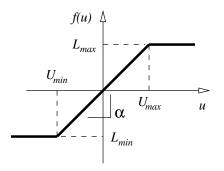
$$y_1(t) + y_2(t) \neq Ce^{At}x_0 + C\int_o^t e^{A(t-\tau)}B\left[u_1(\tau) + u_2(\tau)\right]d\tau + D\left[u_1(\tau) + u_2(\tau)\right].$$

Não Linearidades Comuns I

- Em todos os problemas reais de Engenharia é fácil encontrar a presença de elementos que irão impedir à obediência ao Princípio da Superposição Efeitos.
- É particularmente comum encontrar diversas funções não lineares típicas, como mostrado a seguir.

Não Linearidades Comuns II

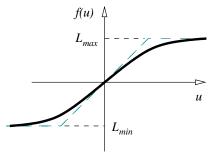
Saturação:



Todos os sistemas reais têm limites práticos para os valores de entrada e os de saída. A inclinação $\alpha = \frac{L_{\max} - L_{\min}}{U_{\max} - U_{\min}}$.

Não Linearidades Comuns III

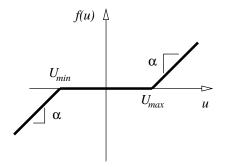
Saturação suave (função suave sigmoidal – "na forma de S"; i.e. com derivadas de todas as ordens, que aproxima a função de saturação):



Exemplo: $f(u) = L \tanh(ku)$. Obs.: esta aproximação é frequentemente utilizada quando a diferenciabilidade da função não linear é uma propriedade importante nas provas matemáticas.

Não Linearidades Comuns IV

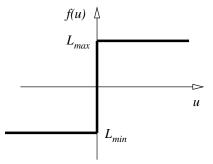
Zona Morta:



Observação interessante: $f_{\text{zona morta}}(u) = \alpha u - f_{\text{saturação}}(u)$.

Não Linearidades Comuns V

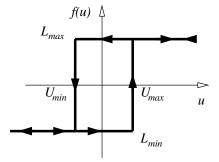
On-Off ou do tipo Relé:



Observação interessante:
$$f_{\mathrm{rel\acute{e}}}(u) = f_{\mathrm{satura}}(u)$$
 quando $U_{\mathrm{max}} = U_{\mathrm{min}} = 0$, isto é, $\alpha \to \infty$, em que $\alpha = \frac{L_{\mathrm{max}} - L_{\mathrm{min}}}{U_{\mathrm{max}} - U_{\mathrm{min}}}$.

Não Linearidades Comuns VI

Relé com Histerese:



Note que é necessária mais uma variável de "memória" para se conseguir determinar quando haverá a transição do valor negativo para o positivo e vice-versa.

Não Linearidades Comuns VII

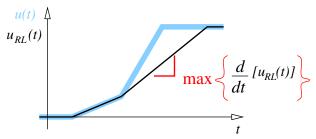
Folga (backlash):



Muito comum em sistemas mecânicos em que são empregadas engrenagens e outros acoplamentos entre partes móveis.

Não Linearidades Comuns VIII

Limitação de Taxa de Variação (Rate Limit):



Muito comum em atuadores que se movem em resposta a comandos, mas que têm velocidade limitada para responder (e.g. superfícies de controle em aeronaves). Um possível modelo seria:

$$\tau_{\rm rl}\dot{u}_{\rm rl} = {\rm sat} \{u - u_{\rm rl}\}, \quad \tau_{\rm rl} \approx 0,$$

 $u_{\rm rl}(0) = u(0).$

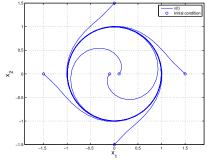
- Existem comportamentos dinâmicos que são impossíveis de serem observados em Sistemas Lineares.
- Nesse sentido, a expressão Comportamentos Não Lineares visa indicar que tais comportamentos só podem ter sua origem em sistemas dinâmicos não lineares subjacentes.

• Oscilações periódicas sustentadas (ou Ciclos-limite).

$$\begin{cases} \dot{r} &= r(1-r^2), \\ \dot{\theta} &= 1, \\ x_1 &= r\cos(\theta), \\ x_2 &= r\sin(\theta). \end{cases} \Rightarrow$$

Não importa a condição inicial, o sistema sempre irá exibir uma oscilação periódica com a mesma amplitude e frequência em regime permanente.

Um ciclo-limite é uma trajetória fechada isolada (na vizinhança do ciclo-limite não há outras trajetórias fechadas) no Espaço de Estados.



Stable Limit-Cycle

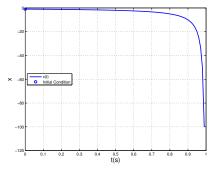
Escape em tempo finito.

$$\dot{x} = -x^2$$
, $x(0) = -1$.
 $\Rightarrow x(t) = \frac{1}{t-1}$,
 $\Rightarrow \lim_{t \to 1} x(t) = -\infty$.

MATLAB: Warning: Failure at t=9.999964e-01.
Unable to meet integration tolerances without reducing
the step size below the smallest value allowed
(1.776357e-15) at time t.

> In ode45 at 309

Um dos sinais do sistema diverge (vai para $\pm\infty$) em um intervalo de tempo finito. Por exemplo, isso também ocorre para toda família de sistemas $\dot{x}=cx^m,\ c>0,$ m>1, com m ímpar, para toda condição inicial $x(0)\neq 0$. Prove!



Finite Escape Time

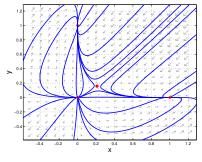
Múltiplas regiões de atração

$$\left\{ \begin{array}{lcl} \dot{x} & = & 0.4x(1-x-5y), \\ \dot{y} & = & 0.6y(1-y-4x). \end{array} \right. \Rightarrow$$

Exemplo paradigmático de espécies x e y em competição.

Múltiplos comportamentos em regime permanente, dependendo da condição inicial. Neste exemplo, tem-se 2 pontos de equilíbrio estáveis: (0;1) ou (1;0).

Uma espécie prevalece sobre a outra, dependendo da proximidade da condição inicial a um ou outro ponto de equilíbrio.



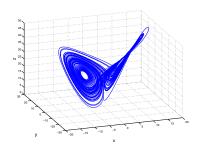
Competing Species

 Oscilações não-periódicas sustentadas, com dependência sensível às condições iniciais: Caos.

$$\begin{cases} \dot{x} &= 10(y-x), \\ \dot{y} &= x(28-z)-y, \\ \dot{z} &= xy-\frac{8}{3}z. \end{cases} \Rightarrow$$

"Qual seria a influência do bater de asas de uma borboleta no Brasil em tempestades em Nova York?" Em outras palavras, sistemas caóticos são aqueles em que pequenas mudanças nas condições iniciais conduzem a comportamentos muito diferentes em um

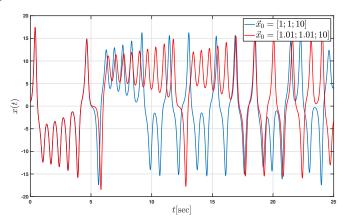
futuro não muito distante.



Lorenz System: Chaotic Attractor

Chaos: sensibilidade às condições iniciais

Exemplo: Sistema de Lorenz.



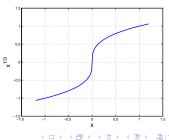
Existência e Unicidade de Soluções I

Sob certas condições, há uma e somente uma trajetória (solução) para um conjunto de equações diferenciais com uma determinada condição inicial. Entretanto, tais condições nem sempre são satisfeitas. Por exemplo, note que

$$\dot{x} = f(x) = \sqrt[3]{x}, \quad x(0) = 0,$$

tem 2 possíveis soluções, igualmente válidas: $x(t) \equiv 0$, e $x(t) = \left(\frac{4}{3}t\right)^{3/4}$.

Gráfico da função $f(x)=\sqrt[3]{x}$. Note que $\lim_{x\to 0}\frac{df}{dx}(x)\to \infty$ e, portanto, não é diferenciável em x=0, apesar de ser uma função contínua.



Existência e Unicidade de Soluções II

Theorem (Existência e Unicidade Locais: Condições Suficientes)

Seja f(t,x) uma função contínua por partes em t, para $t \in [t_0,t_1]$, e **localmente** Lipschitz em x. Então existe algum valor real $\delta>0$ tal que a equação difirencial

$$\dot{x} = f(t,x),$$

 $com\ x(t_0)=x_0$, tem uma única solução no intervalo de tempo $t\in [t_0,t_0+\delta]$, em que $t_0+\delta\leq t_1$.

Contínua por partes em t significa que há um número finito de descontinuidades isoladas em f(t,x), para cada x fixado, e $t \in [t_0,t_1]$.

Existência e Unicidade de Soluções III

Theorem (Existência e Unicidade Globais: Condições Suficientes)

Seja f(t,x) uma função contínua por partes em t, para $t \in [t_0,t_1]$, e **globalmente** Lipschitz em relação a x. Então a solução da equação difirencial

$$\dot{x} = f(t,x),$$

 $com \ x(t_0) = x_0$, existe e é única no intervalo de tempo $t \in [t_0, t_1]$.

Existência e Unicidade de Soluções IV

O que é a propriedade de ser "Lipschitz contínua"?

• Ser **localmente** Lispchitz em x significa que existe uma constante L_{x_0} , com $0 < L_{x_0} < \infty$ (chamada constante de Lipschitz) tal que

$$||f(t,x_{\mathbf{a}})-f(t,x_{\mathbf{b}})|| \le L_{x_0} ||x_{\mathbf{a}}-x_{\mathbf{b}}||, \quad \forall x_{\mathbf{a}}, x_{\mathbf{b}} \in \bar{\mathcal{B}}_r(x_0), \forall t \in [t_0, t_1],$$

sendo $\mathcal{B}_r(x_0)=\{x\in\mathbb{R}^n\mid \|x-x_0\|\leq r\}$. Neste caso a constante L_{x_0} é um valor válido somente na vizinhança da condição inicial, vizinhança esta definida pelo conjunto $\bar{\mathcal{B}}_r(x_0)$ (bola fechada de raio r, centrada em x_0).

• Ser **globalmente** Lipschitz em x significa que

$$||f(t,x_{\mathbf{a}}) - f(t,x_{\mathbf{b}})|| \le L||x_{\mathbf{a}} - x_{\mathbf{b}}||, \quad \forall x_{\mathbf{a}}, x_{\mathbf{b}} \in \mathbb{R}^n, \forall t \in [t_0, t_1],$$

sendo $0 < L < \infty$ a constante de Lipschitz válida $\forall x_a, x_b \in \mathbb{R}^n$.

Existência e Unicidade de Soluções V

$$\mathcal{B}_r(x_0) = \{ x \in \mathbb{R}^n \mid ||x - x_0|| < r \}$$

$$\bar{\mathcal{B}}_r(x_0) = \{ x \in \mathbb{R}^n \mid ||x - x_0|| \le r \}$$

Figura: Bolas aberta e fechada no plano Euclidiano. Estas definições podem ser facilmente estendidas para $\mathbb{R}^n \equiv \operatorname{espaço}$ Euclidiano n-dimensional.

Existência e Unicidade de Soluções VI

Note que a propriedade de ser Lispchitz (localmente ou globalmente em x) é muito importante para se ter garantias de existência e unicidade de soluções.

Algumas informações importantes sobre esse aspecto são:

• Função Localmente Lipschitz em relação a x: a desigualdade

$$||f(t,x_{a}) - f(t,x_{b})|| \le L_{x_{0}} ||x_{a} - x_{b}||$$

é satisfeita para valores em torno do ponto x_0 , para cada t e, por isso, a constante de Lipschitz pode depender do ponto x_0 em particular, mas não depende de t (diz-se que é uniforme em relação à t).

- ② Função **Lipschitz em um conjunto** $W \subseteq \mathbb{R}^n$: a função é localmente Lipschitz para todo ponto $x_0 \in W$, com <u>uma mesma constante</u> L que não depende do ponto x_0 .

Existência e Unicidade de Soluções VII

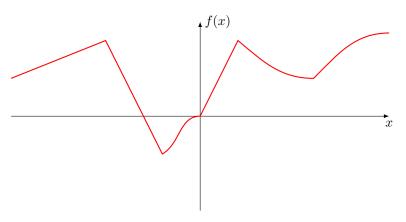
Além disso, deve-se observar que:

- Ser uma função contínua é condição necessária para ser localmente Lipschitz.
- Ser uma função contínua, e diferenciável por partes, com derivadas limitadas em todo o domínio, é condição suficiente para ser globalmente Lipschitz. No caso em que $x \in \mathbb{R}^n$, a norma da matriz Jacobiana associada ao campo vetorial f(x) deve ser limitada, isto é,

$$\left\| \frac{\partial f}{\partial x} \right\| = \left\| \begin{array}{cccc} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_n} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{array} \right\| < \infty.$$

Existência e Unicidade de Soluções VIII

Exemplo de função Lipschitz Contínua não-diferenciável (mas diferenciável por partes, com derivadas limitadas em cada parte):



Theorem (Existência e Unicidade Globais: Condições Suficientes usando Conjuntos Compactos Invariantes)

Seja f(t,x) uma função contínua por partes em t, e **localmente** Lipschitz em relação a $x \in D$, em que $D \subset \mathbb{R}^n$. Seja W um subconjunto compacto de D, tal que $x_0 \in W$, e sabe-se, de alguma forma (veremos como mais tarde), que todas as possíveis soluções de

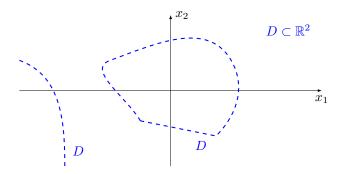
$$\dot{x} = f(t,x), \quad x(t_0) = x_0,$$

não podem deixar o conjunto W. Então existe uma única solução que é definida $\forall t \geq t_0$.

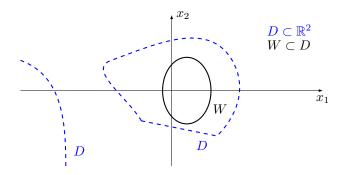
Existência e Unicidade de Soluções X

- No contexto de um Espaço Euclidiano, compacto
 = limitado (existe uma bola de raio finito que contém o conjunto) e fechado (os pontos de fronteira, que formam a borda ou casca do conjunto, pertencem ao conjunto).
- Aqui se usou o resultado de poder se mostrar que f(t,x) é Lipschitz no conjunto compacto W, se for localmente Lipschitz em $D\supset W$.

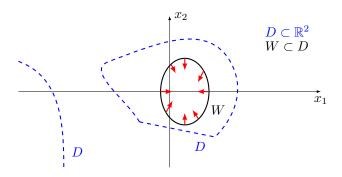
Ilustrando o Teorema...



Ilustrando o Teorema...



Ilustrando o Teorema...



Uma maneira de se mostrar que o conjunto W não pode ser abandonado, caso a trajetória do sistema esteja em seu interior, é provar que os vetores velocidade do campo vetorial sobre sua borda apontam para dentro do conjunto fechado e limitado (compacto) W.

Existência e Unicidade: Outra Abordagem

- Pode-se estudar a existência das soluções de EDOs de uma maneira alternativa, investigando a existência e evolução no tempo de limitantes superiores para as normas das soluções procuradas.
- Se for possível mostrar que a norma da solução é limitada durante certo intervalo de tempo, mostra-se que a solução existe durante esse intervalo de tempo.
- Investigar a evolução do limitante superior da norma pode ser mais fácil do que investigar a evolução dos estados na EDO original, pois esse limitante é um escalar, e pode-se fazer uso do chamado Lema da Comparação.

O Lema da Comparação I

Lemma (Lema da Comparação, versão simplificada)

Suponha que a variável **escalar** v(t) obedeça à seguinte EDO:

$$\dot{v} = h(t,v) \le g(t,v), \quad t \in [t_0,T), \quad \forall v \in W \subseteq \mathbb{R}.$$

 $\it E$ a função $\it g(t,u)$ seja tal que se conheça a solução de uma outra EDO escalar

$$\dot{u} = g(t,u), \quad u(t_0) = u_0 \in W \subseteq \mathbb{R}, \quad u_0 \ge v(t_0), \quad t \in [t_0,T),$$

em que g(t,u) é contínua em t, e Lipschitz em $W\subseteq \mathbb{R}$ em relação a u, sendo $[t_0,T)$ o intervalo maximal de existência da solução que não abandona o conjunto $W\subseteq \mathbb{R}$, i.e. $u(t)\in W$, $\forall t\in [t_0,T)$.

Nesse caso, u(t) será um limitante superior para v(t), ou seja:

$$v(t) \le u(t), \quad \forall t \in [t_0, T).$$

O Lema da Comparação II

• Exemplo de utilização. Considere o sistema:

$$\dot{x} = f(x) = -(1+x^2)x, \quad x(0) = x_0 \in \mathbb{R}.$$
 (2)

A solução existe e é única em algum intervalo $[0,t_1)$, pois f(x) é localmente Lipschitz em torno da condição inicial. Mas podemos provar que a solução existe para todo $t \geq 0$, apesar de f(x) não ser globalmente Lipschitz:

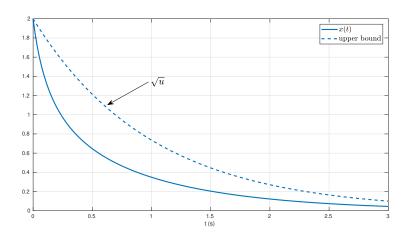
$$v = x^2$$
 \Rightarrow $\frac{dv}{dt} = 2x\dot{x} = -2x^2 - 2x^4, \quad \frac{dv}{dt} \le -2v,$
 $\dot{u} = -2u, \quad u(0) = u_0 = (x_0)^2$ $\Rightarrow \quad u(t) = e^{-2t}u_0.$

E, pelo Lema da Comparação, sabemos que $v(t) \leq u(t)$. Portanto,

$$v(t) \le u(t) \implies x^2(t) \le e^{-2t}(x_0)^2 \implies |x(t)| \le e^{-t}|x_0|,$$

e concluímos que a solução de (2) é definida e limitada $\forall t \geq 0$.

O Lema da Comparação III



Dependência Contínua das Soluções I

 Uma vez que se tenha assegurada a existência e unicidade das soluções do sistema

$$\dot{x} = f(t, x, \theta); \qquad x(0) = x_0;$$

em que $\theta \in \mathbb{R}^p$ são parâmetros constantes, pode-se investigar de que forma as soluções são alteradas devido a diferentes parâmetros e condições iniciais.

 Sob certas condições, como mostrado no teorema a seguir, pequenas alterações nos parâmetros ou nas condições iniciais tendem a produzir pequenas alterações nas soluções durante intervalos de tempo finitos.

Dependência Contínua das Soluções II

Theorem (Dependência Contínua dos Parâmetros e das Condições Iniciais)

Seja $f(t,x,\theta)$ uma função contínua em (t,x,θ) e localmente Lipschitz em relação a x em $[t_0,t_1]\times D\times \{\|\theta-\theta_0\|\leq c\}$, com $D\subseteq \mathbb{R}^n$ um conjunto aberto e conexo, supondo uma constante de Lipschitz escolhida independentemente dos valores de (t,θ) . Seja $x(t,\theta_0,x_0)$ a solução de $\dot{x}=f(t,x,\theta_0)$, com $x(t_0)=x_0\in D$. Suponha que esta solução esteja bem definida e pertença a D para todo $t\in [t_0,t_1]$. Então, dado $\epsilon>0$, existe $\delta>0$ tal que, para

Entao, dado $\epsilon > 0$, existe $\delta > 0$ tai que, para

$$\|\hat{x}_0 - x_0\| < \delta \ e \ \|\theta - \theta_0\| < \delta,$$

existe uma única solução $x(t,\theta,\hat{x}_0)$ definida em $[t_0,t_1]$, com $x(t_0,\theta,\hat{x}_0)=\hat{x}_0$, que satisfaz

$$||x(t,\theta,\hat{x}_0) - x(t,\theta_0,x_0)|| < \epsilon, \quad \forall t \in [t_0, t_1].$$

Referências Bibliográficas

Khalil, H. K. (2002). Nonlinear Systems. Prentice Hall, third edition.

Slotine, J.-J. and Li, W. (1990). Applied Nonlinear Control.

Prentice Hall.

Vidyasagar, M. (1993). Nonlinear Systems Analysis.

Prentice-Hall International, Inc., second edition.

Mais sobre o Lema da Comparação I

• Em [Khalil, 2002] mostra-se o caso mais geral do Lema da Comparação em que v(t) é uma função contínua, mas não precisa ser uma função diferenciável, i.e. não está definida $\frac{dv}{dt}$ em todo ponto.

Mais sobre o Lema da Comparação II

• A condição a ser satisfeita no caso mais geral é que sua *derivada* superior à direita, ou derivada de Dini superior à direita, deve ser tal que $D^+v(t) \leq g(t,v(t))$, sendo que

$$D^{+}v(t) = \limsup_{\delta \to 0^{+}} \left[\frac{v(t+\delta) - v(t)}{\delta} \right],$$
$$= \lim_{\epsilon \to 0} \left\{ \sup_{|\delta| < \epsilon, \ \delta \neq 0} \left[\frac{v(t+\delta) - v(t)}{\delta} \right] \right\}.$$

Se $\boldsymbol{v}(t)$ é uma função diferenciável, tem-se que

$$D^+v(t^*) = \left. \frac{dv}{dt} \right|_{t=t^*}.$$

Mais sobre o Lema da Comparação III

• Novamente, se formos capazes de obter a solução de $\dot{u}=g(t,\!u)$, sendo que

$$D^+v \le g(t,v)$$

é satisfeita durante o intervalo de existência da solução u(t), então ainda teremos

$$v(t) \le u(t)$$
.