Leonardo A. B. Tôrres

Junho de 2017

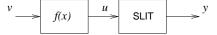
1 Sistemas Não Lineares: SLITs + Funções Não Lineares

2 O Método da Função Descritiva – MFD

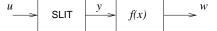
Sistemas de Hammerstein e de Wiener I

É comum encontrar sistemas não lineares resultantes da associação entre um Sistemas Linear Invariante no Tempo – SLIT e uma função não linear. Duas classes bem conhecidas são os:

Sistemas de Hammerstein



Sistemas de Wiener

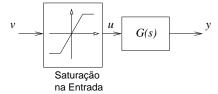


Em muitos casos as funções não lineares são estáticas, i.e. sem memória. Nos casos acima, $f(\cdot)$ representa uma função não linear.

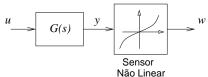
Sistemas de Hammerstein e de Wiener II

Por exemplo, dois casos típicos encontrados em controle são:

Sistemas com saturação da variável manipulada (o que sempre acontece na prática):

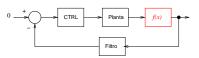


Sistemas em que se emprega um instrumento de medição com características estáticas não lineares:



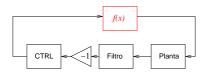
Quando consideramos a *Estabilidade Interna* de sistemas de controle em *Malha Fechada*, temos os seguintes casos:

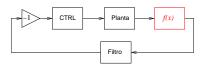
Sistemas de Hammerstein



Quando consideramos a *Estabilidade Interna* de sistemas de controle em *Malha Fechada*, temos os seguintes casos:

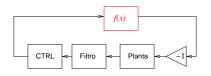
Sistemas de Hammerstein

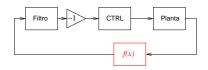




Quando consideramos a *Estabilidade Interna* de sistemas de controle em *Malha Fechada*, temos os seguintes casos:

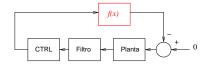
Sistemas de Hammerstein

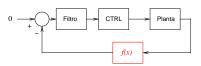




Quando consideramos a *Estabilidade Interna* de sistemas de controle em *Malha Fechada*, temos os seguintes casos:

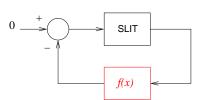
Sistemas de Hammerstein



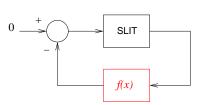


Quando consideramos a *Estabilidade Interna* de sistemas de controle em *Malha Fechada*, temos os seguintes casos:

Sistemas de Hammerstein



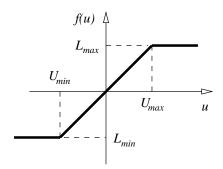
Sistemas de Wiener



Ou seja, ambos os casos conduzem ao mesmo problema de Análise de Estabilidade Interna.

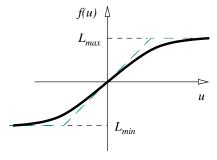
Algumas Funções Não Lineares Típicas I

Saturação:



Algumas Funções Não Lineares Típicas II

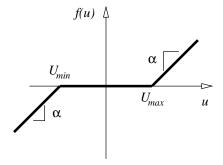
Saturação suave (função suave sigmoidal – "na forma de S"; i.e. com derivadas de todas as ordens, que aproxima a função de saturação):



Exemplo: $f(u) = L \tanh(ku)$. Obs.: Esta aproximação é frequentemente utilizada quando a continuidade da função não linear é um elemento importante nas provas matemáticas.

Algumas Funções Não Lineares Típicas III

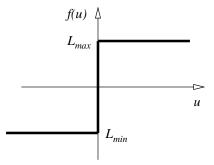
Zona Morta:



Observação interessante: $f_{\text{zona morta}}(u) = \alpha u - f_{\text{saturação}}(u)$.

Algumas Funções Não Lineares Típicas IV

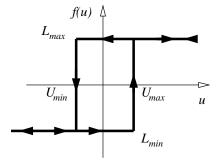
4 On-Off ou do tipo Relé:



Observação interessante: $f_{\rm rel\acute{e}}(u)=f_{\rm saturação}(u)$ quando $U_{\rm max}=U_{\rm min}=0.$

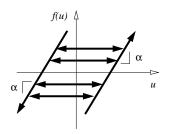
Algumas Funções Não Lineares Típicas V

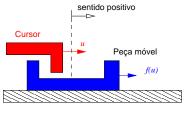
5 Relé com Histerese:



Algumas Funções Não Lineares Típicas VI

6 Folga (backlash):





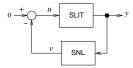
MFD

O Método da Função Descritiva é uma forma de se investigar a existência de *ciclos-limite* em sistemas que podem ser considerados como sendo formados por uma conexão de realimentação entre um SLIT e uma função estática não-linear.

MFD

O Método da Função Descritiva é uma forma de se investigar a existência de *ciclos-limite* em sistemas que podem ser considerados como sendo formados por uma conexão de realimentação entre um SLIT e uma função estática não-linear.

Considere o seguinte caso:

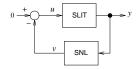


MFD

O Método da Função Descritiva é uma forma de se investigar a existência de *ciclos-limite* em sistemas que podem ser considerados como sendo formados por uma conexão de realimentação entre um SLIT e uma função estática não-linear.

Considere o seguinte caso:

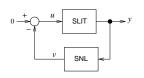
Há apenas um único subsistema Não Linear;



MFD

O Método da Função Descritiva é uma forma de se investigar a existência de *ciclos-limite* em sistemas que podem ser considerados como sendo formados por uma conexão de realimentação entre um SLIT e uma função estática não-linear.

Considere o seguinte caso:



- Há apenas um único subsistema Não Linear;
- O SLIT é tal que age como uma espécie de filtro que atenua fortemente qualquer outra componente de frequência presente que não seja a componente fundamental associada ao ciclo-limite cuja existência quer se investigar.

Ciclos-limite I

Definição

Um ciclo-limite é uma trajetória no Espaço de Estados que é uma curva fechada isolada. Por ser uma curva fechada, considerando-se verdadeiras as condições para unicidade das soluções, a trajetória necessariamente precisa ser periódica.

Note que um SLIT autônomo

$$\dot{x} = Ax,$$

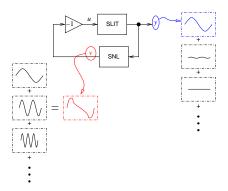
cuja matrix A tem autovalores puramente imaginários, com multiplicidade m=1, é tal que para cada condição inicial x(0) haverá uma oscilação sustentada correspondente a uma curva fechada no Espaço de Estados. Entretanto, essas curvas não são *isoladas* e por isso não são consideradas ciclos-limite.

Ciclos-limite II

Há pelo menos 3 tipos de ciclos-limite:

- Estáveis (as trajetórias se aproximam do ciclo-limite, para todas as condições iniciais próximas),
- Instáveis (as trajetórias se afastam do ciclo-limite, para todas as condições iniciais próximas), e
- Semi-estáveis (as trajetórias podem se aproximar ou afastar do ciclo-limite, dependendo da condição inicial, mesmo sendo próxima à curva fechada).

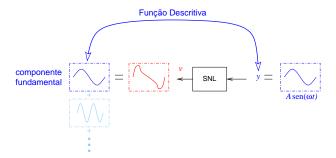
MFD - Investigando Ciclos-limite: Ideia Principal



O SLIT é visto como um filtro passa-baixas que atenua fortemente todas as componentes harmônicas do sinal de entrada periódico v(t) = v(t+T), à exceção da componente fundamental.

A Função Descritiva – Formulação I

A partir das hipóteses feitas sobre o subsistemas não linear e linear, vê-se que o impacto da não linearidade na malha fechada está relacionado à produção da componente fundamental.



A relação entre um sinal senoidal $y(t) = A \mathrm{sen}(\omega t)$ e a componente fundamental do sinal v(t) é chamada de Função Descritiva.

A Função Descritiva – Formulação II

Partindo-se da hipótese de que v(t)=v(t+T), este sinal pode ser representado pela Série de Fourier:

$$v(t) = \sum_{n=-\infty}^{+\infty} C(n)e^{j\omega nt}, \qquad \omega = \frac{2\pi}{T};$$

em que

$$C(n) = \frac{1}{T} \int_{-T/2}^{T/2} v(t)e^{-j\omega nt} dt; \qquad C(n) = a(n) + jb(n) \in \mathbb{C}.$$
 (1)

Sabendo que v(t) é um sinal real, tem-se que

$$C^*(n) = \left\{\frac{1}{T} \int_{-T/2}^{T/2} v(t) e^{-j\omega nt} dt\right\}^* = \frac{1}{T} \int_{-T/2}^{T/2} v(t) e^{j\omega nt} dt = C(-n).$$

A Função Descritiva - Formulação III

Logo, combinando-se os pares

$$C(n)e^{j\omega nt} + C(-n)e^{-j\omega nt} = C(n)e^{j\omega nt} + \{C(n)e^{j\omega nt}\}^*,$$

$$= 2a(n)\cos(\omega nt) + 2b(n)\sin(\omega nt),$$

$$= M_n \operatorname{sen}(\omega nt + \phi_n),$$

em que

$$M_n = 2|C(n)| = \sqrt{[2a(n)]^2 + [2b(n)]^2},$$

$$\phi_n = \operatorname{atan}\left(\frac{2a(n)}{2b(n)}\right).$$

A Função Descritiva – Formulação IV

Para n=1 (componente fundamental), lembrando que $a(n)=\mathrm{Re}\{C(n)\}$ e $b(n)=\mathrm{Im}\{C(n)\}$, a componente senoidal terá amplitude e fase:

$$\begin{array}{rcl} M_1 & = & 2|C(1)| = \sqrt{\left[2a(1)\right]^2 + \left[2b(1)\right]^2}, \\ \phi_1 & = & \mathrm{atan}\left(\frac{2a(1)}{2b(1)}\right), \end{array}$$

em que

$$2a(1) = \frac{2}{T} \int_{-T/2}^{T/2} v(t) \cos(\omega t) dt,$$

$$2b(1) = \frac{2}{T} \int_{-T/2}^{T/2} v(t) \sin(\omega t) dt.$$

com v(t) a saída do subsistema não linear excitado por uma senóide pura dada por $A\mathrm{sen}(\omega t)$.

A Função Descritiva – Formulação V

Função Descritiva - Definição

A Função Descritiva de um subsistema não linear é dada pela razão:

$$N(A,\omega) = \frac{M_1 e^{j\phi_1}}{A e^{j0}} = \frac{2b(1) + j2a(1)}{A},$$
 (2)

que representa a relação entre magnitude e fase dos sinais de entrada e de saída, considerando-se que o sinal de entrada é uma senóide $A\mathrm{sen}(\omega t)$, e computando-se apenas a componente fundamental do sinal de saída correspondente.

Cálculo da Função Descritiva - Casos Especiais I

Se o subsistema não linear é representado por uma função não linear $f(\cdot)$ invariante no tempo (todos os casos vistos anteriormente, à exceção dos casos de histerese e folga), então

$$2a(1) = \frac{2}{T} \int_{-T/2}^{T/2} v(t) \cos(\omega t) dt,$$

$$= \frac{2}{T} \int_{-T/2}^{T/2} f(A \operatorname{sen} \omega t) \cos(\omega t) dt,$$

$$2a(1) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(A \operatorname{sen} \theta) \cos(\theta) d\theta.$$
(3)

Cálculo da Função Descritiva - Casos Especiais II

De forma similar,

$$2b(1) = \frac{2}{T} \int_{-T/2}^{T/2} v(t) \operatorname{sen}(\omega t) dt,$$

$$= \frac{2}{T} \int_{-T/2}^{T/2} f(A \operatorname{sen}\omega t) \operatorname{sen}(\omega t) dt,$$

$$2b(1) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(A \operatorname{sen}\theta) \operatorname{sen}(\theta) d\theta.$$
(4)

Isto significa que para este caso especial a Função Descritiva não depende da frequência do sinal de entrada, mas apenas de sua amplitude:

$$N(A,\omega) \equiv N(A), \qquad N(A) \in \mathbb{C}.$$

Cálculo da Função Descritiva - Casos Especiais III

■ Se além disso, a função não linear é ímpar, i. e. f(x) = -f(-x), que é um caso bastante representativo em aplicações práticas (vide funções não lineares anteriormente apresentadas), tem-se que

$$2a(1) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(A \operatorname{sen}\theta) \cos(\theta) d\theta = 0,$$

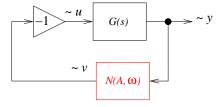
pois $f\left(A\mathrm{sen}(\theta)\right)\cos(\theta)=-f\left(A\mathrm{sen}(-\theta)\right)\cos(-\theta)$ será também uma função ímpar, integrada em um intervalo simétrico. Portanto, a Função Descritiva terá sua imagem no conjunto dos números reais:

$$N(A,\omega) \equiv N(A) = \frac{2b(1)}{A} = \frac{2}{\pi A} \int_0^{\pi} f(A \operatorname{sen}\theta) \operatorname{sen}(\theta) d\theta,$$

em que $N(A) \in \mathbb{R}$.

MFD - Análise I

Partindo-se das hipóteses anteriormente declaradas, o sistema em malha fechada pode ser representado aproximadamente por:



em que o subsistema não linear foi substituído pela Função Descritiva $N(A,\omega)$ e o SLIT está representado por sua Função de Transferência G(s).

MFD - Análise II

Note que a Equação Característica correspondente ao laço de malha fechada mostrado na figura anterior pode ser obtida de:

$$Y(j\omega) = -G(j\omega)N(A,\omega)Y(j\omega) \quad \Leftrightarrow \quad Y(j\omega)\left[1 + G(j\omega)N(A,\omega)\right] = 0.$$

Como essa expressão deve ser válida para $Y(j\omega)=Ae^{j\omega t}$, $\forall \omega \geq 0$, conclui-se que

$$1 + G(j\omega)N(A,\omega) = 0,$$

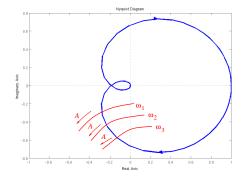
e, portanto,

$$G(j\omega) = \frac{-1}{N(A,\omega)}$$

É importante notar a semelhança com a Equação Característica $G(j\omega)=-1$, comumente encontrada ao se analisar a estabilidade do sistema em malha fechada, a partir do diagrama de Nyquist de G(s).

MFD - Análise III

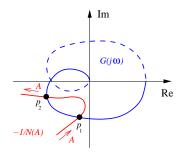
De fato, ao invés de se buscar contabilizar os envolvimentos do ponto -1, no plano $G(j\omega)$, busca-se os envolvimentos no sentido horário de algum ponto $\frac{-1}{N(A,\omega)}$, para algum valor de amplitude A e algum valor de frequência ω .



Na figura ao lado, em vermelho estão representadas as curvas correspondentes a $\frac{-1}{N(A,\omega)}$ para diferentes valores de frequência, variando-se em cada curva o valor da amplitude A.

MFD – Estabilidade dos Ciclos-Limite

Em alguns casos pode ocorrer mais de um cruzamento entre o diagrama de Nyquist do subsistema linear e o negativo inverso da Função Descritiva. No caso abaixo considere, para fins de argumentação, que G(s) é um SLIT estável.



Note que o cruzamento em p_1 representa uma condição de ciclo-limite que não pode ser observada na prática. Caso a amplitude inicial da oscilação seja grande o suficiente tal que há um envovimento de $-1/N(A,\omega)$, o aumento da amplitude irá conduzir a oscilação naturalmente para o ponto p_2 . Caso p_2 seja ultrapassado, a estabilidade do sistema forçará a amplitude a descrescer, conduzindo o sistema novamente para p_2 .

MFD – Observações Importantes

O Método da Função Descritiva para previsão de existência de ciclos-limite (oscilações) em malha fechada é um método aproximado. Não se tem garantias de que ele fornecerá a resposta correta. De fato, sabe-se que a resposta será sempre um pouco imprecisa, pois parte-se da hipótese de que na entrada do subsistema não linear há apenas uma sinal senoidal perfeito.

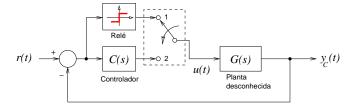
MFD – Observações Importantes

- O Método da Função Descritiva para previsão de existência de ciclos-limite (oscilações) em malha fechada é um método aproximado. Não se tem garantias de que ele fornecerá a resposta correta. De fato, sabe-se que a resposta será sempre um pouco imprecisa, pois parte-se da hipótese de que na entrada do subsistema não linear há apenas uma sinal senoidal perfeito.
- Embora se tenha enfatizado o caso SISO, há extensões da técnica para sistemas MIMO.

MFD – Observações Importantes

- O Método da Função Descritiva para previsão de existência de ciclos-limite (oscilações) em malha fechada é um método aproximado. Não se tem garantias de que ele fornecerá a resposta correta. De fato, sabe-se que a resposta será sempre um pouco imprecisa, pois parte-se da hipótese de que na entrada do subsistema não linear há apenas uma sinal senoidal perfeito.
- Embora se tenha enfatizado o caso SISO, há extensões da técnica para sistemas MIMO.
- A técnica é às vezes chamada de Método do Equilíbrio Harmônico (Harmonic Balance), apesar de haver divergências sobre a propriedade de se usar esse nome (vide [3]), uma vez que Equilíbrio Harmônico é uma técnica correlata ao MFD, usada em Eng. Elétrica, mas é algo diferente.

Na indústria existe um algoritmo de sintonia automática de controladores PID de grande sucesso comercial – o *Método de Auto-Sintonia via Relé* (*Relay Auto-tuning*) – cujo fundamento é o MFD.



Com a chave na posição 1, utiliza-se o relé na malha fechada do sistema de controle para se conseguir informações acerca do ganho crítico $K_{\rm cr}$ e da frequência crítica $f_{\rm cr}$ correspondentes ao limiar de estabilidade do sistema quando controlado por um simples controlador proporcional.

I Os dois parâmetros $K_{\rm cr}$ e $f_{\rm cr}$ podem ser usados, *por exemplo*, para se sintonizar $K_{\rm p}$, $T_{\rm i}$ e $T_{\rm d}$ de um controlador PID, usando a Tabela fornecida no Método de Ziegler-Nichols de Malha Fechada [1].

- I Os dois parâmetros $K_{\rm cr}$ e $f_{\rm cr}$ podem ser usados, *por exemplo*, para se sintonizar $K_{\rm p}$, $T_{\rm i}$ e $T_{\rm d}$ de um controlador PID, usando a Tabela fornecida no Método de Ziegler-Nichols de Malha Fechada [1].
- 2 $K_{\rm cr}$ e $f_{\rm cr}$ são obtidos medindo-se a amplitude das oscilações na saída da planta, e o período do sinal chaveado na saída do relé. Isto é, supõe-se que haverá oscilações ao se colocar o relé na malha (o que pode não ocorrer).

- I Os dois parâmetros $K_{\rm cr}$ e $f_{\rm cr}$ podem ser usados, *por exemplo*, para se sintonizar $K_{\rm p}$, $T_{\rm i}$ e $T_{\rm d}$ de um controlador PID, usando a Tabela fornecida no Método de Ziegler-Nichols de Malha Fechada [1].
- $\rm Z$ $K_{\rm cr}$ e $f_{\rm cr}$ são obtidos medindo-se a amplitude das oscilações na saída da planta, e o período do sinal chaveado na saída do relé. Isto é, supõe-se que haverá oscilações ao se colocar o relé na malha (o que pode não ocorrer).
- 3 A ocorrência de oscilações e a relação entre seu período e $f_{\rm cr}$, bem como a relação entre sua amplitude e $K_{\rm cr}$, podem ser determinados usando o MFD.

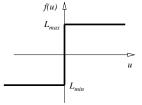
- I Os dois parâmetros $K_{\rm cr}$ e $f_{\rm cr}$ podem ser usados, por exemplo, para se sintonizar $K_{\rm p}$, $T_{\rm i}$ e $T_{\rm d}$ de um controlador PID, usando a Tabela fornecida no Método de Ziegler-Nichols de Malha Fechada [1].
- $\rm Z$ $K_{\rm cr}$ e $f_{\rm cr}$ são obtidos medindo-se a amplitude das oscilações na saída da planta, e o período do sinal chaveado na saída do relé. Isto é, supõe-se que haverá oscilações ao se colocar o relé na malha (o que pode não ocorrer).
- 3 A ocorrência de oscilações e a relação entre seu período e $f_{\rm cr}$, bem como a relação entre sua amplitude e $K_{\rm cr}$, podem ser determinados usando o MFD.
- A grande vantagem de se usar o método de Auto-sintonia via Relé está em não se precisar ajustar um controlador proporcional para levar o sistema em malha fechada ao limiar da estabilidade – situação bastante perigosa e por vezes indesejada!

Exemplo: Relay Auto-tuning I

■ Considere que a planta (desconhecida) é dada por:

$$G(s) = \frac{1}{s(s+1)(s+2)}.$$

A Função Descritiva associada ao Relé pode ser obtida lembrando-se que para uma entrada senoidal pura do tipo $u = A \mathrm{sen}(\omega t)$, a saída f(u) do relé será uma onda quadrada de mesma frequência ω e amplitude igual a amplitude L_{max} (assumindo-se $L_{\mathrm{min}} = -L_{\mathrm{max}}$):



Exemplo: Relay Auto-tuning II

- Lembrando que a função não linear do tipo Relé é invariante no tempo e ímpar, sabemos que a Função Descritiva só dependerá da amplitude da entrada u (não dependerá da frequência), e terá valores reais.
- A Função Descritiva, portanto, será dada por

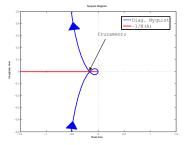
$$N_{\text{rel\'e}}(A) = \frac{2b(1)}{A} = \frac{1}{A\pi} \int_{-\pi}^{\pi} f(A \text{sen}\theta) \text{sen}(\theta) d\theta,$$

$$= \frac{1}{A\pi} \left[\int_{-\pi}^{0} -L_{\text{max}} \text{sen}(\theta) d\theta + \int_{0}^{\pi} L_{\text{max}} \text{sen}(\theta) d\theta \right],$$

$$= \frac{2}{A\pi} \int_{0}^{\pi} L_{\text{max}} \text{sen}(\theta) d\theta = \frac{4}{\pi} \frac{L_{\text{max}}}{A}.$$

Exemplo: Relay Auto-tuning III

■ Analisando o diagrama de Nyquist de G(s), juntamente com os valores de $\frac{-1}{N_{\mathrm{rel}4}(A)} = -\frac{\pi}{4}\frac{A}{L_{\mathrm{max}}}$, para $A \in (0;\infty)$:



vê-se que haverá um cruzamento que corresponde exatamente ao ponto em que a fase de $G(j\omega)$ é 180° , e a magnitude de $G(j\omega)$ é igual ao inverso da margem de ganho.

Exemplo: Relay Auto-tuning IV

■ Portanto, medindo-se a amplitude da saída do SLIT, que é, em princípio, uma boa aproximação do valor A (vide hipóteses sobre o efeito de filtro passa-baixas para o SLIT), e conhecendo-se o valor de $L_{\rm max}$, tem-se uma aproximação do valor do ganho crítico:

$$K_{\rm cr} pprox \left[rac{1}{N_{
m rel\acute{e}}(A)}
ight] = -rac{4}{\pi} rac{L_{
m max}}{A}.$$

■ Além disso, a oscilação exibida terá o mesmo valor de frequência em que a fase de $G(j\omega)$ é $180^{\rm o}$, que é exatamente a frequência crítica. Portanto, medindo-se o período $T_{\rm r}$ do sinal produzido pelo relé (é provavelmente mais fácil de se medir o período a partir desse sinal), tem-se que:

$$f_{\rm cr} = \frac{\omega_{\rm cr}}{2\pi} \approx \frac{1}{T_{\rm r}}.$$

Exemplo: Relay Auto-tuning V

Consultando a Tabela do Método Ziegler-Nichols de Malha Fechada, podemos sintonizar um controlador P, PI, ou PID (pode ser encontrada em [1], pág. 298, Tabela 13.1):

Tipo	\mathbf{K}_{p}	$\mathbf{T_{i}}$	\mathbf{T}_{d}
Р	$0.5K_{\mathrm{cr}}$	-	-
PI	$0,45K_{\rm cr}$	$T_{\rm cr}/1,2$	-
PID	$0.6K_{\mathrm{cr}}$	$T_{\rm cr}/2$	$T_{\rm cr}/8$

É importante lembrar que as indicações de parâmetros na tabela acima não garantem desempenho e estabilidade satisfatórios em todas as situações, pois a tabela foi construída considerando casos específicos nos quais pode não estar incluído o tipo de planta a ser controlada. É claro que existem outras Tabelas de sintonia correspondentes a outros métodos que poderiam ser usadas.

Referências Bibliográficas I

Dale E. Seborg, Duncan A. Mellichamp, Thomas F. Edgar, and Francis J. Doyle III.

Process Dynamics and Control.

Wiley, 1st edition, 1989.

Jean-Jacques Slotine and Weiping Li.

Applied Nonlinear Control.

Prentice Hall, 1990.

M. Vidyasagar.

Nonlinear Systems Analysis.

Prentice-Hall International, Inc., second edition, 1993.