
For Use with MATLAB

Pascal Gahinet
Arkadi Nemirovski

Alan J. Laub
Mahmoud Chilali

®

User’s Guide
Version 1

LMI Control Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

LMI Control Toolbox User’s Guide
 COPYRIGHT 1995 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1995 First printing New for Version 1

i

Contents

Preface

About the Authors . viii

Acknowledgments . ix

1
Introduction

Linear Matrix Inequalities . 1-2

Toolbox Features . 1-3

LMIs and LMI Problems . 1-4
The Three Generic LMI Problems . 1-5

Further Mathematical Background . 1-9

References . 1-10

2
Uncertain Dynamical Systems

Linear Time-Invariant Systems . 2-3
SYSTEM Matrix . 2-3

Time and Frequency Response Plots 2-6

Interconnections of Linear Systems . 2-9

ii Contents

Model Uncertainty . 2-12

Uncertain State-Space Models . 2-14
Polytopic Models . 2-14
Affine Parameter-Dependent Models . 2-15
Quantification of Parameter Uncertainty 2-17
Simulation of Parameter-Dependent Systems 2-19
From Affine to Polytopic Models . 2-20
Example . 2-21

Linear-Fractional Models of Uncertainty 2-23
How to Derive Such Models . 2-23
Specification of the Uncertainty . 2-26
From Affine to Linear-Fractional Models 2-32

References . 2-35

3
Robustness Analysis

Quadratic Lyapunov Functions . 3-3
LMI Formulation . 3-4
Quadratic Stability . 3-6
Maximizing the Quadratic Stability Region 3-8
Decay Rate . 3-9
Quadratic H∞ Performance . 3-10

Parameter-Dependent Lyapunov Functions 3-12
Stability Analysis . 3-14

µ Analysis . 3-17
Structured Singular Value . 3-17
Robust Stability Analysis . 3-19
Robust Performance . 3-21

The Popov Criterion . 3-24
Real Parameter Uncertainty . 3-25

iii

Example . 3-28

References . 3-32

4
State-Feedback Synthesis

Multi-Objective State-Feedback . 4-3

Pole Placement in LMI Regions . 4-5

LMI Formulation . 4-7
Extension to the Multi-Model Case . 4-9

The Function msfsyn . 4-11

Design Example . 4-13

References . 4-18

5
Synthesis of H∞ Controllers

H∞ Control . 5-3
Riccati- and LMI-Based Approaches . 5-7

H∞ Synthesis . 5-10
Validation of the Closed-Loop System 5-13

Multi-Objective H∞ Synthesis . 5-15
LMI Formulation . 5-16
The Function hinfmix . 5-20
Loop-Shaping Design with hinfmix . 5-20

iv Contents

References . 5-22

6
Loop Shaping

The Loop-Shaping Methodology . 6-2

The Loop-Shaping Methodology . 6-3

Design Example . 6-5

Specification of the Shaping Filters . 6-10
Nonproper Filters and sderiv . 6-12

Specification of the Control Structure 6-14

Controller Synthesis and Validation 6-16

Practical Considerations . 6-18

Loop Shaping with Regional Pole Placement 6-19

References . 6-24

7
Robust Gain-Scheduled Controllers

Gain-Scheduled Control . 7-3

Synthesis of Gain-Scheduled H• Controllers 7-7

Simulation of Gain-Scheduled Control Systems 7-9

Design Example . 7-10

v

References . 7-15

8
The LMI Lab

Background and Terminology . 8-3

Overview of the LMI Lab . 8-6

Specifying a System of LMIs . 8-8
A Simple Example . 8-9
setlmis and getlmis . 8-11
lmivar . 8-11
lmiterm . 8-13
The LMI Editor lmiedit . 8-16
How It All Works . 8-18

Retrieving Information . 8-21
lmiinfo . 8-21
lminbr and matnbr . 8-21

LMI Solvers . 8-22

From Decision to Matrix Variables and Vice Versa 8-28

Validating Results . 8-29

Modifying a System of LMIs . 8-30
dellmi . 8-30
dellmi . 8-30
setmvar . 8-31

Advanced Topics . 8-33
Structured Matrix Variables . 8-33
Complex-Valued LMIs . 8-35
Specifying cTx Objectives for mincx . 8-38
Feasibility Radius . 8-39

vi Contents

Well-Posedness Issues . 8-40
Semi-Definite B(x) in gevp Problems . 8-41
Efficiency and Complexity Issues . 8-41
Solving M + PTXQ + QTXTP < 0 . 8-42

References . 8-44

9
Command Reference

List of Functions . 9-3

H∞ Control and Loop Shaping . 9-6

LMI Lab: Specifying and Solving LMIs 9-7

LMI Lab: Additional Facilities . 9-8

Preface

 Preface

viii

About the Authors
Dr. Pascal Gahinet is a reserach fellow at INRIA Rocquencourt, France. His
research interests include robust control theory, linear matrix inequalities,
numerical linear algebra, and numerical software for control.

Prof. Arkadi Nemirovski is with the Faculty of Industrial Engineering and
Management at Technion, Haifa, Israel. His research interests include convex
optimization, complexity theory, and non-parametric statistics.

Prof. Alan J. Laub is with the Electrical and Computer Engineering
Department of the University of California at Santa Barbara, USA. His
research interests are in numerical analysis, mathematical software, scientific
computation, computer-aided control system design, and linear and large-scale
control and filtering theory.

Mahmoud Chilali is completing his Ph.D. at INRIA Rocquencourt, France.
His thesis is on the theory and applications of linear matrix inequalities in
control.

Acknowledgments

ix

Acknowledgments
The authors wish to express their gratitude to all colleagues who directly or
indirectly contributed to the making of the LMI Control Toolbox. Special
thanks to Pierre Apkarian, Gregory Becker, Hiroyuki Kajiwara, and Anca
Ignat for their help and contribution. Many thanks also to those who tested and
helped refine the software, including Bobby Bodenheimer, Markus
Brandstetter, Eric Feron, K.C. Goh, Anders Helmersson, Ted Iwasaki, Jianbo
Lu, Roy Lurie, Jason Ly, John Morris, Ravi Prasanth, Michael Safonov,
Carsten Scherer, Andy Sparks, Mario Rotea, Matthew Lamont Tyler, Jim
Tung, and John Wen. Apologies, finally, to those we may have omitted.

The work of Pascal Gahinet was supported in part by INRIA.

 Preface

x

1

Introduction

Linear Matrix Inequalities 1-2

Toolbox Features 1-3

LMIs and LMI Problems 1-4
The Three Generic LMI Problems 1-5

Further Mathematical Background 1-9

References . . 1-10

1 Introduction

1-2

Linear Matrix Inequalities
Linear Matrix Inequalities (LMIs) and LMI techniques have emerged as
powerful design tools in areas ranging from control engineering to system
identification and structural design. Three factors make LMI techniques
appealing:

• A variety of design specifications and constraints can be expressed as LMIs.

• Once formulated in terms of LMIs, a problem can be solved exactly by
efficient convex optimization algorithms (the “LMI solvers”).

• While most problems with multiple constraints or objectives lack analytical
solutions in terms of matrix equations, they often remain tractable in the
LMI framework. This makes LMI-based design a valuable alternative to
classical “analytical” methods.

See [9] for a good introduction to LMI concepts. The LMI Control Toolbox is
designed as an easy and progressive gateway to the new and fast-growing field
of LMIs:

• For users mainly interested in applying LMI techniques to control design,
the LMI Control Toolbox features a variety of high-level tools for the analysis
and design of multivariable feedback loops (see Chapters 2 through 7).

• For users who occasionally need to solve LMI problems, the “LMI Editor” and
the tutorial introduction to LMI concepts and LMI solvers provide for quick
and easy problem solving.

• For more experienced LMI users, the “LMI Lab” (Chapter 8) offers a rich,
flexible, and fully programmable environment to develop customized
LMI-based tools.

The LMI Control Toolbox implements state-of-the-art interior-point LMI
solvers. While these solvers are significantly faster than classical convex
optimization algorithms, it should be kept in mind that the complexity of LMI
computations remains higher than that of solving, say, a Riccati equation. For
instance, problems with a thousand design variables typically take over an
hour on today's workstations. However, research on LMI optimization is still
very active and substantial speed-ups can be expected in the future. Thanks to
its efficient “structured” representation of LMIs, the LMI Control Toolbox is
geared to making the most out of such improvements.

Toolbox Features

1-3

Toolbox Features
The LMI Control Toolbox serves two purposes:

• Provide state-of-the-art tools for the LMI-based analysis and design of robust
control systems

• Offer a flexible and user-friendly environment to specify and solve general
LMI problems (the LMI Lab)

The control design tools can be used without a priori knowledge about LMIs or
LMI solvers. These are dedicated tools covering the following applications of
LMI techniques:

• Specification and manipulation of uncertain dynamical systems (linear-time
invariant, polytopic, parameter-dependent, etc.)

• Robustness analysis. Various measures of robust stability and performance
are implemented, including quadratic stability, techniques based on
parameter-dependent Lyapunov functions, analysis, and Popov analysis.

• Multi-model/multi-objective state-feedback design

• Synthesis of output-feedback H∞ controllers via Riccati- and LMI-based
techniques, including mixed H2 /H∞ synthesis with regional pole placement
constraints

• Loop-shaping design

• Synthesis of robust gain-scheduled controllers for time-varying
parameter-dependent systems

For users interested in developing their own applications, the LMI Lab
provides a general-purpose and fully programmable environment to specify
and solve virtually any LMI problem. Note that the scope of this facility is by
no means restricted to control-oriented applications.

1 Introduction

1-4

LMIs and LMI Problems
A linear matrix inequality (LMI) is any constraint of the form

(1-1)

where

• x = (x1, . . . , xN) is a vector of unknown scalars (the decision or optimization
variables)

• A0, . . . , AN are given symmetric matrices

• < 0 stands for “negative definite,” i.e., the largest eigenvalue of A(x) is
negative

Note that the constraints A(x) > 0 and A(x) < B(x) are special cases of (1-1) since
they can be rewritten as –A(x) < 0 and A(x) – B(x) < 0, respectively.

The LMI (1-1) is a convex constraint on x since A(y) < 0 and A(z) < 0 imply that
. As a result,

• Its solution set, called the feasible set, is a convex subset of RN

• Finding a solution x to (1-1), if any, is a convex optimization problem.

Convexity has an important consequence: even though (1-1) has no analytical
solution in general, it can be solved numerically with guarantees of finding a
solution when one exists. Note that a system of LMI constraints can be
regarded as a single LMI since

where diag (A1(x), . . . , AK(x)) denotes the block-diagonal matrix with
A1(x), . . . , AK(x) on its diagonal. Hence multiple LMI constraints can be
imposed on the vector of decision variables x without destroying convexity.

A x() := A0 x1A1 … xNAN 0<+ + +

A y z+
2
------------ 
  0<

A1 x() 0<
...

AK x() 0<

is equivalent to











A x() := diag A(1 x(),… AK x()) 0<,

LMIs and LMI Problems

1-5

In most control applications, LMIs do not naturally arise in the canonical form
(1-1), but rather in the form

L(X1, . . . , Xn) < R(X1, . . . , Xn)

where L(.) and R(.) are affine functions of some structured matrix variables X1,
. . . , Xn. A simple example is the Lyapunov inequality

(1-2)

where the unknown X is a symmetric matrix. Defining x1, . . . , xN as the
independent scalar entries of X, this LMI could be rewritten in the form (1-1).
Yet it is more convenient and efficient to describe it in its natural form (1-2),
which is the approach taken in the LMI Lab.

The Three Generic LMI Problems
Finding a solution x to the LMI system

(1-3)

is called the feasibility problem. Minimizing a convex objective under LMI
constraints is also a convex problem. In particular, the linear objective
minimization problem

(1-4)

plays an important role in LMI-based design. Finally, the generalized
eigenvalue minimization problem

(1-5)

is quasi-convex and can be solved by similar techniques. It owes its name to the
fact that is related to the largest generalized eigenvalue of the pencil
(A(x),B(x)).

Many control problems and design specifications have LMI formulations [9].
This is especially true for Lyapunov-based analysis and design, but also for

ATX XA 0<+

A x() 0<

Minimize cTx subject to A x() 0<

Minimize λ subject to
A x() λB x()<
B x() 0>
C x() 0<






1 Introduction

1-6

optimal LQG control, H∞ control, covariance control, etc. Further applications
of LMIs arise in estimation, identification, optimal design, structural design
[6, 7], matrix scaling problems, and so on. The main strength of LMI formu-
lations is the ability to combine various design constraints or objectives in a
numerically tractable manner.

A nonexhaustive list of problems addressed by LMI techniques includes the
following:

• Robust stability of systems with LTI uncertainty (µ-analysis) [24, 21, 27]

• Robust stability in the face of sector-bounded nonlinearities (Popov criterion)
[22, 28, 13, 16]

• Quadratic stability of differential inclusions [15, 8]

• Lyapunov stability of parameter-dependent systems [12]

• Input/state/output properties of LTI systems (invariant ellipsoids, decay
rate, etc.) [9]

• Multi-model/multi-objective state feedback design [4, 17, 3, 9, 10]

• Robust pole placement

• Optimal LQG control [9]

• Robust H∞ control [11, 14]

• Multi-objective H∞ synthesis [17, 23, 10, 18]

• Design of robust gain-scheduled controllers [5, 2]

• Control of stochastic systems [9]

• Weighted interpolation problems [9]

To hint at the principles underlying LMI design, let’s review the LMI
formulations of a few typical design objectives.

Stability. the stability of the dynamical system

is equivalent to the feasibility of

Find P = PT such that AT P + P A < 0, P > I.

x· Ax=

LMIs and LMI Problems

1-7

This can be generalized to linear differential inclusions (LDI)

where A(t) varies in the convex envelope of a set of LTI models:

A sufficient condition for the asymptotic stability of this LDI is the feasibility of

Find P = PT such that

RMS gain . the random-mean-squares (RMS) gain of a stable LTI system

is the largest input/output gain over all bounded inputs u(t). This gain is the
global minimum of the following linear objective minimization problem [1, 26,
25].

Minimize γ over X = XT and γ such that

LQG performance . for a stable LTI system

x· A t()x=

A t() Co A1,…,An{ }∈ aiAi :

i 1=

n

∑ ai 0≥ ai

i 1=

N

∑ 1=,

 
 
 
 
 

=

Ai
TP PAi 0 P I.>,<+

x· Ax Bu+=
y Cx Du+=




ATX XA+ XB CT

BTX γ– I DT

C D γ– I 
 
 
 
 
 

 0<

X 0>

G
x· Ax Bw+=
y Cx=




1 Introduction

1-8

where w is a white noise disturbance with unit covariance, the LQG or H2
performance ||G||2 is defined by

It can be shown that

Hence is the global minimum of the LMI problem

Minimize Trace (Q) over the symmetric matrices P,Q such that

Again this is a linear objective minimization problem since the objective Trace
(Q) is linear in the decision variables (free entries of P,Q).

G 2
2 : = E

T ∞→
lim 1

T
---- yT

0

T

∫ t()y t()dt
 
 
 

1
2π
------ GH

∞–

∞

∫ jω()G jω()dω=

G 2
2 inf Trace CPCT(){ : AP PAT BBT 0 }<+ +=

G 2
2

AP PAT BBT 0<+ +

Q CP

PCT P 
 
 

0>

Further Mathematical Background

1-9

Further Mathematical Background
Efficient interior-point algorithms are now available to solve the three generic
LMI problems (1-3)–(1-5) defined in “The Three Generic LMI Problems” on
page 1-5. These algorithms have a polynomial-time complexity. That is, the
number N(ε) of flops needed to compute an ε-accurate solution is bounded by

N(ε) ð M N3 log(V/ε)

where M is the total row size of the LMI system, N is the total number of scalar
decision variables, and V is a data-dependent scaling factor. The LMI Control
Toolbox implements the Projective Algorithm of Nesterov and Nemirovski [20,
19]. In addition to its polynomial-time complexity, this algorithm does not
require an initial feasible point for the linear objective minimization problem
(1-4) or the generalized eigenvalue minimization problem (1-5).

Some LMI problems are formulated in terms of inequalities rather than strict
inequalities. For instance, a variant of (1-4) is

Minimize cTx subject to A(x) ð 0.

While this distinction is immaterial in general, it matters when A(x) can be
made negative semi-definite but not negative definite. A simple example is

(1-6)

Such problems cannot be handled directly by interior-point methods which
require strict feasibility of the LMI constraints. A well-posed reformulation of
(1-6) would be

Minimize cTx subject to x Š 0.

Keeping this subtlety in mind, we always use strict inequalities in this manual.

Minimize c
T

x subject to x x
x x 

 
 

0.≥

1 Introduction

1-10

References
[1] Anderson, B.D.O, and S. Vongpanitlerd, Network Analysis, Prentice-Hall,
Englewood Cliffs, 1973.

[2] Apkarian, P., P. Gahinet, and G. Becker, “Self-Scheduled H∞ Control of
Linear Parameter-Varying Systems,” Proc. Amer. Contr. Conf., 1994, pp.
856-860.

[3] Bambang, R., E. Shimemura, and K. Uchida, “Mixed H2 /H∞ Control with
Pole Placement,” State-Feedback Case,“ Proc. Amer. Contr. Conf., 1993, pp.
2777-2779.

[4] Barmish, B.R., “Stabilization of Uncertain Systems via Linear Control,“
IEEE Trans. Aut. Contr., AC–28 (1983), pp. 848-850.

[5] Becker, G., Packard, P., “Robust Performance of Linear-Parametrically
Varying Systems Using Parametrically-Dependent Linear Feedback,” Systems
and Control Letters, 23 (1994), pp. 205-215.

[6] Bendsoe, M.P., A. Ben-Tal, and J. Zowe, “Optimization Methods for Truss
Geometry and Topology Design,” to appear in Structural Optimization.

[7] Ben-Tal, A., and A. Nemirovski, “Potential Reduction Polynomial-Time
Method for Truss Topology Design,” to appear in SIAM J. Contr. Opt.

[8] Boyd, S., and Q. Yang, “Structured and Simultaneous Lyapunov Functions
for System Stability Problems,” Int. J. Contr., 49 (1989), pp. 2215-2240.

[9] Boyd, S., L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory, SIAM books, Philadelphia, 1994.

[10] Chilali, M., and P. Gahinet, “H∞ Design with Pole Placement Constraints:
an LMI Approach,” to appear in IEEE Trans. Aut. Contr. Also in Proc. Conf.
Dec. Contr., 1994, pp. 553-558.

[11] Gahinet, P., and P. Apkarian, “A Linear Matrix Inequality Approach to H∞
Control,” Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421-448.

[12] Gahinet, P., P. Apkarian, and M. Chilali, “Affine Parameter-Dependent
Lyapunov Functions for Real Parametric Uncertainty,” Proc. Conf. Dec. Contr.,
1994, pp. 2026-2031.

References

1-11

[13] Haddad, W.M. and D.S. Berstein,“Parameter-Dependent Lyapunov
Functions, Constant Real Parameter Uncertainty, and the Popov Criterion in
Robust Analysis and Synthesis: Part 1 and 2,” Proc. Conf. Dec. Contr., 1991, pp.
2274-2279 and 2632-2633.

[14] Iwasaki, T., and R.E. Skelton, “All Controllers for the General H∞ Control
Problem: LMI Existence Conditions and State-Space Formulas,” Automatica,
30 (1994), pp. 1307-1317.

[15] Horisberger, H.P., and P.R. Belanger, “Regulators for Linear
Time-Varying Plants with Uncertain Parameters,” IEEE Trans. Aut. Contr.,
AC–21 (1976), pp. 705-708.

[16] How, J.P., and S.R. Hall, “Connection between the Popov Stability
Criterion and Bounds for Real Parameter Uncertainty,” Proc. Amer. Contr.
Conf., 1993, pp. 1084-1089.

[17] Khargonekar, P.P., and M.A. Rotea,“Mixed H2 /H∞ Control: a Convex
Optimization Approach,” IEEE Trans. Aut. Contr., 39 (1991), pp. 824-837.

[18] Masubuchi, I., A. Ohara, and N. Suda, “LMI-Based Controller Synthesis:
A Unified Formulation and Solution,” submitted to Int. J. Robust and
Nonlinear Contr., 1994.

[19] Nemirovski, A., and P. Gahinet, “The Projective Method for Solving Linear
Matrix Inequalities,” Proc. Amer. Contr. Conf., 1994, pp. 840-844.

[20] Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in
Convex Programming: Theory and Applications, SIAM Books, Philadelphia,
1994.

[21] Packard, A., and J.C. Doyle, “The Complex Structured Singular Value,”
Automatica, 29 (1994), pp. 71-109.

[22] Popov, V.M., “Absolute Stability of Nonlinear Systems of Automatic
Control,” Automation and Remote Control, 22 (1962), pp. 857-875.

[23] Scherer, C., “Mixed H2 H∞ Control,” to appear in Trends in Control: A
European Perspective, volume of the special contributions to the ECC 1995.

[24] Stein, G. and J.C. Doyle, “Beyond Singular Values and Loop Shapes,” J.
Guidance, 14 (1991), pp. 5-16.

[25] Vidyasagar, M., Nonlinear System Analysis, Prentice-Hall, Englewood
Cliffs, 1992.

1 Introduction

1-12

[26] Willems, J.C., “Least-Squares Stationary Optimal Control and the
Algebraic Riccati Equation,” IEEE Trans. Aut. Contr., AC–16 (1971), pp.
621-634.

[27] Young, P. M., M. P. Newlin, and J. C. Doyle, “Let's Get Real,” in Robust
Control Theory, Springer Verlag, 1994, pp. 143-174.

[28] Zames, G., “On the Input-Output Stability of Time-Varying Nonlinear
Feedback Systems, Part I and II,” IEEE Trans. Aut. Contr., AC–11 (1966), pp.
228-238 and 465-476.

2
Uncertain Dynamical
Systems

Linear Time-Invariant Systems 2-3
SYSTEM Matrix 2-3

Time and Frequency Response Plots 2-6

Interconnections of Linear Systems 2-9

Model Uncertainty 2-12

Uncertain State-Space Models 2-14
Polytopic Models 2-14
Affine Parameter-Dependent Models 2-15
Quantification of Parameter Uncertainty 2-17
Simulation of Parameter-Dependent Systems 2-19
From Affine to Polytopic Models2-20
Example .2-21

Linear-Fractional Models of Uncertainty 2-23
How to Derive Such Models2-23
Specification of the Uncertainty 2-26
From Affine to Linear-Fractional Models 2-32

References . .2-35

2 Uncertain Dynamical Systems

2-2

The LMI Control Toolbox offers a variety of tools to facilitate the description
and manipulation of uncertain dynamical systems. These include functions to:

• Manipulate the state-space realization of linear time-invariant (LTI)
systems as a single SYSTEM matrix

• Form interconnections of linear systems

• Specify linear systems with uncertain state-space matrices (polytopic
differential inclusions, systems with uncertain or time-varying physical
parameters, etc.)

• Describe linear-fractional models of uncertainty

The next sections provide a tutorial introduction to uncertain dynamical
systems and an overview of these facilities.

Linear Time-Invariant Systems

2-3

Linear Time-Invariant Systems
The LMI Control Toolbox provides streamlined tools to manipulate state-space
representations of linear time-invariant (LTI) systems. These tools handle
general LTI models of the form

where A, B, C, D, E are real matrices and E is invertible, as well as their
discrete-time counterpart

Recall that the vectors x(t), u(t), y(t) denote the state, input, and output
trajectories. Similarly, xk, uk, yk denote the values of the state, input, and
output vectors at the sample time k.

The “descriptor” formulation () proves useful when specifying
parameter-dependent systems (see “Affine Parameter-Dependent Models” on
page 2-15) and also avoids inverting E when this inversion is poorly
conditioned. Moreover, many dynamical systems are naturally written in
descriptor form. For instance, the second-order system

.

admits the state-space representation

where .

SYSTEM Matrix
For convenience, the state-space realization of LTI systems is stored as a single
MATLAB matrix called a SYSTEM matrix. Specifically, a continuous- or

Edx
dt
------- Ax t() Bu t()+=

y t() Cx t() Du t()+=

Exk 1+ Axk Buk+=

yk Cxk Duk+=

E I≠

mx·· fx· kx+ + u y x=,=

1 0
0 m 

 
 dX

dt
-------- 0 1

k– f– 
 
 

X 0
1 

 
 

u y 1 0,()X=,+=

X t() := x t()
x· t() 

 
 

2 Uncertain Dynamical Systems

2-4

discrete-time LTI system with state-space matrices A, B, C, D, E is represented
by the structured matrix

where . The upper right entry n corresponds to the number of states
(i.e., A ∈ Rn×n) while the entry Inf is used to differentiate SYSTEM matrices
from regular matrices. This data structure is similar to that used in the µ
Analysis and Synthesis Toolbox.

The functions ltisys and ltiss create SYSTEM matrices and extract state-
space data from them. For instance,

sys = ltisys(1,1,1,0)

specifies the LTI system

To retrieve the values of A, B, C, D from the SYSTEM matrix sys, type

[a,b,c,d] = ltiss(sys)

For single-input/single-output (SISO) systems, the function ltitf returns the
numerator/denominator representation of the transfer function

Conversely, the command

sys = ltisys('tf',n,d)

returns a state-space realization of the SISO transfer function n(s)/d(s) in
SYSTEM format. Here n and d are the vector representation of n(s) and d(s) (type
help poly for details).

The number of states, inputs, and outputs of a linear system are retrieved from
the SYSTEM matrix with sinfo:

…

A j E I–()+ B
n
0

C D
0

0 –Inf

j 1–=

x· x– u y x=,+=

G s() D C sE A–() 1– B n s()
d s()
-----------=+=

Linear Time-Invariant Systems

2-5

sinfo(sys)
System with 1 state(s), 1 input(s), and 1 output(s)

Similarly, the poles of the system are given by spol:

spol(sys)

ans =
1

The function ssub selects particular inputs and outputs of a system and
returns the corresponding subsystem. For instance, if G has two inputs and
three outputs, the subsystem mapping the first input to the second and third
outputs is given by

ssub(g,1,2:3)

The function sinv computes the inverse H(s) = G(s)–1 of a system G(s) with
square invertible D matrix:

h = sinv(g)

Finally, the state-space realization of an LTI system can be “balanced” with
sbalanc. This function seeks a diagonal scaling similarity that reduces the
norms of A, B, C.

2 Uncertain Dynamical Systems

2-6

Time and Frequency Response Plots
Time and frequency responses of linear systems are plotted directly from the
SYSTEM matrix with the function splot. For the sake of illustration, consider
the second-order system

with m = 2, f = 0.01, and k = 0.5. This system is specified in descriptor form by

sys = ltisys([0 1, 0.5 0.01],[0,1],[1 0],0,[1 0,0 2])

the last input argument being the E matrix. To plot its Bode diagram, type

splot(sys,'bo')

The second argument is the string consisting of the first two letters of “bode.”
This command produces the plot of Figure 2-1. A third argument can be used
to adjust the frequency range. For instance,

splot(sys,'bo',logspace(1,1,50))

displays the Bode plot of Figure 2-2 instead.

Figure 2-1: splot (sys,'bo')

mx·· fx· kx+ + u y x=,=

10
−1

10
0

−50

0

50

Frequency (rad/sec)

G
ai

n
dB

10
−1

10
0

−90

−180

0

Frequency (rad/sec)

P
ha

se
 d

eg

Time and Frequency Response Plots

2-7

Figure 2-2: splot (sys,'bo',logspace (–1,1,50))

To draw the singular value plot of this second-order system, type

splot(sys,'sv').

For a system with transfer function G(s) = D + C(sE – A)–1B, the singular value
plot consists of the curves

(ω, σi(G(jω)))

where σi denotes the i-th singular value of a matrix M in the order

σ1(M) Š σ2(M) Š . . . Š σp(M).

Similarly, the step and impulse responses of this system are plotted by
splot(sys,'st') and splot(sys,'im'), respectively. See the “Command
Reference” chapter for a complete list of available diagrams.

The function splot is also applicable to discrete-time systems. For such
systems, the sampling period T must be specified to plot frequency responses.
For instance, the Bode plot of the system

10
−1

10
0

10
1

−50

0

50

Frequency (rad/sec)

G
ai

n
dB

10
−1

10
0

10
1

−90

−180

0

Frequency (rad/sec)

P
ha

se
 d

eg

2 Uncertain Dynamical Systems

2-8

with sampling period t = 0.01 s is drawn by

splot(ltisys(0.1,0.2, 1),0.01,'bo')

xk 1+ 0.1xk 0.2uk+=

yk x– k=



Interconnections of Linear Systems

2-9

Interconnections of Linear Systems
Tools are provided to form series, parallel, and simple feedback inter-
connections of LTI systems. More complex interconnections can be built either
incrementally with these basic facilities or directly with sconnect
(see“Polytopic Models” on page 2-14 for details). The interconnection functions
work on the SYSTEM matrix representation of dynamical systems and their
names start with an s. Note that most of these functions are also applicable to
polytopic or parameter- dependent models (see “Polytopic Models” on
page 2-14).

Series and parallel interconnections are performed by sadd and smult. In
terms of transfer functions,

sadd(g1,g2)

returns the system with transfer function G1(s) + G2(s) while

smult(g1,g2)

returns the system with transfer function G2(s)G1(s). Both functions take up to
ten input arguments, at most one of which can be a parameter-dependent
system. Similarly, the command

sdiag(g1,g2)

appends (concatenates) the systems G1 and G2 and returns the system with
transfer function

This corresponds to combining the input/output relations

y1 = G1(s)u1, y2 = G2(s)u2

into the single relation

G s()
G1 s() 0

0 G2 s() 
 
 
 

=

y1

y2 
 
 
 

G s()
u1

u2 
 
 
 

=

2 Uncertain Dynamical Systems

2-10

Finally, the functions sloop and slft form basic feedback interconnections.
The function sloop computes the closed-loop mapping between r and y in the
loop of Figure 2-3. The result is a state-space realization of the transfer
function

(I – εG1G2)–1G1

where ε = ±1.

Figure 2-3: sloop

This function is useful to specify simple feedback loops. For instance, the
closed-loop system clsys corresponding to the two-degree-of-freedom tracking
loop

is derived by setting G1(s) = G(s)K(s) and G2(s) = 1:

clsys = smult(c, sloop(smult(k,g),1))

The function slft forms the more general feedback interconnection of Figure

2-4 and returns the closed-loop mapping from to . To form this

interconnection when u ∈ R2 and y ∈ R3, the command is

slft(P1,P2,2,3)

r y+

−ε
G1(s)

G2(s)

r y+

−
K GC

ω1
ω2 
 

z1
z2 
 

Interconnections of Linear Systems

2-11

The last two arguments dimension u and y. This function is useful to compute
linear-fractional interconnections such as those arising in H∞ theory and its
extensions (see “How to Derive Such Models” on page 2-23).

Figure 2-4: slft

w1 z1

u y

w2 z2

P1(s)

P2(s)

2 Uncertain Dynamical Systems

2-12

Model Uncertainty
The notion of uncertain dynamical system is central to robust control theory.
For control design purposes, the possibly complex behavior of dynamical
systems must be approximated by models of relatively low complexity. The gap
between such models and the true physical system is called the model
uncertainty. Another cause of uncertainty is the imperfect knowledge of some
components of the system, or the alteration of their behavior due to changes in
operating conditions, aging, etc. Finally, uncertainty also stems from physical
parameters whose value is only approximately known or varies in time. Note
that model uncertainty should be distinguished from exogenous actions such as
disturbances or measurement noise.

The LMI Control Toolbox focuses on the class of dynamical systems that can be
approximated by linear models up to some possibly nonlinear and/or
time-varying model uncertainty. When deriving the nominal model and
estimating the uncertainty, two fundamental principles must be remembered:

• Uncertainty should be small where high performance is desired (tradeoff
between performance and robustness). In other words, the linear model
should be sufficiently accurate in the control bandwidth.

• The more information you have about the uncertainty (phase, structure,
time invariance, etc.), the higher the achievable performance will be.

There are two major classes of uncertainty:

• Dynamical uncertainty, which consists of dynamical components neglected
in the linear model as well as of variations in the dynamical behavior during
operation. For instance, high-frequency flexible modes, nonlinearities for
large inputs, slow time variations, etc.

• Parameter uncertainty, which stems from imperfect knowledge of the
physical parameter values, or from variations of these parameters during
operation. Examples of physical parameters include stiffness and damping
coefficients in mechanical systems, aerodynamical coefficients in flying
devices, capacitors and inductors in electric circuits, etc.

Other important characteristics of uncertainty include whether it is linear or
nonlinear, and whether it is time invariant or time varying. Model uncertainty
is generally a combination of dynamical and parametric uncertainty, and may
arise at several different points in the control loop. For instance, there may be

Model Uncertainty

2-13

dynamical uncertainty on the system actuators, and parametric uncertainty on
some sensor coefficients. Two representations of model uncertainty are used in
the LMI Control Toolbox:

• Uncertain state-space models. This representation is relevant for systems
described by dynamical equations with uncertain and/or time-varying
coefficients.

• Linear-fractional representation of uncertainty. Here the uncertain system is
described as an interconnection of known LTI systems with uncertain
components called “uncertainty blocks.” Each uncertainty block ∆i(.)
represents a family of systems of which only a few characteristics are known.
For instance, the only available information about ∆i may be that it is a
time-invariant nonlinearity with gain less than 0.01.

Determinant factors in the choice of representation include the available model
(state-space equations, frequency-domain model, etc.) and the analysis or
synthesis tool to be used.

2 Uncertain Dynamical Systems

2-14

Uncertain State-Space Models
Physical models of a system often lead to a state-space description of its
dynamical behavior. The resulting state-space equations typically involve
physical parameters whose value is only approximately known, as well as
approximations of complex and possibly nonlinear phenomena. In other words,
the system is described by an uncertain state-space model

E = Ax + Bu, y = Cx + Du

where the state-space matrices A, B, C, D, E depend on uncertain and/or
time-varying parameters or vary in some bounded sets of the space of matrices.

Of particular relevance to this toolbox are the classes of polytopic or
parameter-dependent models discussed next. We collectively refer to such
models as P-systems, “P–” standing for “polytopic or parameter-dependent.”
P-systems are specified with the function psys and manipulated like ordinary
LTI systems except for a few specific restrictions.

Polytopic Models
We call polytopic system a linear time-varying system

E(t) = A(t) x + B(t) u

y = C(t) x + D(t) u

whose SYSTEM matrix varies within a fixed polytope
of matrices, i.e.,

where S1, . . . , Sk are given vertex systems:

(2-1)

In other words, S(t) is a convex combination of the SYSTEM matrices S1, . . . , Sk.
The nonnegative numbers α1, . . . , αk are called the polytopic coordinates of S.

x·

x·

S t() A t() jE t()+ B t()
C t() D t()

=

S t() Co S1 … Sk, ,{ }∈ := α iSi

i 1=

k

∑ : α i 0 α i

i 1=

k

∑ 1=,≥

 
 
 
 
 

S1
A1 jE1+ B1

C1 D1

,…Sk
Ak jEk+ Bk

Ck Dk

= =

Uncertain State-Space Models

2-15

Such models are also called polytopic linear differential inclusions in the
literature [3] and arise in many practical situations, including:

• Multimodel representation of a system, each model being derived around
particular operating conditions

• Nonlinear systems of the form

 = A(x) x + B(x) u, y = C(x) x + D(x) u

• State-space models depending affinely on time-varying parameters (see
“From Affine to Polytopic Models” on page 2-20)

A simple example is the system

 = (sin x) x

whose state matrix A = sin x ranges in the polytope

A Œ Co{–1, 1} = [–1, 1].

Polytopic systems are specified by the list of their vertex systems, i.e., by the
SYSTEM matrices S1, . . . , Sk in (2-1). For instance, a polytopic model taking
values in the convex envelope of the three LTI systems s1, s2, s3 is declared
by

polsys = psys([s1 s2 s3])

Affine Parameter-Dependent Models
The equations of physics often involve uncertain or time-varying coefficients.
When the system is linear, this naturally gives rise to parameter-dependent
models (PDS) of the form

E(p) = A(p) x + B(p) u

y = C(p) x + D(p) u

where A(.), . . . , E(.) are known functions of some parameter vector
p = (p1, . . . , pn). Such models commonly arise from the equations of motion,
aerodynamics, circuits, etc.

The LMI Control Toolbox offers various tools to analyze the stability and
performance of parameter-dependent systems with an affine dependence on
the parameter vector p = (p1, . . . , pn). That is, PDSs where

A(p) = A0 + p1A1 + . . .+ pnAn, B(p) = B0 + p1B1 + . . .+ pnBn,

x·

x·

x·

2 Uncertain Dynamical Systems

2-16

and so on. Affine parameter-dependent models are well-suited for Lyapunov-
based analysis and synthesis and are easily converted to linear-fractional
uncertainty models for small-gain-based design (see the nonlinear spring
example in “Sector-Bounded Uncertainty” on page 2-30).

With the notation

the affine dependence on p is written more compactly in SYSTEM matrix terms
as

S(p) = S0 + p1S1 + . . . + pnSn.

The system “coefficients” S0, . . . , Sn fully characterize the dependence on the
uncertain parameters p1, . . . , pn. Note that S0, . . . , Sn need not represent
meaningful dynamical systems. Only their combination S(p) is a relevant
description of the problem.

Affine parameter-dependent systems are specified with psys by providing

• A description of the parameter vector p in terms of bounds on the parameter
values and rates of variation

• The list of SYSTEM matrix coefficients S0, . . . , Sn

For instance, the system

S(p) = S0 + p1S1 + p2S2

is defined by

s0 = ltisys(a0,b0,c0,d0,e0)
s1 = ltisys(a1,b1,c1,d1,e1)
s2 = ltisys(a2,b2,c2,d2,e2)
affsys = psys(pv, [s0 s1 s2])

where pv is the parameter description returned by pvec (see next subsection for
details). The output affsys is a structured matrix storing all relevant data.

S p() A p() jE p()+ B p()
C p() D p() 

 
 

Si
Ai jEi+ Bi

Ci Di 
 
 
 

,=,=

Uncertain State-Space Models

2-17

Important: By default, ltisys sets the E matrix to the identity. Omitting the
arguments e0, e1, e2 altogether results in setting E(p) = I + (p1 + p2)I.

To specify an affine PDS with a parameter-independent E matrix (e.g.,
E(p) = I), you must explicitly set E1 = E2 = 0 by typing

s0 = ltisys(a0,b0,c0,d0)
s1 = ltisys(a1,b1,c1,d1,0)
s2 = ltisys(a2,b2,c2,d2,0)

Quantification of Parameter Uncertainty
Parameter uncertainty is quantified by the range of parameter values and
possibly the rates of parameter variation. This is done with the function pvec.
The characteristics of parameter vectors defined with pvec are retrieved with
pvinfo.

The parameter uncertainty range can be described as a box in the parameter
space. This corresponds to cases where each uncertain or time-varying
parameter pi ranges between two empirically determined extremal values

and :

(2-1)

If p = (p1, . . . , pn) is the vector of all uncertain parameters, (2-2) delimits a
hyperrectangle of the parameter space Rn called the parameter box. Consider
the example of an electrical circuit with uncertain resistor ρ and capacitor c
ranging in

ρ ∈ [600, 1000] c ∈ [1, 5]

The corresponding parameter vector p = (ρ, c) takes values in the box drawn in
Figure 2-5. This uncertainty range is specified by the commands:

range = [600 1000,1 5]
p = pvec('box',range)

The i-th row of the matrix range lists the lower and upper bounds on pi.

pi pi

pi pi pi,[] .∈

2 Uncertain Dynamical Systems

2-18

Similarly, bounds on the rate of variation of pi(t) are specified by adding a
third argument rate to the calling list of pvec. For instance, the constraints

are incorporated by

rate = [0.1 1, 0.001 0.001]
p = pvec('box',range,rate)

All parameters are assumed to be time-invariant when rate is omitted. Slowly
varying parameters can be specified in this manner. In general, robustness
against fast parameter variations is more stringent than robustness against
constant but uncertain parameters.

Figure 2-5: Parameter box

Alternatively, uncertain parameter vectors can be specified as ranging in a
polytopic of the parameter space Rn like the one drawn in Figure 2-6 for n = 2.
This polytope is characterized by the three vertices:

Π1 = (1, 4), Π2 = (3, 8), Π3 = (10, 1).

An uncertain parameter vector p with this range of values is defined by

pi1=[1,4], pi2=[3,8], pi3=[10,1]
p = pvec('pol',[pi1,pi2,pi3])

p· i

0.1 ρ· t() 1 c· t() 0.001≤,≤ ≤

c

p
600 1000

1

5
range of parameter

values

Uncertain State-Space Models

2-19

The string 'pol' indicates that the parameter range is defined as a polytope.

Figure 2-6: Polytopic parameter range

Simulation of Parameter-Dependent Systems
The function pdsimul simulates the time response of affine parameter-
dependent systems along given parameter trajectories. The parameter vector
p(t) is required to range in a box (type 'box' of pvec). The parameter trajectory
is defined by a function p = fun(t) returning the value of p at time t. For
instance,

pdsimul(pds,'traj')

plots the step response of a single-input parameter-dependent system pds
along the parameter trajectory defined in traj.m. To obtain other time
responses, specify an input signal as in

pdsimul(pds,'traj',1,'sin')

This command plots the response to a sine wave between t = 0 and t = 1 s.
Multi-input multi-output (MIMO) systems are simulated similarly by
specifying an appropriate input function.

p2

p13 10

1

8

4

1

Π2

Π3

Π1

range of values of p

2 Uncertain Dynamical Systems

2-20

From Affine to Polytopic Models
Affine parameter-dependent models

are readily converted to polytopic ones. Suppose for instance that each
parameter pi ranges in some interval []. The parameter vector
p = (p1, . . . , pn) then takes values in a parameter box with 2n corners
Π1, Π2, If the function S(p) is affine in p, it maps this parameter box to
some polytope of SYSTEM matrices. More precisely, this polytope is the convex
envelope of the images S(Π1), S(Π2), . . . of the parameter box corners
Π1, Π2, . . . as illustrated by the figure below.

Figure 2-7: Mapping the parameter box to a polytope of systems

Given an affine parameter-dependent system, the function aff2pol performs
this mapping and returns an equivalent polytopic model. The syntax is

polsys = aff2pol(affsys)

where affsys is the affine model. The resulting polytopic model polsys
consists of the instances of affsys at the vertices of the parameter range.

S p() A p() jE p()+ B p()
C p() D p() 

 
 

=

pi pi,

p1

p2

Π4 Π3

Π1 Π2

parameter box polytope of matrices S(p)

Uncertain State-Space Models

2-21

Example
We conclude with an example illustrating the manipulation of polytopic and
parameter-dependent models in the LMI Control Toolbox.

Example 2.1. Consider a simple electrical circuit with equation

where the inductance L, the resistor R, and the capacitor C are uncertain
parameters ranging in

L ∈ [10, 20], R ∈ [1, 2], C ∈ [100, 150].

A state-space representation of its undriven response is

E(L, R, C) = A(L, R, C)x

where and

This affine system is specified with psys as follows:

a0 = [0 1;0 0]; e0 = [1 0;0 0]; s0 = ltisys(a0,e0)
aL = zeros(2); eL = [0 0;0 1]; sL = ltisys(aL,eL)
aR = [0 0; 1 0]; sR = ltisys(aR,0)
aC = [0 0;0 1]; sC = ltisys(aC,0)

pv=pvec('box',[10 20;1 2;100 150])
pds = psys(pv,[s0 sL sR sC])

The first SYSTEM matrix s0 contains the state-space data for L = R = C = 0 while
sL, sR, sC define the coefficient matrices of L, R, C. The range of parameter
values is specified by the pvec command.

The results can be checked with psinfo and pvinfo:

Ld2i
dt
-------- Rdi

dt
------ Ci+ V=+

x·

xT i di
dt
------, 

 =

A L R C, ,() 0 1
R– C– 

 
  0 1

0 0 
 
 

L 0 R 0 0
1– 0 

 
 

C 0 0
0 1– 

 
 

+ +×+= =

E L R C, ,() 1 0
0 L 

 
  1 0

0 0 
 
 

L 0 0
0 1 

 
 

R 0 C 0×+× .++= =

2 Uncertain Dynamical Systems

2-22

psinfo(pds)

Affine parameter-dependent system with 3 parameters (4 systems)
Each system has 2 state(s), 0 input(s), and 0 output(s)

pvinfo(pv)

Vector of 3 parameters ranging in a box

The system can also be evaluated for given values of L, R, C:

sys = psinfo(pds,'eval',[15 1.2 150])
[a,b,c,d,e] = ltiss(sys)

The matrices a and e now contain the values of A(L, R, C) and E(L, R, C) for L
= 15, R = 1.2, and C = 150.

Finally, the polytopic counterpart of this affine model is given by

pols = aff2pol(pds)

psinfo(pols)

Polytopic model with 8 vertex systems
Each system has 2 state(s), 0 input(s), and 0 output(s)

Linear-Fractional Models of Uncertainty

2-23

Linear-Fractional Models of Uncertainty
For systems with both dynamical and parametric uncertainty, a more general
representation of uncertainty is the linear-fractional model of Figure 2-8 [1, 2].
In this generic model:

• The LTI system P(s) gathers all known LTI components (controller, nominal
models of the system, sensors, and actuators, . . .)

• The input vector u includes all external actions on the system (disturbance,
noise, reference signal, . . .) and the vector y consists of all output signals
generated by the system

• ∆ is a structured description of the uncertainty. Specifically,

∆ = diag(∆1, . . . , ∆r)

where each uncertainty block ∆i accounts for one particular source of
uncertainty (neglected dynamics, nonlinearity, uncertain parameter, etc.).

The diagonal structure of ∆ reflects how each uncertainty component ∆i
enters the loop and affects the overall behavior of the true system.

Figure 2-8: Linear-fractional uncertainty

How to Derive Such Models
Before proceeding with the specification of such uncertainty models, we
illustrate how natural uncertainty descriptions can be recast into the standard
linear-fractional model of Figure 2-8.

u yP(s)

∆

w q

2 Uncertain Dynamical Systems

2-24

Example 2.2 . Consider the feedback loop

where

• G(s) is an uncertain LTI system approximated within 5% accuracy by the
second-order nominal model

In other words, G(s) = G0(s)(I + ∆(s)) where the multiplicative dynamical
uncertainty ∆(s) is any stable LTI system with RMS gain less than 0.05

• k(t) is a fluctuating gain modeled by

k(t) = k0 + δ(t)

where k0 is the nominal value and |δ(t)| < 0.1 k0.

To derive a linear-fractional representation of this uncertain feedback system,
first separate the uncertainty from the nominal models by rewriting the loop as

r y+

−
G(s)

k(t)

G0 s() 1

s2 0.01s 1+ +
------------------------------------=

r y+

−

δ(.)

k0

+

+

G0

+

+

∆

Linear-Fractional Models of Uncertainty

2-25

Then pull out all uncertain components and lump them together into a single
block as follows:

If and denote the input and output vectors of the uncertainty

block, the plant P(s) is simply the transfer function from to in the

diagram.

r

+

k0

y+

+

+

G0
+

δ 0

0 ∆ 
 
 

−

e

q1
q2 P2

p1

p1

p2 
 
  q1

q2 
 
 

q1

q2

r 
 
 
  p1

p2

y 
 
 
 

r yP(s)

δ 0

0 ∆ 
 
 

q1
q2 
  p1

p2 
 

2 Uncertain Dynamical Systems

2-26

Hence the SYSTEM matrix of P(s) can be computed with sconnect or by
specifying the following interconnection:

Specification of the Uncertainty
In linear-fractional uncertainty models, each uncertainty block ∆i is a
dynamical system characterized by

• Its dynamical nature: linear time-invariant or time-varying, nonlinear
memoryless, arbitrary nonlinear

• Its dimensions and structure (full block or scalar block ∆i = δi × I). Scalar
blocks are used to represent uncertain parameters.

• Whether αii is real or complex in the case of scalar uncertainty ∆i = δi by I

• Quantitative information such as norm bounds or sector bounds

The properties of each individual uncertainty block ∆i are specified with the
function ublock. These individual descriptions are then appended with udiag
to form a complete description of the structured uncertainty

∆ = diag(∆1, . . . , ∆r)

Proper quantification of the uncertainty is important since this determines
achievable levels of robust stability and performance. The basics about
quantification issues are reviewed next.

r

+

k0

y+

+

+

G0
+

−

p2 q2

q1
p1

e

Linear-Fractional Models of Uncertainty

2-27

Norm-Bounded Uncertainty
Norm bounds specify the amount of uncertainty in terms of RMS gain. Recall
that the RMS gain or L2 gain of a BIBO-stable system is defined as the
worst-case ratio of the input and output energies:

where

For additive uncertainty

G = G0 + ∆,

the bound on ||∆||∞ is an estimate of the worst-case gap G – G0 between the true
system G and its linear model G0(s). For multiplicative uncertainty

G = G0(I + ∆),

this bound quantifies the relative gap between G and its model G0.

Norm bounds are also useful to quantify parametric uncertainty. For instance,
an uncertain parameter p can be represented as

p = p0 (1 + δ), |δ| < δmax

where p0 is the nominal value and δmax bounds the relative deviation from p0.
If p ∈ [], then p0 and δmax are given by

When ∆ is LTI (i.e., when the physical system G itself is LTI), the uncertainty
can be quantified more accurately by using frequency-dependent bounds of the
form

(2-2)

∆ ∞ sup
∆w L2

w L2

------------------=
w L2∈
w 0≠

w L2

2 wT t()w t() t.d
0

∞

∫=

p p,

p0
p p+

2
------------- δmax

p p–
2p0
------------=,=

W 1– s()∆ s() ∞ 1<

2 Uncertain Dynamical Systems

2-28

where W(s) is some SISO shaping filter. Such bounds specify different amounts
of uncertainty across the frequency range and the uncertainty level at each
frequency is adjusted through theshaping filter shaping filter W(s). For
instance, choosing

results in the frequency-weighted uncertainty bound

fquan2.ps drawn in Figure 2-9.

Figure 2-9: Frequency-dependent bound on |∆(jw)|

These various norm bounds are easily specified with ublock. For instance, a
2-by- 3 LTI uncertainty block ∆(s) with RMS gain smaller than 10 is declared by

delta = ublock([2 3],10)

while a scalar nonlinearity Φ(.) with unit RMS gain is defined by

W s() 2s 1+
s 100+
-------------------=

∆ jω() β ω()<() := 4ω2 1+

ω2 104+

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

Frequency w

B
ou

nd
 b

et
a(

w
)

Linear-Fractional Models of Uncertainty

2-29

phi = ublock(1,1,'nl')

In these commands, the first argument dimensions the block, the second
argument quantifies the uncertainty by a norm bound or sector bounds, and
the optional third argument is a string specifying the nature and structure of
the uncertainty block. The default properties are full, complex-valued, and
linear time invariant (LTI).

Scalar blocks and real parameter uncertainty are denoted by the letters s and
r, respectively. For example, the command

delta = ublock(3,0.5,'sr')

declares a 3 −βψ−3 block ∆ = δ −βψ−I with repeated real parameter δ bounded
by |δ| ð 0.5. Finally, setting the second argument of ublock to a SISO system
W(s) specifies a frequency-dependent norm bound on the LTI uncertainty block
∆(s). Thus,

delta = ublock(2, ltisys('tf',[100 0],[1 100]))

declares an LTI uncertainty ∆(s) ∈ C2×2 satisfying

at all frequencies ω.

After specifying each block ∆i with ublock, call udiag to derive a complete
description of the uncertainty structure

∆ = diag(∆1, . . . , ∆n).

For instance, the commands

delta1 = ublock([3 1],0.1)
delta2 = ublock(2,2,'s')
delta3 = ublock([1 2],100,'nl')
delta = udiag(delta1,delta2,delta3)

specify the uncertainty structure

∆ = diag(∆1, ∆2, ∆3)

where

• ∆1(s) ∈ C3×1 and ||∆1||∞ < 0.1

σmax ∆ jω()() W jω()< < , W s() 100s
s 100+
-------------------=

2 Uncertain Dynamical Systems

2-30

• ∆2 = δ by I2 with δ ∈ C and |δ| < 2

• ∆3(.) is a nonlinear operator with two inputs and one output and satisfies
||∆3||∞ < 100.

Finally, uinfo displays the characteristics of uncertainty structures declared
with ublock and udiag.

uinfo(delta)

Sector-Bounded Uncertainty
The behavior of uncertain dynamical components can also be quantified in
terms of sector bounds on their time-domain response [5, 4]. A (possibly
nonlinear) BIBO-stable system φ(.) is said to be in the sector {a, b} if the
mapping

φ : u ∈ L2 α y∈ L2

satisfies a quadratic constraint of the form

As a special case, passive systems satisfy

which corresponds to the sector {0, +∞}. Note that sector bounds can always be
converted to norm bounds since φ is in the sector {a, b} if and only if

If φ is passive, a bilinear transformation maps φ to the operator (I – φ)(I + φ)–1
of norm less than one.

block dims type real/cplx full/scal bounds

1 3x1 LTI c f norm <= 0.1

2 2x2 LTI c s norm <= 2

3 1x2 NL r f norm <= 100

y t() au t()–()T

0

∞

∫ y t() bu t()–()dt 0 for all u L2∈≤

y t()T

0

∞

∫ u t()dt 0≥

φ a b+
2

-------------–
∞

a b–
2

---------------<

Linear-Fractional Models of Uncertainty

2-31

The system φ(.) is called memoryless if y(t) only depends on the input value u(t)
at time t, i.e.,

y(t) = φ(u(t)).

For memoryless systems, the sector condition reduces to the “instantaneous”
property

(y(t) – au(t))T (y(t) – bu(t)) ð 0 at all time t.

In the scalar case, this means that the response y = φ(u) lies in the sector
delimited by the two lines y = au and y = bu as illustrated below.

A simple example is the nonlinear spring y = k(u) with

The response of this spring lies in the sector {1, 2} as is seen from Figure 2-10.
This scalar memoryless nonlinearity is specified with ublock by

k = ublock(1,[1 2],'nlm')

y

u

y=au

y=bu y=φ (υ)

k u()







=
u 1– if u 1–<

2u if u 1≤
u 1+ if u 1>

2 Uncertain Dynamical Systems

2-32

Robustness in the face of sector-bounded uncertainty is analyzed by the circle
and Popov criteria.

From Affine to Linear-Fractional Models
Since some uncertain systems are more naturally specified as affine
parameter-dependent systems, the function aff2lft is provided to derive a
linear-fractional representation of their parametric uncertainty. All uncertain
parameters are assumed real and are repeated in the ∆ structure when
necessary. For instance, the system

(2-3)

Figure 2-10: Nonlinear spring y = k(u)

with constant p1 ∈ [2, 10] and time-varying p2 ∈ [–1, 3] is specified by

s0 = ltisys([0 1,0 0])
s1 = ltisys([1 0, 1 1],0) % p1

dx
dt

p1 1

p– 1 p1 2p2+ 
 
 
 

x=

-1 1

2

k(u)

Linear-Fractional Models of Uncertainty

2-33

s2 = ltisys([0 0,0 2],0) % p2
pv = pvec('box',[2 10, 1 3],[0 0,-Inf Inf])
pds = psys(pv,[s0 s1 s2])

To derive the linear-fractional representation of the uncertainty on p1, p2, type

[P,delta] = aff2lft(pds)

On output:

• The nominal plant P corresponds to the average values of p1 and p2 .
Specifically, closing the interconnection of Figure 2-8 with ∆ ≡ 0 yields the
system (2-4) for p1 = 6 and p2 = 1, as confirmed by
cls = slft(zeros(3),P)
a = ltiss(cls)

a =
6 1
6 8

• The uncertainty structure delta consists of real scalar blocks as confirmed
by
uinfo(delta)

Note that the parameter p1 is repeated and that the norm bound corresponds
to the maximal deviation from the average value of the parameter.

block dims type real/cplx full/sc
al

bounds

1 2-by-2 LTI r s norm <= 4

2 1-by-1 LTV r s norm <= 2

2 Uncertain Dynamical Systems

2-34

The corresponding block diagram appears in Figure 2-11.

Figure 2-11: Linear-fractional representation of the system (2-4)

u yP(s)

δp1 I× 0

0 δp2 
 
 
 

References

2-35

References
[1] Doyle, J.C. and G. Stein, “Multivariable Feedback Design: Concepts for a
Classical/Modern Synthesis,” IEEE Trans. Aut. Contr., AC-26 (1981), pp. 4-16.

[2] Doyle, J.C., “Analysis of Feedback Systems with Structured Uncertainties,”
IEE Proc., vol. 129, pt. D (1982), pp. 242–250.

[3] Boyd, S., L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory, SIAM books, Philadelphia, 1994.

[4] Vidyasagar, M., Nonlinear System Analysis, Prentice-Hall, Englewood
Cliffs, 1992.

[5] Zames, G., “On the Input-Output Stability of Time-Varying Nonlinear
Feedback Systems, Part I and II,” IEEE Trans. Aut. Contr., AC–11 (1966), pp.
228-238 and 465-476.

2 Uncertain Dynamical Systems

2-36

3

Robustness Analysis

Quadratic Lyapunov Functions 3-3
LMI Formulation 3-4
Quadratic Stability 3-6
Maximizing the Quadratic Stability Region 3-8
Decay Rate . 3-9
Quadratic H∞ Performance3-10

Parameter-Dependent Lyapunov Functions3-12
Stability Analysis3-14

µ Analysis .3-17
Structured Singular Value 3-17
Robust Stability Analysis 3-19
Robust Performance3-21

The Popov Criterion 3-24
Real Parameter Uncertainty 3-25

Example . .3-28

References . .3-32

3 Robustness Analysis

3-2

Control systems are often designed for a simplified model of the physical plant
that does not take into account all sources of uncertainty. A-posteriori
robustness analysis is then necessary to validate the design and obtain
guarantees of stability and performance in the face of plant uncertainty. The
LMI Control Toolbox offers a variety of tools to assess robust stability and
robust performance. These tools cover most available Lyapunov-based and
frequency-domain analysis techniques.

• Quadratic stability/performance

• Tests involving parameter-dependent Lyapunov functions

• Mixed-µ analysis

• The Popov criterion

Each test is geared to a particular class of uncertainty, for example, real
parameter uncertainty for parameter-dependent Lyapunov functions, or
memoryless nonlinearities for the Popov criterion. Hence users should select
the most appropriate tool for their problem. Since all of these tests are based
on sufficient conditions, they are only productive when they succeed in
establishing robust stability or performance.

Quadratic Lyapunov Functions

3-3

Quadratic Lyapunov Functions
The notions of quadratic stability and quadratic performance are useful to
analyze linear time-varying systems

E(t) (t) = A(t)x(t), x(0) = x0.

Given such systems, a sufficient condition for asymptotic stability is the
existence of a positive-definite quadratic Lyapunov function

V(x) =xTPx

such that

along all state trajectories. In terms of Q := P –1, this is equivalent to

(3-1)

at all times t.

Assessing quadratic stability is not tractable in general since (3-1) places an
infinite number of constraints on Q. However, (3-1) can be reduced to a finite
set of LMI contraints in the following cases:

1 A(t) and E(t) are fixed affine functions of some time-varying parameters
p1(t), . . . , pn(t).

A(t) = A0 + p1(t)A1 + . . . + pn(t)An

E(t) = E0 + p1(t)E1 + . . . + pn(t)En.

This is referred to as an affine parameter-dependent model.

2 A(t) + jE(t) ranges in a fixed polytope of matrices, that is,

A(t) = α1(t)A1 + . . . + αn (t)An

E(t) = α1(t)E1 + . . . + αn(t)En

with αi(t) Š 0 and . This is referred to as a polytopic model.

The first case corresponds to systems whose state-space equations depend
affinely on time-varying physical parameters, and the second case to

x·

dV x t()()
dt

----------------------- 0<

A t()QE t()T E t()QA t()T+ 0<

α i t()
i 1=
n

∑ 1=

3 Robustness Analysis

3-4

time-varying systems modeled by an envelope of LTI systems (see “Uncertain
State-Space Models” on page 2-14 for details). Note that quadratic Lyapunov
functions guarantee stability for arbitrarily fast time variations, which is their
main source of conservatism.

Quadratic Lyapunov functions are also useful to assess robust RMS
performance. Specifically, a time-varying system

(3-2)

with zero initial state satisfies

||y||L2
 < γ||u||L2

for all bounded input u(t) if there exists a positive-definite Lyapunov function
V(x) =xTPx such that

In terms of Q := P –1, this is equivalent to the family of “Bounded Real Lemma”
inequalities

The smallest γ for which such a Lyapunov function exists is called the quadratic
H∞ performance. This is an upper bound on the worst-case RMS gain of the
system (3-2).

LMI Formulation
Sufficient LMI conditions for quadratic stability are as follows [8, 1, 2]:

Affine models: consider the parameter-dependent model



E t()x· A t()x B t()u+=

y C t()x D t()u+=

dV x()
dt

---------------- yTy γ2uTu 0<–+

A t()QE t()T E t()QA t()T+ B t() E t()QC t()T

B t()T γI– D t()T

C t()QE t()T D t() γI– 
 
 
 
 
 

0<

Quadratic Lyapunov Functions

3-5

(3-3)

where pi(t) ∈ [], and let

denote the set of corners of the corresponding parameter box. The dynamical
system (3-3) is quadratically stable if there exist symmetric matrices Q and

such that

(3-4)

(3-5)

(3-6)

(3-7)

Polytopic models: the polytopic system

E(t) = A(t)x, A(t) + jE(t) ∈ Co{A1 + jE1, . . . , An + jEn },

is quadratically stable if there exist a symmetric matrix Q and scalars tij = tji
such that

(3-8)

(3-9)

E p()x· A p()x= , A p() A0 p1A1 … pnAn+ + += ,

E t() E0 p1E1 … pnEn+ + +=

pi pi,

V ω1 … ωn, ,() : ωi pi pi,{ }∈{ }=

Mi{ } i 1=
n

A ω()QE ω()T E ω()QA ω()T ωi
2

i
∑ Mi 0 for all ω V∈<+ +

AiPEi
T EiPAi

T Mi 0 for i 1,…,n=≥+ +

Mi 0 ≥

Q I>

x·

AiQEj
T EjQAi

T AjQEi
T EiQAj

T 2tijI for i j, 1,…,n{ }∈<+ + +

Q I>

3 Robustness Analysis

3-6

(3-10)

Note that these LMI conditions are in fact necessary and sufficient for
quadratic stability whenever

• In the affine case, no parameter pi enters both A(t) and E(t), that is, Ai = 0 or
Ei = 0 for all i. The conditions (3-5)–(3-6) can then be deleted and it suffices
to check (3-1) at the corners ω of the parameter box.

• In the polytopic case, either A(t) or E(t) is constant. It then suffices to solve
(3-8)–(3-9) for tij = 0.

Similar sufficient conditions are available for robust RMS performance. For
polytopic systems, for instance, LMI conditions guaranteeing the RMS
performance γ are as follows.

A symmetric matrix Q and scalars tij = tji for i,j ∈ {1, . . . , n} exist such that

Quadratic Stability
The function quadstab tests the quadratic stability of polytopic or affine
parameter-dependent systems. The corresponding LMI feasibility problem is
solved with feasp.

t11 … t1n

t1n … tnn

0<... ……

AiQEj
T EjQAi

T AjQEi
T EjQAi+ + + H H

Bi
T Bj

T+ 2γI– H

CiQEi
T CiQEj

T+ Di Dj+ 2γI– 
 
 
 
 
 
 

2tij 1×<

t11 … t1n

t1n … tnn

0<

Q 0>

… …

Quadratic Lyapunov Functions

3-7

Example 3.1. Consider the time-varying system

 = A(t)x

where A(t) ∈ Co{A1, A2, A3} with

This polytopic system is specified by

s1 = ltisys(a1)
s2 = ltisys(a2)
s3 = ltisys(a3)
polsys = psys([s1 s2 s3])

To test its quadratic stability, type

[tmin,P] = quadstab(polsys)

Solver for LMI feasibility problems L(x) < R(x)
This solver minimizes t subject to L(x) < R(x) + t*I
The best value of t should be negative for feasibility

Iteration : Best value of t so far

1 0.040521
2 0.032876

Result: best value of t: 0.032876
f-radius saturation: 0.000% of R = 1.00e+08

This system is quadratically stable

tmin =

3.2876e 02
Collectively denoting the LMI system (3-8)–(3-10) by A(x) < 0, quadstab
assesses its feasibility by minimizing τ subject to A(x) < τI and returns the
global minimum tmin of this problem. Hence the system is quadratically stable
if and only if tmin < 0. In this case, the second output P is the Lyapunov matrix
proving stability.

x·

A1
0 1
2– 0.2– 

 
 

= , A2
0 1
2.2– 0.3– 

 
 

= , A3
0 1
1.9– 0.1– 

 
 

=

3 Robustness Analysis

3-8

Maximizing the Quadratic Stability Region
This option of quadstab is only available for affine parameter-dependent
systems where the E matrix is constant and each parameter pi(t) ranges in an
interval

pi(t) ∈ []

Denoting the center and radius of each interval by and
, the maximal quadratic stability region is defined as the

largest portion of the parameter box where quadratic stability can be
established. In other words, the largest dilatation factor such that the system
is quadratically stable whenever

pi(t) ∈ [µi – θδi, i + θδi]

Computing this largest factor is a generalized eigenvalue minimization
problem (see gevp). This optimization is performed by quadstab when the first
entry of the options vector is set to 1.

Example 3.2. Consider the second-order system

= A(k, f)x

where

This system is entered by

s0 = ltisys([0 1;0 0])
s1 = ltisys([0 0; 1 0],0) % k
s2 = ltisys([0 0;0 1],0) % f

pv = pvec('box',[10 12;0.5 0.7]) % parameter box
affsys = psys(pv,[s0 s1 s2])

To compute the largest dilatation of the parameter box where quadratic
stability holds, type

[marg,P] = quadstab(affsys,[1 0 0])

The result is

pi pi,

ui
1
2
--- p(= i pi)+

δi
1
2
--- p(= i pi–)

x·

A k f,() 0 1
k– f– 

 
 

k t() 10 12,[] f t() 0.5 0.7,[]∈,∈,=

Quadratic Lyapunov Functions

3-9

marg =

1.4908e+00

which means 149% of the specified box, that is,

k(t) ∈ [9.51, 12.49], f(t) ∈ [0.451, 0.749]

Note that marg Š 1 implies quadratic stability in the prescribed parameter box.

Decay Rate
For the time-varying system

E(t) = A(t)x,

the quadratic decay rate α* is the smallest α such that

A(t)QE(t)T + E(t)QA(t)T < αE(t)QE(t)T

holds at all times for some fixed Q > 0. The system is quadratically stable if and
only if α* < 0, in which case α* is an upper bound on the rate of return to
equilibrium. Specifically,

xT(t)Q–1x(t) < eα*t (x(0)TQ–1x(0)).

Note that is also the largest β such that the shifted system

E(t) = (A(t) + βE(t))x

is quadratically stable.

For affine or polytopic models, the decay rate computation is attacked as a
generalized eigenvalue minimization problem (see gevp). This task is
performed by the function decay.

Example 3.3. For the time-varying system considered in Example 3.1, the decay
rate is computed by

[drate,P] = decay(polsys)
This command returns

drate =

5.6016e 02

x·

α*
2
-------–

x·

3 Robustness Analysis

3-10

P =
6.0707e 01 1.9400e 02
1.9400e 02 3.1098e 01

Quadratic H∞ Performance
The function quadperf computes the quadratic H∞ performance of an affine
parameter-dependent system

E(p) = A(p)x + B(p)u

y = C(p)x + D(p)u

or of a polytopic system

E(t) = A(t)x + B(t)u

y = C(t)x + D(t)u

where

Recall that the quadratic H∞ performance γqp is an upper bound on the
worst-case input/output RMS gain of the system. Specifically

||y||L2
 < γqp ||u||L2

holds for all bounded input u when the initial state is zero. The function
quadperf can also be used to test whether the worst-case RMS gain does not
exceed a given value γ > 0, or to maximize the portion of the parameter box
where this level γ is not exceeded.

Example 3.4. Consider the second-order system with time-varying mass and
damping

This affine parameter-dependent model is specified as

x·

x·

S t() A t() jE t()+ B t()
C t() D t() 

 
 

Co S1,…,Sn{ }∈=

1 0
0 m t() 

 
  x·

x·· 
 
  0 1

2– f t()– 
 
  x

x· 
 
 

= 0
1 

 
 

u+

y x m t() 0.8 1.2,[] f t() 0.4 0.6,[]∈,∈,=

Quadratic Lyapunov Functions

3-11

s0 = ltisys([0 1; 2 0],[0;1],[1 0],0,[1 0;0 0])
s1 = ltisys(zeros(2),[0;0],[0 0],0,[0 0;0 1]) % m
s2 = ltisys([0 0;0 1],[0;0],[0 0],0,0) % f

pv = pvec('box',[0.8 1.2 ; 0.4 0.6])
affsys = psys(pv,[s0 s1 s2])

and its quadratic H∞ performance from u to y is computed by

qperf = quadperf(affsys)

qperf =

6.083e+00

This value is larger than the nominal LTI performance for m = 1 and f = 0.5 as
confirmed by

nomsys = psinfo(affsys,'eval',[1 0.5])

norminf(nomsys)

1.4311e+00

3 Robustness Analysis

3-12

Parameter-Dependent Lyapunov Functions
The robustness test discussed next is applicable to affine parameter-dependent
systems or time-invariant uncertain systems described by a polytope of models.
To prove the robust stability of such systems, we seek a quadratic Lyapunov
function that depends on the uncertain parameters or the polytopic coordinates
in the case of a polytopic model. The resulting tests are less conservative than
quadratic stability when the parameters are constant or slowly varying [6].
Moreover, available bounds on the rates of parameter variation can be
explicitly taken into account.

Affine models: for an affine parameter-dependent system

E(p) = A(p)x

with parameter vector p = (p1, . . . , pn) ∈ Rn, we seek positive definite Lyapunov
functions of the form

V(x, p) = xTQ(p)–1x

where

Q(p) = Q0 + p1Q1 + . . . + pnQn

For such Lyapunov functions, the stability condition is
equivalent to

(3-11)

Given interval bounds

on each pi and its time derivative , the vectors p and range in

n-dimensional “boxes.” If V and T list the corners of these boxes, (3-11) holds
for all parameter trajectories if the following LMI problem is feasible [6].

Find symmetric matrices Q0, Q1, . . . , Qn, and such that

x·

dV x p,()
dt

---------------------- 0<

E p()Q p()AT p() A p()Q p()E p()T E p()dQ
dt
--------E p()T 0.<–+

pi pi pi,[] ν i νi,[] ,∈,∈

dpi
dt
--------- dp

dt

Mi{ } i 1=
n

Parameter-Dependent Lyapunov Functions

3-13

• For all (ω, τ) ∈ V × T

• For ω ∈ V and i = 1, . . . , n

• Q(ω) > I for all ω ∈ V

• Mi Š 0

Note that these conditions reduce to quadratic stability when the rates of

variation are allowed to range in (–∞, +∞). In such cases indeed,

Q1, . . . , Qn must be set to zero for feasibility.

Polytopic models: A similar extension of the quadratic stability test is
available for time-invariant polytopic systems

E = Ax

where one of the matrices A, E is constant and the other uncertain. Assuming
that E is constant and A ranges in the polytope

A ∈ {α1A1 + . . .+ αnAn : αi Š 0, α1+ . . .+ αn = 1},

we seek a Lyapunov function of the form V(x, α) = xTQ(α)–1x where

Q(α) = α1Q1 + . . . + αnQn

Using such Lyapunov functions, sufficient conditions for stability over the
entire polytope are as follows.

E ω()Q ω()A ω()T A ω()Q ω()E ω()T E ω() Q τ() Q0–()E ω()T– ωi
2Mi 0<

i
∑+ +

Ai
TQiE ω() E ω()TQiAi Ai

TQ ω()Ei Ei
TQ ω()Ai+ + + +

A ω()TQiEi Ei
TQiA ω() Ei

T Q τ() Q0–()– Mi+ + 0≥

dpi
dt

x·

3 Robustness Analysis

3-14

There exist symmetric matrices Q1, . . . , Qn, and scalars tij = tji such that

Stability Analysis
Given an affine or polytopic system, the function pdlstab seeks a parameter-
dependent Lyapunov function establishing robust stability over a given
parameter range or polytope of models. The syntax is similar to that of
quadstab. For an affine parameter-dependent system with two uncertain
parameters p1 and p2, for instance, pdlstab is invoked by

[tmin,Q0,Q1,Q2] = pdlstab(ps)

Here ps is the system description and includes available information on the
range of values and rates of variation of each parameter (see psys and pvec for
details). If no rates of variation are specified, the parameters are regarded as
time-invariant. The function pdlstab determines whether the sufficient LMI
conditions listed above are feasible. Feasibility is established when tmin < 0. In
such cases, a parameter-dependent Lyapunov function proving stability is V(x,
p) =xTQ(p)–1x with

Q(p) = Q0 + p1Q1 + p2Q2

Remark In the case of time-invariant uncertain parameters, pdlstab can be
combined with a branch-and-bound scheme to reduce conservatism and
enlarge the computed stability region. Specifically, if pdlstab fails to prove
stability over the entire parameter range, you can split the range into smaller
regions and try to establish stability on each subregion independently.

Example 3.5. Consider the second-order system

AiQjE
T EQjAi

T AjQiE
T EQiAj

T 2tij<+ + +

Qj I>

t11 … t1n

t1n … tnn

0<

… …...

x·

x·· 
 
  0 1

k t()– f t()– 
 
  x

x· 
 
 

=

Parameter-Dependent Lyapunov Functions

3-15

where the stiffness k(t) and damping f(t) range in

k(t) ∈ [5, 10], f(t) ∈ [0.01, 0.1]

and their rates of variation are bounded by

(3-12)

This system and parameter data are specified by

s0 = ltisys([0 1;0 0])
s1 = ltisys([0 0; 1 0],0)
s2 = ltisys([0 0;0 1],0)
pv = pvec('box',[5 10 ; 0.01 0.1],[0.01 0.01 ; 1 1])
ps = psys(pv,[s0 s1 s2])

The second argument of pvec defines the range of parameter values while the
third argument specifies the bounds on their rate of variation.

This system is not quadratically stable over the specified parameter box as
confirmed by

tmin = quadstab(ps)
tmin =

8.0118e 04

Nevertheless, it turns out to be robustly stable when the parameter variations
do not exceed the maximum rates (3-12), as shown by

[tmin,Q0,Q1,Q2] = pdlstab(ps)

Solver for LMI feasibility problems L(x) < R(x)
This solver minimizes t subject to L(x) < R(x) + t*I
The best value of t should be negative for feasibility

Iteration : Best value of t so far

1 0.084914
2 0.011826
3 0.011826
4 1.878414e 03

dk
dt
------- 0.01 df

dt
------ 1<,<

3 Robustness Analysis

3-16

5 1.878414e 03
6 4.846478e 04
7 1.528537e 04
8 7.832830e 04

Result: best value of t: 7.832830e 04
f-radius saturation: 0.003% of R = 1.00e+07

This system is stable for the specified parameter trajectories

This makes pdlstab a useful tool to analyze systems with constant or
slowly-varying parameters.

µ Analysis

3-17

µ Analysis
µ analysis investigates the robust stability or performance of systems with
linear time-invariant linear-fractional uncertainty. It is also applicable to
time-invariant parameter-dependent systems by first deriving an equivalent
linear-fractional representation with aff2lft (see “From Affine to
Linear-Fractional Models” on page 2-32 for details). Nonlinear and/or
time-varying uncertainty is addressed by the Popov criterion discussed in the
next section.

Structured Singular Value
µ analysis is based on the concept of structured singular value (SSV or µ) [3,
12, 13, 10]. Consider the algebraic loop of Figure 3-1 where M ∈ Cn×m and ∆ =
diag(∆1, . . ., ∆n) is a structured perturbation characterized by

• The dimensions of each block ∆i

• Whether ∆i is a complex or real-valued matrix

• Whether ∆i is a full matrix or a scalar matrix of the form ∆i = δi × I

We denote by ∆ the set of perturbations with this particular structure. The
algebraic loop of Figure 3-1 is well posed if and only if I – M∆ is invertible.
Measuring the smallest amount of perturbation ∆ ∈ ∆ needed to destroy
well-posedness is the purpose of the SSV.

Figure 3-1: Static µ problem

∆

M

qw

3 Robustness Analysis

3-18

Formally, the SSV of M with respect to the perturbation structure ∆ is defined
as [10]

with the convention µ∆(M) = 0 if I – M∆ is invertible for all ∆ ∈ ∆. From this
definition, I – M∆ remains invertible as long as ∆ ∈ ∆ satisfies

σmax(∆) < 1/µ∆(M)

That is, as long as the size of ∆ does not exceed K∆ := 1/µ∆(M). The critical size
K is called thewell-posedness margin well-posedness margin. Note that µ∆(M)
= σmax(M) when ∆ = Cm×n (unstructured case). Thus µ∆(M) extends the notion
of largest singular value to the case of structured perturbations.

Computing µ∆(M) is an NP-hard problem in general. However, a conservative
estimate of the margin K∆ (upper bound µ) can be computed by solving an LMI
problem [4]. Assuming for simplicity that the blocks ∆i are square, the variables
in this LMI problem are two scaling matrices

D = diag(D1, . . . , Dn), G = diag(G1, . . . , Gn)

with the same block-diagonal structure as ∆ and where

• Di = di × I with di > 0 if ∆i is a full block, and otherwise.

• Gi = 0 if ∆i is complex-valued, Gi = gi × I with gi ∈ R if ∆i is a real-valued full
block, and if ∆i = δi × I with δi real.

Denoting by D and G the sets of D, G scalings with such properties, an upper
bound on µ∆(M) is given by

where α* is the global minimum of the following generalized eigenvalue
minimization problem [4]:

Minimize α over D ∈ D and G ∈ G subject to

MHDM + j(GM – MHG) < αD, D > I

The µ upper bound ν∆(M) and the optimal D, G scalings are computed by the
function mubnd. Its syntax is

[mu,D,G] = mubnd(M,delta)

µ M() := 1
min σmax ∆() : ∆ ∈ ∆ and I M– ∆ is singular{ }
--

Di Di
H= 0>

Gi Gi
H=

ν∆ max 0 α*,()=

µ Analysis

3-19

where delta specifies the perturbation structure ∆ (use ublock and udiag to
define delta, see “Norm-Bounded Uncertainty” on page 2-27 and
“Sector-Bounded Uncertainty” for details). When each block ∆i is bounded by 1,
the output mu is equal to ν∆(M). If different bounds βi are used for each ∆i, the
interpretation of mu is as follows:

The interconnection of Figure 3-1 is well posed for all ∆ ∈ ∆ satisfying

For instance, 1/mu = 0.9 means that well-posedness is guaranteed for
perturbation sizes that do not exceed 90% of the prescribed bounds.

Robust Stability Analysis
The structured singular value µ is useful to assess the robust stability of
time-invariant linear-fractional interconnections (see Figure 3-2). Here P(s) is
a given LTI system and ∆(s) = diag(∆1(s), . . . , ∆n (s)) is a norm- or sector-
bounded linear time-invariant uncertainty with some prescribed structure.

Figure 3-2: Robust stability analysis

This interconnection is stable for all structured ∆(s) satisfying ||∆||∞ < 1 if and
only if [3, 12, 10, 16]

The reciprocal Km = 1/µm represents the robust stability margin, that is, the
largest amount of uncertainty ∆ that can be tolerated without losing stability.

σmax ∆i()
βi
mu
------<

∆(s)

P(s)

w q

u y

µm := sup µ∆ P jω()() 1.<
ω

3 Robustness Analysis

3-20

As mentioned earlier, we can only compute a conservative estimate of Km
based on the upper bound ν∆ of µ∆. We refer to as the guaranteed stability
margin. A grid-based estimation of is performed by mustab:

[margin,peakf] = mustab(P,delta,freqs)

On input, delta describes the uncertainty ∆ (see ublock and udiag for details)
and freqs is an optional vector of frequencies where to evaluate ν∆(P(jω)). On
output, margin is the computed value of and peakf is the frequency near
which ν∆(P(jω) peaks, i.e., where the margin is the smallest.

The uncertainty quantification may involve different bounds for each block ∆i.
In this case, margin represents the relative stability margin as a percentage of
the specified bounds. More precisely, margin = θ means that stability is guaran-
teed as long as each block ∆i satisfies

• For norm-bounded blocks

σmax(∆i(jω)) < θ βi(ω)

where βi(ω) is the (possibly frequency-dependent) norm bound specified with
ublock

• For sector-bounded blocks

where a < b are the sector bounds specified with ublock. In the special case
b = +∞, this condition reads

for θ ð 1 and

for θ > 1

For instance, margin = 0.7 for a single-block uncertainty ∆(s) bounded by 3
means that stability is guaranteed for ||∆||∞ < 0.7-by-3 = 2.1.

The syntax

K̂m
K̂m

K̂m

K̂m

∆i is in the sector a b+
2

------------- θb a–
2

------------– ,a b+
2

------------- θb a–
2

------------+
 
 
 

∆i is in the sector a 1 0–
1 0+
-------------+ ,a 1 0+

1 0–
-------------+

 
 
 

∆i is outside the sector a 1 0–
1 0+
-------------+ ,a 1 0+

1 0–
-------------+

 
 
 

outside

µ Analysis

3-21

[margin,peakf,fs,ds,gs] = mustab(P,delta)

also returns the D, G scaling matrices at the tested frequencies fs. To retrieve
the values of D and G at the frequency fs(i), type

Di = getdg(ds,i), Gi = getdg(gs,i)

Note that Di and Gi are not necessarily the optimal scalings at fs(i). Indeed,
the LMI optimization is often stopped before completion to speed up compu-
tations.

Caution: is computed by frequency sweep, i.e., by evaluating ν∆(P(jω))
over a finite grid of frequencies. The coarser the gridding, the higher the risk
of underestimating the peak value of ν∆(P(jω)). Worse, this function may be
discontinuous at its peaks when the uncertainty contains real blocks. In such
cases, any “blind” frequency sweep is likely to miss the peak value and yield
an overoptimistic stability margin. The function mustab has built-in tests to
detect such discontinuities and minimize the risks of missing the critical
peaks.

Robust Performance
In robust control, it is customary to formulate the design specifications as
abstract disturbance rejection objectives. The performance of a control system
is then measured in terms of the closed-loop RMS gain from disturbances to
outputs (see “H• Control” on page 5-3 for details). The presence of uncertainty
typically deteriorates performance. For an LTI system with linear-fractional
uncer- tainty (Figure 3-3), the robust performance γrob is defined as the
worst-case RMS gain from u to y in the face of the uncertainty ∆(s).

K̂m

3 Robustness Analysis

3-22

This robust performance is generally worse (larger) than the nominal
performance, i.e., the RMS gain from u to y for (s) ≡ 0.

Figure 3-3: Robust performance problem

Assessing whether the performance γ can be robustly sustained, that is,
whether γrob < γ, is equivalent to a robust stability problem. Indeed,
||y||L2

 < γ||u||L2
 holds for all ∆(s) in the prescribed uncertainty set if and only if

the interconnection of Figure 3-4 is stable for all ∆(s) and for ∆perf(s) satisfying

||∆perf(s)||∞ < γ–1

Given a norm- or sector-bounded linear time-invariant uncertainty ∆(s), the
function muperf assesses the robust performance γrob via this equivalent robust
stability problem.

Figure 3-4: Equivalent robust stability problem

Two problems can be solved with muperf:

• Compute the robust performance γrob for the specified uncertainty ∆(s). This
is done by

∆(s)

P(s)u y

P(s)

∆perf s() 0

0 ∆ s() 
 
 

µ Analysis

3-23

grob = muperf(P,delta)

The value grob is finite if and only if the interconnection of Figure 3-3 is
robustly stable.

• Assess the robustness of a given performance γ = g > 0 in the face of the
uncertainty ∆(s). The command

margin = muperf(P,delta,g)

computes a fraction margin of the specified uncertainty bounds for which the
RMS gain from u to y is guaranteed not to exceed γ.
Note that g should be larger than the nominal RMS gain for ∆ = 0. The
performance g is robust if and only if margin Š 1.

The function muperf uses the following characterization of γrob . Assuming ||∆||∞
< 1 and denoting by D and G the related scaling sets,

where γrob(ω) is the global minimum of the LMI problem

Minimize γ over D ∈ D, G ∈ G such that D > 0 and

γrob = max γrob ω()
ω

P jω()H D 0
0 I 

 
 

P jω() j G 0
0 0 

 
 

P jω() P jω()H G 0
0 0 

 
 

–
 
 
  D 0

0 γ2I 
 
 

<+

3 Robustness Analysis

3-24

The Popov Criterion
The Popov criterion gives a sufficient condition for the robust stability of the
interconnection of Figure 3-5 where G(s) is a given LTI system and φ = diag (φ1,
. . . , φn) is a sector-bounded BIBO-stable uncertainty satisfying φ(0) = 0. The
operator φ can be nonlinear and/or time-varying which makes the Popov
criterion more general than the µ stability test. For purely linear time-
invariant uncertainty, however, the µ test is generally less conservative.

Figure 3-5: Popov criterion

A state-space representation of this interconnection is

or equivalently in block-partitioned form:

Suppose that φj(.) satisfies the sector bound

(3-13)

(this includes norm bounds as the special case βj = –αj). To establish robust
stability, the Popov criterion seeks a Lyapunov function of the form

G(s)

w q

u y

φ ·()





x· Ax Bw+=
q Cx Dw+=
w φ q()=





 x· Ax ΣjBjwj+=
qj Cjx Djw ∈ R

rj()+=
w φ qj()=

T∀ 0 wj α jqj–()T

0

T

∫ wj βjqj–()dt 0≤,>

The Popov Criterion

3-25

(3-14)

where σj > 0 and νj are scalars and νj = 0 unless Dj = 0 and φj (.) is a scalar
memoryless nonlinearity (i.e., wj(t) depends only on qj(t); in such case, the

sector constraint (3-13) reduces to .

Letting

Kα := diag(αj Irj
), Kβ := diag(βj Irj

)

S := diag(σj Irj
), N := diag(νj Irj

)

and assuming nominal stability, the conditions V(x, t) > 0 and dV/dt < 0 are
equivalent to the following LMI feasibility problem (with the notation
H(M) := M + MT):

Find P = PT and structured matrices S, N such that S > 0 and

(3-15)

When φ(.) is nonlinear time-varying, (3-15) reduces to the scaled small-gain
criterion. The Popov stability test is performed by the command

[t,P,S,N] = popov(G,phi)

where G is the SYSTEM matrix representation of G(s) and phi is the uncertainty
description specified with ublock and udiag. The function popov returns the
output t of the LMI solver feasp. Hence the interconnection is robust stable if
t < 0. In this case, P, S, and N are solutions of the LMI problem (3-15).

Real Parameter Uncertainty
A sharper version of the Popov criterion can be used to analyze systems with
uncertain real parameters. Assume that Dj = 0 and

wj = φj(qj) := δjqj

where δj is an uncertain real parameter ranging in [αj, βj]. Then a more general
form for the corresponding term in the Lyapunov function (3-14) is

V x t,() 1
2
---xTPx νj

j
∑ φj z() zd

0

qj

∫ σj
j
∑ wj α jqj–()T wj βjqj–() τd

0

t

∫–+=

α jqj
2 qjφj qj() βjqj

2)≤ ≤

H I
0 

 
 

P A B,() 0
I 

 
 

N CA CB,()
CTKα

DTKα 1– 
 
 
 
–+







S
CTKβ

DTKβ 1– 
 
 
 

T







0<

3 Robustness Analysis

3-26

(3-16)

where Sj and Nj are rj × rj matrices subject to , and Nj = 0
when the parameter δj is time varying. As a result, the variables S and N in the
Popov condition (3-15) assume a block-diagonal structure where σjIrj and νjIrj
are replaced by the full blocks Sj and Nj, respectively.

When all φj(.) are real time-invariant parameters, the Lyapunov function (3-14)
becomes

The first term can be interpreted as a parameter-dependent quadratic function
of the state. This is analogous to the notion of parameter-dependent Lyapunov
function discussed in “Parameter-Dependent Lyapunov Functions” on
page 3-12, even though the Popov condition (3-15) is not equivalent to the
robust stability conditions discussed in that section..

Finally, it is possible to obtain an even sharper test by applying the Popov
criterion to the equivalent interconnection

(3-17)

The Lyapunov function now becomes

with Sj, Nj subject to . The resulting test is discussed
in [5, 6] and often performs as well as the real stability test while eliminating
the hazards of a frequency sweep (see “Caution” on page 3-21).

To use this refined test, invoke popov as follows.

φ z()TNj zd
0

qj

∫ wj α jqj–()TSj wj βjqj–() τd
0

t

∫ =–

δjx
TCTNjCx δj α j–() δj βj–() qj

T

0

t

∫ Sj Sj
T+()qj τd–

Sj Sj
T O N, Nj

T=>+

V x t,() 1
2
---xT P δj

j
∑ CTNjC+

 
 
 

x δj α j–() δj βj–()
j
∑– qj

T

0

t

∫ Sj Sj
T+()qj τd=





 x· = Ax ΣjBjCjw̃j+()
q̃j = x

w̃j δjq̃j=

V x t,() 1
2
---xT P δj

j
∑ Nj+

 
 
 

x δj α j–() δj βj–()
j
∑– qj

T

0

t

∫ Sj Sj
T+()qj τd=

Sj Sj
T O and Nj Nj

T=>+

The Popov Criterion

3-27

[t,P,S,N] = popov(G,phi,1)

The third input 1 signals popov to perform the loop transformation (3-17)
before solving the feasibility problem (3-15).

3 Robustness Analysis

3-28

Example
The use of these various robustness tests is illustrated on the benchmark
problem proposed in [14]. The physical system is sketched in Figure 3-6.

Figure 3-6: Benchmark problem

The goal is to design an output-feedback law u = K(s)x2 that adequately rejects
the disturbances w1, w2 and guarantees stability for values of the stiffness
parameter k ranging in [0.5, 2.0]. For m1 = m2 = 1, a state-space description of
this system is

(3-18)

A solution of this problem proposed in [15] is the fourth-order controller
u = CK(sI – AK)–1 BKx2 where

u

w1

w2k

x1 x2

m1 m2

x·1
x·2
x··1
x··2

0 0 1 0
0 0 0 1
k– k 0 0
k k– 0 0

x1

x2

x·1
x·2

0
0
1
0

u w1+()

0
0
0
1

w2+ +=

AK

0 0.7195– 1 0
0 2.9732– 0 1

2.5133– 4.8548 1.7287– 0.9616–
1.0063 5.4097– 0.0081– 0.0304

BK

0.720
2.973
3.37–

4.419

=,=

CK 1.506– 0.494 1.738– 0.932–=

Example

3-29

The concern here is to assess, for this particular controller, the closed-loop
stability margin with respect to the uncertain real parameter k. Since the plant
equations (3-18) depend affinely on k, we can define the uncertain physical
system as an affine parameter-dependent system G with psys.

A0=[0 0 1 0;0 0 0 1;0 0 0 0;0 0 0 0];
B0=[0;0;1;0]; C0=[0 1 0 0]; D0=0;
S0=ltisys(A0,B0,C0,D0); % system for k=0

A1=[0 0 0 0;0 0 0 0; 1 1 0 0;1 1 0 0];
B1=zeros(4,1); C1=zeros(1,4); D1=0;
S1=ltisys(A1,B1,C1,D1,0); % k component

pv=pvec('box',[0.5 2]) % range of values of k
G=psys(pv,[S0,S1])

After entering the controller data as a SYSTEM matrix K, close the loop with
slft.

Cl = slft(G,K)

The result Cl is a parameter-dependent description of the closed-loop system.

To estimate the robust stability margin with respect to k, we can now apply to
Cl the various tests described in this chapter:

• Quadratic stability: to determine the portion of the interval [0.5, 2] where
quadratic stability holds, type
marg = quadstab(Cl,[1 0 0])

marg =

4.1919e 01

The value marg = 0.419 means 41% of [0.5, 2] (with respect to the center 1.25).
That is, quadratic stability in the interval [0.943, 1.557]. Since quadratic
stability assumes arbitrarily fast time variations of the parameter k, we can
expect this answer to be conservative when k is time invariant.

• Parameter-dependent Lyapunov functions: when k does not vary in
time, a less conservative estimate is provided by pdlstab. To test stability for
k ∈ [0.5, 2], type

3 Robustness Analysis

3-30

t = pdlstab(Cl)

t =

2.1721e 01

Since t < 0, the closed loop is robustly stable for this range of values of k.

Assume now that k slowly varies with a rate of variation bounded by 0.1. To
test if the closed loop remains stable in the face of such slow variations,
redefine the parameter vector and update the description of the closed-loop
system by
pv1 = pvec('box',[0.5 2],[0.1 0.1])
G1 = psys(pv1,[S0,S1])
Cl1 = slft(G1,K)

Then call pdlstab as earlier.
t = pdlstab(Cl1)

t =

2.0089e 02

Since t is again negative, this level of time variations does not destroy robust
stability.

• µ analysis: to perform µ analysis, first convert the affine
parameter-dependent model Cl to an equivalent linear-fractional
uncertainty model.
[P0,deltak] = aff2lft(Cl)
uinfo(deltak)

Here P0 is the closed loop system for the nominal value k0 = 1.25 of k and the
uncertainty on k is represented as a real scalar block deltak. Note that k
must be assumed time invariant in the µ framework.

To get the relative parameter margin, type

block dims type real/cplx full/scal bounds

1 1x1 LTI r s norm <=
0.75

Example

3-31

[pmarg,peakf] = mustab(P0,deltak)

pmarg =

1.0670e+00

peakf =

6.3959e 01

The value pmarg = 1.064 means stability as long as the deviation |δk| from
k0 = 1.25 does not exceed 0.75 × 1.067 ≈ 0.80. That is, as long as k remains in
the interval [0.45, 2.05]. This estimate is sharp since the closed loop becomes
unstable for δk = –0.81, that is, for k = k0 – 0.81 = 0.44:
spol(slft(P0, 0.81))

ans =

1.0160e+00 + 1.9208e+00i
1.0160e+00 1.9208e+00i
1.0512e+00 + 9.7820e 01i
1.0512e+00 9.7820e 01i
6.2324e 03 + 6.3884e 01i
6.2324e 03 6.3884e 01i
2.7484e 01 + 1.9756e 01i
2.7484e 01 1.9756e 01i

• Popov criterion: finally, we can apply the Popov criterion to the
linear-fractional model returned by aff2lft
[t,P,D,N] = popov(P0,deltak)

t =

1.3767e 02

This test is also successful since t < 0. Note that the Popov criterion also
proves stability for k = k0 + δk(.) where δk(.) is any memoryless nonlinearity
with gain less than 0.75.

3 Robustness Analysis

3-32

References
[1] Barmish, B.R., “Stabilization of Uncertain Systems via Linear Control,”
IEEE Trans. Aut. Contr., AC–28 (1983), pp. 848–850.

[2] Boyd, S., and Q. Yang, “Structured and Simultaneous Lyapunov Functions
for System Stability Problems,” Int. J. Contr., 49 (1989), pp. 2215–2240.

[3] Doyle, J.C., “Analysis of Feedback Systems with Structured Uncertainties,”
IEE Proc., vol. 129, pt. D (1982), pp. 242–250.

[4] Fan, M.K.H., A.L. Tits, and J.C. Doyle,“Robustness in the Presence of Mixed
Parametric Uncertainty and Unmodeled Dynamics,” IEEE Trans. Aut. Contr.,
36 (1991), pp. 25–38.

[5] Feron, E, P. Apkarian, and P. Gahinet, “S-Procedure for the Analysis of
Control Systems with Parametric Uncertainties via Parameter-Dependent
Lyapunov Functions,” Third SIAM Conf. on Contr. and its Applic., St. Louis,
Missouri, 1995.

[6] Gahinet, P., P. Apkarian, and M. Chilali, “Affine Parameter-Dependent
Lyapunov Functions for Real Parametric Uncertainty,” Proc. Conf. Dec. Contr.,
1994, pp. 2026–2031.

[7] Haddad, W.M. and D.S. Berstein,“Parameter-Dependent Lyapunov
Functions, Constant Real Parameter Uncertainty, and the Popov Criterion in
Robust Analysis and Synthesis: Part 1 and 2,” Proc. Conf. Dec. Contr., 1991, pp.
2274–2279 and 2632–2633.

[8] Horisberger, H.P., and P.R. Belanger, “Regulators for Linear Time-Varying
Plants with Uncertain Parameters,” IEEE Trans. Aut. Contr., AC–21 (1976),
pp. 705–708.

[9] How, J.P., and S.R. Hall, “Connection between the Popov Stability Criterion
and Bounds for Real Parameter Uncertainty,” Proc. Amer. Contr. Conf., 1993,
pp. 1084–1089.

[10] Packard, A., and J.C. Doyle, “The Complex Structured Singular Value,”
Automatica, 29 (1994), pp. 71–109.

[11] Popov, V.M., “Absolute Stability of Nonlinear Systems of Automatic
Control,” Automation and Remote Control, 22 (1962), pp. 857–875.

[12] Safonov, M.G., “L1 Optimal Sensitivity vs. Stability Margin,” Proc. Conf.
Dec. Contr., 1983.

References

3-33

[13] Stein, G. and J.C. Doyle, “Beyond Singular Values and Loop Shapes,” J.
Guidance, 14 (1991), pp. 5–16.

[14] Wie, B., and D.S. Berstein, “Benchmark Problem for Robust Control
Design,” J. Guidance and Contr., 15 (1992), pp. 1057–1059.

[15] Wie, B., Q. Liu, and K.-W. Byun, “Robust H∞ Control Synthesis Method
and Its Application to Benchmark Problems,” J. Guidance and Contr., 15
(1992), pp 1140–1148.

[16] Young, P. M., M. P. Newlin, and J. C. Doyle, “Let's Get Real,” in Robust
Control Theory, Springer Verlag, 1994, pp. 143–174.

[17] Zames, G., “On the Input-Output Stability of Time-Varying Nonlinear
Feedback Systems, Part I and II,” IEEE Trans. Aut. Contr., AC–11 (1966), pp.
228–238 and 465–476.

3 Robustness Analysis

3-34

4

State-Feedback Synthesis
Multi-Objective State-Feedback 4-3

Pole Placement in LMI Regions 4-5

LMI Formulation 4-7
Extension to the Multi-Model Case 4-9

The Function msfsyn 4-11

Design Example 4-13

References . .4-18

4 State-Feedback Synthesis

4-2

In many control problems, the design specifications are a mix of performance
and robustness objectives expressed both in the time and frequency domains.
These various objectives are rarely encompassed by a single synthesis
criterion. While some tracking and robustness are best captured by an H∞
criterion, noise insensitivity is more naturally expressed in LQG terms, and
transient behaviors are more easily tuned in terms of l1 norm or closed-loop
damping.

The LMI framework is particularly well suited to multi-objective
state-feedback synthesis. As an illustration, the LMI Control Toolbox offers
tools for state-feedback design with a combination of the following objectives:

• H∞ performance (for tracking, disturbance rejection, or robustness aspects)

• H2 performance (for LQG aspects)

• Robust pole placement specifications (to ensure fast and well-damped
transient responses, reasonable feedback gain, etc.)

These tools apply to multi-model problems, i.e., when the objectives are to be
robustly achieved over a polytopic set of plant models.

Multi-Objective State-Feedback

4-3

Multi-Objective State-Feedback
The function msfsyn performs multi-model H2/H∞ state-feedback synthesis
with pole placement constraints. For simplicity, we describe the underlying
problem in the case of a single LTI model. The control structure is depicted by
Figure 4-1. The plant P(s) is a given LTI system and we assume full
measurement of its state vector x.

Figure 4-1: State-feedback control

Denoting by T∞(s) and T2(s) the closed-loop transfer functions from w to z∞ and
z2, respectively, our goal is to design a state-feedback law u = Kx that

• Maintains the RMS gain (H∞ norm) of T∞ below some prescribed value γ0 > 0

• Maintains the H2 norm of T2 (LQG cost) below some prescribed value ν0 > 0

• Minimizes an H2/H∞ trade-off criterion of the form

• Places the closed-loop poles in a prescribed region D of the open left-half
plane.

This abstract formulation encompasses many practical situations. For
instance, consider a regulation problem with disturbance d and white
measurement noise n, and let e denote the regulation error. Setting

z2P(s)

K

w

u x

z∞

α T∞ ∞
2 β T2 2

2+

w d
n 

 
 

, z∞ e, z2
x
u 

 
 

,= = =

4 State-Feedback Synthesis

4-4

the mixed H2/H∞ criterion takes into account both the disturbance rejection
aspects (RMS gain from d to e) and the LQG aspects (H2 norm from n to z2). In
addition, the closed-loop poles can be forced into some sector of the stable
half-plane to obtain well-damped transient responses.

Pole Placement in LMI Regions

4-5

Pole Placement in LMI Regions
The concept of LMI region [3] is useful to formulate pole placement objectives
in LMI terms. LMI regions are convex subsets D of the complex plane
characterized by

where M and L = LT are fixed real matrices. The matrix-valued function

is called the characteristic function of the region D. The class of LMI regions is
fairly general since its closure is the set of convex regions symmetric with
respect to the real axis. More practically, LMI regions include relevant regions
such as sectors, disks, conics, strips, etc., as well as any intersection of the
above.

Another strength of LMI regions is the availability of a “Lyapunov theorem” for
such regions. Specifically, if denote the

entries of the matrices L and M, a matrix A has all its eigenvalues in D if and
only if there exists a positive definite matrix P such that [3]

with the notation

Note that this condition is an LMI in P and that the classical Lyapunov
theorem corresponds to the special case

Next we list a few examples of useful LMI regions along with their
characteristic function fD:

D z C∈ : L Mz MTz 0<+ +{ }=

fD z(): L Mz MTz+ +=

λ ij{ } 1 i≤ ,j m≤ and µij{ } 1 i≤ ,j m≤

λ ijP µijAP µjiPAT+ +[] 1 i≤ ,j m≤ 0<

Sij[] 1 i≤ ,j m≤ :=
S11 … Si1

Sm1 … Smm 
 
 
 
 

… …...

fD z() z z+=

4 State-Feedback Synthesis

4-6

• Disk with center at (–q, 0) and radius r:

• Conic sector centered at the origin and with inner angle θ:

The damping ratio of poles lying in this sector is at least cos .

• Vertical strip h1 < x < h2:

r

–q

fD z() r– z q+
z q+ r– 

 
 

=

θ

fD z()
θ
2
--- z z+()sin cos– θ

2
--- z z–()

cosθ
2
--- z z–() θ

2
--- z z–()sin 

 
 
 

=

θ
2

h1 h2

fD z()
2h1 z z+()– 0

0 z z+() 2h2– 
 
 
 

=

LMI Formulation

4-7

LMI Formulation
Given a state-space realization

of the plant P, the closed-loop system is given in state-space form by

Taken separately, our three design objectives have the following LMI
formulation:

• H∞ performance: the closed-loop RMS gain from w to z∞ does not exceed γ
if and only if there exists a symmetric matrix X∞ such that [5]

• H2 performance: the closed-loop H2 norm of T2 does not exceed ν if there
exist two symmetric matrices X2 and Q such that





 x· = Ax B1w B2u+ +

z∞ = C1x D11w D12u+ +
z2 = C2x D22u+





 x· = A B2K+()x B1w+

z∞ = C1 D12K+()x D11w+
z2 = C2 D22K+()x

A B2K+()X∞ X∞ A B2K+()T+ B1 X∞ C1 D12K+()T

B1
T I– D11

T

C1 D12K+()X∞ D11 γ2I– 
 
 
 
 
 
 

0<

X∞ 0>

4 State-Feedback Synthesis

4-8

(see “LQG performance” on page 1-7 for details)

• Pole placement: the closed-loop poles lie in the LMI region

where

if and only if there exists a symmetric matrix Xpol satisfying

These three sets of conditions add up to a nonconvex optimization problem with
variables Q, K, X∞, X2 and Xpol. For tractability in the LMI framework, we seek
a single Lyapunov matrix

(4-1)

that enforces all three objectives. With the change of variable Y := KX, this
leads to the following suboptimal LMI formulation of our multi-objective
state-feedback synthesis problem [4, 3, 2]:

A B2K+()X2 X2 A B2K+()T+ B1

B1
T I– 

 
 
 
 

0<

Q C2 D22K+()X2

X2 C2 D22K+()T X2 
 
 
 

0>

Trace Q() ν2<

D z C∈ : L Mz MTz 0<+ +{ }=

L LT λ ij{ }= = 1 i≤ ,j m≤ M µij{ }= 1 i≤ ,j m≤

λ ijXpol µij A B2K+()Xpol µijXpol µjiXpol A B2K+()T+ + +[] 1 i≤ ,j m≤ 0<

Xpol 0>

X := X∞ X2 Xpol= =

LMI Formulation

4-9

Minimize α γ2 + β Trace(Q) over Y, X, Q, and γ2 satisfying

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)

Denoting the optimal solution by (X*, Y*, Q*, γ*), the corresponding
state-feedback gain is given by

K* = Y*(X*)–1

and this gain guarantees the worst-case performances:

Note that K* does not yield the globally optimal trade-off in general due to the
conservatism of Assumption (4-1).

Extension to the Multi-Model Case
The LMI approach outlined above extends to uncertain linear time-varying
plants

AX XAT B+ 2Y+ YTB2
T+ B1 XC1

T YTD12
T+

B1
T I– D11

T

C1X D12Y+ D11 γ2I– 
 
 
 
 
 
 

0<

Q C2X D22Y+

XC2
T YTD22

T+ X 
 
 
 

0>

λ ij µij AX B2Y+()Xpol µji XAT YTB2
T+()+ +[] 1 i≤ ,j m≤ 0<

Trace Q() ν0
2<

γ2 γ0
2<

T∞ ∞ γ* T2 2 Trace Q*()≤,≤

4 State-Feedback Synthesis

4-10

with state-space matrices varying in a polytope:

Such polytopic models are useful to represent plants with uncertain and/or
time-varying parameters (see “Polytopic Models” on page 2-14 and the design
example below). Seeking a single quadratic Lyapunov function that enforces
the design objectives for all plants in the polytope leads to the following
multi-model counterpart of the LMI conditions (4-2)–(4-6):

Minimize α γ2 + β Trace(Q) over Y, X, Q, and γ2 subject to

P:





x· = A t()x B1 t()w B2 t()u+ +

z∞ = C1 t()x D11 t()w D12 t()u+ +
z2 = C2 t()x D22 t()u+

A t() B1 t() B2 t()

C1 t() D11 t() D12 t()

C2 t() 0 D22 t() 
 
 
 
 
 

Co

Ak B1k B2k

C1k D11k D12k

C2k 0 D22k 
 
 
 
 
 

 : k 1 …
·

,,= K

 
 
 
 
 
 
 

∈

AkX XAk
T B+ 2kY+ YTB2k

T+ B1k XC1k
T YTD12k

T+

B1k
T I– D11k

T

C1kX D12kY+ D11k γ2I– 
 
 
 
 
 
 

0<

Q C2kX D22kY+

XC2k
T YTD22

T
k+ X 

 
 
 

0>

γ2 γ0
2<

Trace Q() ν0
2<

λ ij µij AkX B2kY+() µji XAk
T YTB2k

T+()+ +[] 1 i≤ ,j m≤ 0<

The Function msfsyn

4-11

The Function msfsyn
The function msfsyn implements the LMI approach to multi-model H2/H∞
synthesis outlined above. The pole placement objectives are expressed in terms
of LMI regions

characterized by the two matrices L and M. LMI regions are specified
interactively with the function lmireg.

Denoting the closed-loop transfer functions from w to z∞ and z2 by T∞ and T2,
msfsyn computes a suboptimal solution to the mixed problem:

Minimize subject to

• ||T∞||∞ < γ0

• ||T2 ||2 < ν0

• The closed-loop poles lie in D.

The syntax is

[gopt,h2opt,K,Pcl] = msfsyn(P,r,obj,region)

where

• P is the plant SYSTEM matrix in the single-model case, or the
polytopic/parameter-dependent description of the plant in the multi-model
case (see psys for details). The dimensions of the D22 matrix are specified by
r

• obj = [γ0, ν0, α, β] is a four-entry vector specifying the H2/H∞ criterion

• region specifies the LMI region to be used for pole placement, the default
being the open left-half plane. Use lmireg to generate the matrix region, or
set it to [L, M] if the characteristic matrices L and M are readily available.

On output, gopt and h2opt are the guaranteed H∞ and H2 performances, K is
the state-feedback gain, and Pcl is the closed-loop system in SYSTEM matrix or
polytopic model format.

D z C∈ : L Mz Mz 0<+ +{ }=

α T∞ 0
2 β T2 2

2+

4 State-Feedback Synthesis

4-12

Several mixed or unmixed designs can be performed with msfsyn. The various
possibilities are summarized in the table below.

obj Corresponding Design

[0 0 0 0] pole placement only

[0 0 1 0] H∞-optimal design

[0 0 0 1] H2-optimal design

[g 0 0 1] minimize ||T2||2 subject to ||T∞||∞ < g

[0 h 1 0] minimize ||T∞||∞ subject to ||T2||2 < h

[0 0 a b] minimize a T∞ ∞
2 b T2 2

2+

Design Example

4-13

Design Example
This example is adapted from [1] and covered by the demo sateldem. The
system is a satellite consisting of two rigid bodies (main body and instrumen-
tation module) joined by a flexible link (the “boom”). The boom is modeled as a
spring with torque constant k and viscous damping f and finite-element
analysis gives the following uncertainty ranges for k and f :

0.09 ð k 0.4
0.0038 ð f 0.04:

The dynamical equations are

where θ1 and θ2 are the yaw angles for the main body and the sensor module,
T is the control torque, and w is a torque disturbance on the main body.

Figure 4-1: Satellite

The control purpose is to minimize the influence of the disturbance w on the
angular position θ2. This goal is expressed through the following objectives:

J1θ··1 f θ· 1 θ· 2–() k θ1 θ2–() T w+=+ +

J2θ··2 f θ· 2 θ· 1–() k θ2 θ1–() 0=+ + 
 
 

θ1

θ2

main body

sensor module

4 State-Feedback Synthesis

4-14

• Obtain a good trade-off between the RMS gain from w to θ2 and the H2 norm
of the transfer function from w to

(LQG cost of control)

• Place the closed-loop poles in the region shown in Figure 4-3 to guarantee
some minimum decay rate and closed-loop damping

Figure 4-2: Pole placement region

• Achieve these objectives for all possible values of the varying parameters k
and f. Since these parameters enter the plant state matrix in an affine
manner, we can model the parameter uncertainty by a polytopic system with
four vertices corresponding to the four combinations of extremal parameter
values (see “From Affine to Polytopic Models” on page 2-20).

θ1

θ2

T 
 
 
 
 

–0.1

Design Example

4-15

To solve this design problem with the LMI Control Toolbox, first specify the
plant as a parameter-dependent system with affine dependence on k and f. A
state-space description is readily derived from the dynamical equations as:

This parameter-dependent model is entered by the commands

a0 = [zeros(2) eye(2); zeros(2,4)]
ak = [zeros(2,4) ; [-1 1;1 -1] zeros(2)]
af = [zeros(2,4) ; zeros(2) [-1 1;1 -1]]
e0 = diag([1 1 J1 J2])

b = [0 0;0 0;1 1;0 0] % b = [b1 b2]
c = [0 1 0 0;1 0 0 0;0 1 0 0;0 0 0 0] % c = [c1;c2]
d = [0 0;0 0;0 0;0 1]

% range of parameter values
pv = pvec('box',[0.09 0.4 ; 0.0038 0.04])

% parameter-dependent plant
P = psys(pv,[ltisys(a0,b,c,d,e0) , ...

ltisys(ak,0*b,0*c,0*d,0) , ...
ltisys(af,0*b,0*c,0*d,0)])

Next, specify the LMI region for pole placement as the intersection of the
half-plane x < –0.1 and of the sector centered at the origin and with inner angle
3π/4. This is done interactively with the function lmireg:

1 0 0 0
0 1 0 0
0 0 J1 0

0 0 0 J2

θ· 1
θ· 2
θ··1
θ··2

0 0 1 0
0 0 0 1
k– k f– f
k k– f f–

θ1

θ2

θ· 1
θ· 2

0
0
0
1

w(T)+ + +=

z∞ θ2, z2

1 0 0 0
0 1 0 0
0 0 0 0

θ1

θ2

θ· 1
θ· 2

0
0
1

T+==

4 State-Feedback Synthesis

4-16

region = lmireg
To assess the trade-off between the H∞ and H2 performances, first compute the
optimal quadratic H∞ performance subject to the pole placement constraint by

gopt = msfsyn(P,[1 1],[0 0 1 0],region)
This yields gopt ≈ 0. For a prescribed H∞ performance g > 0, the best H2
performance h2opt is computed by

[gopt,h2opt,K,Pcl] = msfsyn(P,[1 1],[g 0 0 1],region)
Here obj = [g 0 0 1] asks to optimize the H2 performance subject to
||T∞||∞ < g and the pole placement constraint. Repeating this operation for the
values g ∈ {0.01, 0.1, 0.2, 0.5} yields the Pareto-like trade-off curve shown in
Figure 4-4.

By inspection of this curve, the state-feedback gain K obtained for g = 0.1 yields
the best compromise between the H∞ and H2 objectives. For this choice of K,
Figure 4-5 superimposes the impulse responses from w to θ2 for the four
combinations of extremal values of k and f.

Finally, the closed-loop poles for these four extremal combinations are
displayed in Figure 4-6. Note that they are robustly placed in the prescribed
LMI region.

Figure 4-3: Trade-off between the H∞ and H2 performances

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2.5

3

3.5

4

4.5

5

5.5

6

6.5

H−infinity performance

H
2

pe
rf

or
m

an
ce

Design Example

4-17

Figure 4-4: Impulse responses for the extremal values of k and f

Figure 4-5: Corresponding closed-loop poles

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12
x 10

−3

Time (secs)

A
m

pl
itu

de

Impulse responses w −> x2 for the robust design

−14 −12 −10 −8 −6 −4 −2 0
−10

−8

−6

−4

−2

0

2

4

6

8

10
Closed−loop poles for the four extremal sets of parameter values

4 State-Feedback Synthesis

4-18

References
[1] Biernacki, R.M., H. Hwang, and S.P. Battacharyya, “Robust Stability with
Structured Real Parameter Perturbations,” IEEE Trans. Aut. Contr., AC–32
(1987), pp. 495–506.

[2] Boyd, S., L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory, SIAM books, 1994.

[3] Chilali, M., and P. Gahinet, “H∞ Design with Pole Placement Constraints:
an LMI Approach,” to appear in IEEE Trans. Aut. Contr. Also in Proc. Conf.
Dec. Contr., 1994, pp. 553–558.

[4] Khargonekar, P.P., and M.A. Rotea,“Mixed H2/H∞ Control: A Convex
Optimization Approach,” IEEE Trans. Aut. Contr., 39 (1991), pp. 824-837.

[5] Scherer, C., “H∞ Optimization without Assumptions on Finite or Infinite
Zeros,” SIAM J. Contr. Opt., 30 (1992), pp. 143–166.

5
Synthesis of H∞
Controllers

H∞ Control . 5-3
Riccati- and LMI-Based Approaches 5-7

H∞ Synthesis 5-10
Validation of the Closed-Loop System 5-13

Multi-Objective H∞ Synthesis 5-15
LMI Formulation 5-16
The Function hinfmix 5-20
Loop-Shaping Design with hinfmix 5-20

References . . 5-22

5-21

5 Synthesis of H∞ Controllers

5-2

Disturbance rejection, input/output decoupling, and general robust stability or
performance objectives can all be formulated as gain attenuation problems in
the face of dynamical or parametric uncertainty. H∞ control is the cornerstone
of design techniques for this class of problems.

The LMI Control Toolbox addresses three variants of output-feedback H∞
synthesis:

• Standard H∞ control for continuous-time systems. Both the Riccati-based
and LMI-based solutions of this problem are implemented

• Multi-objective H∞ design (mixed H2/H∞ synthesis with closed-loop pole
placement in LMI regions)

• Discrete-time H∞ control via either Riccati- or LMI-based approaches

Additional facilities for loop-shaping design are described in Chapter 6, “Loop
Shaping.”

H• Control

5-3

H∞ Control
The H∞ norm of a stable transfer function G(s) is its largest input/output
RMS gain, i.e.,

where L2 is the space of signals with finite energy and y(t) is the output of the
system G for a given input u(t). This norm also corresponds to the peak gain of
the frequency response G(jω), that is,

In its abstract “standard” formulation, the H∞ control problem is one of
disturbance rejection. Specifically, it consists of minimizing the closed-loop
RMS gain from w to z in the control loop of Figure 5-1. This can be interpreted
as minimizing the effect of the worst-case disturbance w on the output z.

Figure 5-1: H∞ control

Partitioning the plant P(s) as

G ∞ sup
y L2

u L2

-------------=
u L2∈
u 0≠

G ∞ sup
ω

σmax G jω()()=

K(s)

P(s)

u y

w z

Z s()
Y s() 

 
  P11 s() P12 s()

P21 s() P22 s() 
 
 
 

W s()
U s() 

 
 

,=

5 Synthesis of H∞ Controllers

5-4

the closed-loop transfer function from w to z is given by the linear-fractional
expression

(5-1)

Hence the optimal H∞ control seeks to minimize ||F(P, K)||∞ over all stabilizing
LTI controllers K(s). Alternatively, we can specify some maximum value γ for
the closed-loop RMS gain and ask the following question:

Does there exist a stabilizing controller K(s) that ensures ||F(P, K)||∞ < γ ?

This is known as the suboptimal H∞ control problem, and γ is called the
prescribed H∞ performance.

A number of control problems can be recast in this standard formulation.

Example 5.1. Consider the following disturbance rejection problem relative to
the tracking loop of Figure 5-2:

For disturbances d with spectral density concentrated between 0 and
1 rad/s, maintain the closed-loop RMS gain from d to the output y below 1%.

Since the RMS gain is the largest gain over all square-integrable inputs,
external signals with uneven spectral density must be specified by means of
shaping filters. For instance, a disturbance d with all its energy in the

Figure 5-2: Tracking loop with external disturbance

frequency band [0,1] is described as

where is an arbitrary square-integrable signal and Wlp(s) is a low-pass filter
with cutoff frequency at 1 rad/s. From the closed-loop equation

F P K,() := P11 P12K I P22K–() 1– P21+

r y+

− K G

d

e u +

d s() Wlp s()d̃ s()=

d̃

H• Control

5-5

y = Sd + Tr with S := (I + GK)–1 and T := GKS,

the transfer function from the equalized disturbance to y is SWlp . Hence our
disturbance rejection objective is equivalent to finding a stabilizing controller
K(s) such that

||S Wlp ||∞ < 1.

This RMS gain constraint is readily turned into a standard H∞ problem by
observing that, in conformance with (5-1),

Example 5.2. Decoupling constraints are handled in a similar fashion. For
instance, consider the loop of Figure 5-3 and the problem of decoupling the
action of r1 on y1 from that of r2 on y2 in the control bandwidth ω ð 10 rad/s.

The closed-loop transfer function from to

is T = GK(I + GK)–1. Decoupling is achieved if T(jω) ≈ I in the bandwidth ω ð 10
rad/s, or equivalently if S(jω) = I – T(jω) has a small gain in this bandwidth.
This can be expressed as

d̃

SWlp F P K,() with Ps :=
Wlp s() G– s()

Wlp s() G– s() 
 
 
 

=

r1

r2 
 
 
  y1

y2 
 
 
 

10
s 10+
---------------S s()

∞
ε,<

5 Synthesis of H∞ Controllers

5-6

Figure 5-3: Decoupling problem

which is again of the standard form

Example 5.3. H∞ optimization is also useful for the design of robust controllers
in the face of unstructured uncertainty. Consider the uncertain system

where the uncertainty ∆(.) is an arbitrary BIBO-stable system satisfying the
norm bound ||∆||∞ < 1. From the small gain theorem, the controller u = K(s)y
robustly stabilizes this uncertain system if the nominal closed-loop transfer
function F (P, K) from w to z satisfies

||F (P, K)||∞ < 1.

Finally, a useful application of H∞ synthesis is the loop shaping design
procedure discussed in the next chapter.

r1
y1+

−
K(s) G(s)

u

y2−

+r2

F P K,() ∞ ε< with P s() :=
10

s 10+
---------------I2

10
s 10+
---------------– G s()

I2 G s()– 
 
 
 
 

.

P(s)

w z

u y

∆ ·()

H• Control

5-7

Riccati- and LMI-Based Approaches
Since the continuous- and discrete-time cases are essentially similar, we
review only continuous-time H∞ synthesis. Both the Riccati-based and
LMI-based approaches are implemented in the LMI Control Toolbox. While the
LMI-based approach is computationally more involved for large problems, it
has the merit of eliminating the regularity restrictions attached to the
Riccati-based solution. Since both approaches are state-space methods, the
plant P(s) is given in state-space form by

The Riccati-based approach is applicable to plants P satisfying

(A1) D12 and D21 have full rank,

(A2) P12(s) and P21(s) have no zeros on the jω-axis.

Given γ > 0, it gives necessary and sufficient conditions for the existence of
internally stabilizing controllers K(s) such that

||F (P, K)||∞ < γ

Specifically, the H∞ performance γ is achievable if and only if [2]:

(i) γ > max

x· = Ax B1w B2u+ +
z = C1x D11w D12u+ +

y = C2x D21w D+ 22u+

σmax I D12D12
+–()D11), σmax D11 I(D21

+ D21–())()

5 Synthesis of H∞ Controllers

5-8

(ii) the Riccati equations associated with the Hamiltonian pencils

have stabilizing solutions X∞ and Y∞, respectively

(iii) X∞ and Y∞ further satisfy

X∞ Š 0, Y∞ Š 0, ρ(X∞Y∞) < γ2

Using this characterization, the optimal H∞ performance γopt can be computed
by bisection (the so-called γ-iterations). An H∞ controller with performance
γ ≥ γopt is then given by explicit formulas involving X∞, Y∞, and the plant
state-space matrices. Singular H∞ problems (those violating (A1)–(A2)) require
regularization by small perturbation. A notable exception is the direct
computation of the optimal H∞ performance when D12 or D21 is singular [5].

In comparison, the LMI approach is applicable to any plant and does not
involve γ-iterations. Rather, the H∞ performance is directly optimized by
solving the following LMI problem [4, 6]:

H λε

A 0 0 γ 1– B1 B2

0 AT– C1
T– 0 0

C1 0 I– γ 1– D11 D12

0 γ 1– B1
T γ 1– D11

T I– 0

0 B2
T D12

T 0 0 
 
 
 
 
 
 
 
 
 
 
 

λ I 0
0 0 

 
 

–=–

J λε

AT 0 0 γ 1– C1
T C2

T

0 A– B1– 0 0

B1
T 0 I– γ 1– D11

T D21
T

0 γ 1– C1 γ 1– D11 I– 0

0 C2 D21 0 0 
 
 
 
 
 
 
 
 
 
 

λ I 0
0 0 

 
 

–=–

H• Control

5-9

Minimize γ over R = RT and S = ST such that

(5-2)

(5-3)

(5-4)

where N12 and N21 denote bases of the null spaces of and (C2, D21),
respectively.

This problem falls within the scope of the LMI solver mincx. Note that the LMI
constraints (5-2)–(5-3) amount to the inequality counterpart of the H∞ Riccati
equations, R–1 and S–1 being solutions of these inequalities. Again, explicit
formulas are available to derive H∞ controllers from any solution (R, S, γ) of
(5-2)–(5-4) [3].

N12 0

0 I 
 
 

T AR RAT+ RC1
T B1

C1R γI– D11

B1
T D11

T γI– 
 
 
 
 
 
 

N12 0

0 I 
 
 

0<

N21 0

0 I 
 
 

T ATS SA+ SB1 C1
T

B1
TS γI– D11

T

C1 D11 γI– 
 
 
 
 
 
 

N21 0

0 I 
 
 

0<

R I
I S 

 
 

0≥

B2
T D12

T,()

5 Synthesis of H∞ Controllers

5-10

H∞ Synthesis
The LMI Control Toolbox supports continuous- and discrete-time H∞ synthesis
using either Riccati- or LMI-based approaches. Transparency and numerical
reliability were primary concerns in the development of the related tools.
Original features of the Riccati-based functions include:

• The use of pencil-based Riccati solvers for highly accurate computation of
Riccati solutions (see care, ricpen, and their discrete-time counterparts)

• Direct computation of the optimal H∞ performance when D12 and D21 are
rank-deficient (without using regularization) [5]

• Automatic regularization of singular problems for the controller
computation.

In addition, reduced-order controllers are computed whenever the matrices I –
γ–2X∞Y∞ or I – RS are nearly rank-deficient. The functions for standard H∞
synthesis are listed in Table 5-1.

To illustrate the use of hinfric and hinflmi, consider the simple first-order
plant P(s) with state-space equations

This plant is specified as a SYSTEM matrix by

a=0; b1=1; b2=2; c1=1; d11=0; d12=0; c2= 1; d21=1; d22=0;
P=ltisys(a,[b1 b2],[c1;c2],[d11 d12;d21 d22])

Note that the plant P(s) is “singular” since D12 = 0.

Table 5-1: Functions for H∞ synthesis

H∞ synthesis Riccati-based LMI-based

Continuous-time hinfric hinflmi

Discrete-time dhinfric dhinflmi





 x· w 2u+=

z x=
y x– w+=

H• Synthesis

5-11

To determine the optimal H∞ performance over stabilizing control laws
u = K(s)y, type

gopt = hinfric(P,[1 1])

where the second argument [1 1] specifies the numbers of measurements and
controls (lengths of the vectors y and u). The γ-iterations performed by hinfric
are displayed on the screen as follows:

Gamma-Iteration:

Best closed-loop gain (GAMMA_OPT): 1.008789

The optimal H∞ performance for P(s) is therefore approximately 1. For each
tested value of γ, hinfric gives a feasible/infeasible diagnosis as well as the
cause for infeasibility when applicable.

Alternatively, you can use the LMI-based function hinflmi with the same
syntax:

gopt = hinflmi(P,[1 1])

This function optimizes the H∞ performance using mincx:

Gamma Diagnosis

10.0000 : feasible

1.0000 : infeasible (Y is not positive semi-definite)

5.5000 : feasible

3.2500 : feasible

2.1250 : feasible

1.5625 : feasible

1.2812 : feasible

1.1406 : feasible

1.0703 : feasible

1.0352 : feasible

1.0176 : feasible

1.0088 : feasible

5 Synthesis of H∞ Controllers

5-12

Minimization of gamma:

Solver for linear objective minimization under LMI constraints
Iterations : Best objective value so far

Result:feasible solution of required accuracy
best objective value: 1.002517
guaranteed relative accuracy: 9.11e 03
f-radius saturation: 0.018% of R = 1.00e+08

The value displayed in the second column is the current best estimate of γopt .
The optimal value 1.0025 approximately matches the value found by hinfric.

When a second output argument is provided, these two functions also return
an optimal H∞ controller K(s):

[gopt,K] = hinfric(P,[1 1])

1 2.196542

*** new lower bound: 0.571370

2 1.381964

3 1.381964

4 1.094665

5 1.052469

6 1.008499

7 1.008499

8 1.008499

*** new lower bound: 0.656673

9 1.002517

*** new lower bound: 0.878172

10 1.002517

*** new lower bound: 0.982223

11 1.002517

*** new lower bound: 0.993382

H• Synthesis

5-13

The output K is the SYSTEM matrix of K(s). To compute a suboptimal H∞
controller with guaranteed performance γ < 10, type

[g,K] = hinfric(P,[1 1],10,10)

In this case only the value γ = 10 is tested. In the LMI approach, the same
problem is solved by the command

[g,K] = hinflmi(P,[1 1],10)

Finally, the syntax

[g,K,x1,x2,y1,y2] = hinfric(P,[1,1],10,10)

also returns the stabilizing solutions X∞ = x2/x1 and Y∞ = y2/y1 of the H∞
Riccati equations for γ = 10. Similarly,

[g,K,x1,x2,y1,y2] = hinflmi(P,[1,1],10)

returns solutions X = x2/x1 and Y = y2/y1 of the H∞ Riccati inequalities.
Equivalently, R = x1 and S = y1 are solutions of the characteristic LMIs
(5-2)-(5-4) since x2 and y2 are always set to g × I. Further options and control
parameters are discussed in the “Command Reference” chapter.

Finally, the counterpart of these functions for discrete-time H∞ synthesis are
called dhinfric, dhinflmi, and dnorminf and follow the exact same syntax.

Validation of the Closed-Loop System
Given the H∞ controller K computed by hinfric or hinflmi, the closed-loop
mapping represented in Figure 5-4 is formed with the function slft:

Figure 5-4: Closed-loop system

P(s)

u y

w z

K(s)

5 Synthesis of H∞ Controllers

5-14

Closed-loop stability is then checked by inspecting the closed-loop poles with
spol

spol(clsys)

while the closed-loop RMS gain from w to z is computed by

norminf(clsys)

You can also plot the time- and frequency-domain responses of the closed- loop
clsys with splot.

Finally, hinfpar extracts the state-space matrices A, B1, . . . from the plant
SYSTEM matrix P:

[a,b1,b2,c1,c2,d11,d12,d21,d22] = hinfpar(P,r)

Set the second argument r to [p2 m2] if D22 ∈ Rp2×m2.

Multi-Objective H• Synthesis

5-15

Multi-Objective H∞ Synthesis
In many real-world applications, standard H∞ synthesis cannot adequately
capture all design specifications. For instance, noise attenuation or regulation
against random disturbances are more naturally expressed in LQG terms.
Similarly, pure H∞ synthesis only enforces closed-loop stability and does not
allow for direct placement of the closed-loop poles in more specific regions of the
left-half plane. Since the pole location is related to the time response and
transient behavior of the feedback system, it is often desirable to impose
additional damping and clustering constraints on the closed-loop dynamics.
This makes multi-objective synthesis highly desirable in practice, and LMI
theory offers powerful tools to attack such problems.

Mixed H2/H∞ synthesis with regional pole placement is one example of
multi-objective design addressed by the LMI Control Toolbox. The control
problem is sketched in Figure 5-5. The output channel z∞ is associated with the
H∞ performance while the channel z2 is associated with the LQG aspects (H2
performance).

Denoting by T∞(s) and T2(s) the closed-loop transfer functions from w to z∞ and
z2, respectively, we consider the following multi-objective synthesis problem:

Figure 5-5: Multi-objective H∞ synthesis

Design an output-feedback controller u = K(s)y that

• Maintains the H∞ norm of T∞(s) (RMS gain) below some prescribed value
γ0 > 0

• Maintains the H2 norm of T2(s) (LQG cost) below some prescribed value ν0 > 0

P(s)

u y

w
z2

K(s)

z∞

5 Synthesis of H∞ Controllers

5-16

• Minimizes a trade-off criterion of the form

with α Š 0 and β ≥ 0
• Places the closed-loop poles in some prescribed LMI region D

Recall that LMI regions are general convex subregions of the open left-half
plane (see “Pole Placement in LMI Regions” on page 4-5 for details).

LMI Formulation
Let

and

be state-space realizations of the plant P(s) and controller K(s), respectively,
and let

be the corresponding closed-loop state-space equations.

Our three design objectives can be expressed as follows:

α T∞ ∞
2 β T2 2

2+

x· = Ax B1w B2u+ +

z∞ = C∞x D∞1w D∞2u+ +

z2 = C2x D21w D22u+ +

y = Cyx Dy1w+
 
 
 
 
 
 
 
 
 

ζ· AKζ BKy+=

u· CKζ DKy+= 
 
 





x· cl = Aclxcl Bcl w+

z∞ = Ccl1xcl Dcl1 w+
z2 = Ccl2xcl Dcl2 w+

Multi-Objective H• Synthesis

5-17

• H∞ performance: the closed-loop RMS gain from w to z∞ does not exceed γ
if and only if there exists a symmetric matrix X∞ such that

• H2 performance: the H2 norm of the closed-loop transfer function from w to
z2 does not exceed ν if and only if Dcl2 = 0 and there exist two symmetric
matrices χ2 and Q such that

• Pole placement: the closed-loop poles lie in the LMI region

with L = LT = and M = if and only if there exists a

symmetric matrix χpol satisfying

Aclχ∞ χ∞Acl
T+ Bcl X∞Ccl1

T

Bcl
T I– Dcl1

T

Ccl1χ∞ Dcl1 γ– 2I 
 
 
 
 
 
 

0<

χ∞ 0>

Aclχ2 χ2Acl
T+ Bcl

Bcl
T I– 

 
 
 
 

0<

Q Ccl2χ2

χ2Ccl2
T χ2 

 
 
 

0>

Trace Q() ν2<

D z C∈ : L Mz MTz 0<+ +{ }=

λ ij{ } 1 i≤ ,j m≤ µij[] 1 i≤ ,j m≤

5 Synthesis of H∞ Controllers

5-18

For tractability in the LMI framework, we must seek a single Lyapunov
matrix

χ := χ∞ = χ2 = χpol

that enforces all three sets of constraints. Factorizing χ as

and introducing the change of controller variables [3]:

the inequality constraints on χ are readily turned into LMI constraints in the
variables R, S, Q, AK, BK, CK, and DK [8, 1]. This leads to the following
suboptimal LMI formulation of our multi-objective synthesis problem:

λ ijχpol µijAclχpol µjiXpolAcl
T+ +[] 1 i≤ ,j m≤ 0<

χpol 0>

χ χ1χ2
1– , χ1 :=

R I

MT 0 
 
 

, χ2 :=
0 S

I NT 
 
 

=





BK := NBK SB2DK+

CK := CKMT DKCyR+
AK := NAKMT NBKCyR SB2CKMT S A B2DKCy+()R,+ + +

Multi-Objective H• Synthesis

5-19

Minimize α γ2 + β Trace(Q) over R, S, Q, AK, BK, CK, DK, and γ2 satisfying:

Given optimal solutions γ*, Q* of this LMI problem, the closed-loop H∞ and
H2 performances are bounded by

AR RAT B2CK CK
T

B2
T+ + + AK

T A B+ 2DKCy+ B1 B2DKDy1+ H

H ATS SA+ BKCy Cy
TBK

T
+ + SB1 BKDy1+ H

H H I– H

C∞R D∞2CK+ C∞ D∞2DKCy+ D∞1 D∞2DKDy1+ γ– 2I 
 
 
 
 
 
 
 
 

0<

µji
RAT CK

T
B2

T+ AK
T

A B+ 2DKCy()T ATS Cy
TBK

T
+ 

 
 
 
 

1 i≤ ,j m≤

0<

Q C2R D22CK+ C2 D22DKCy+

H R I
H I S 

 
 
 
 

0>

λ ij
R I
I S 

 
 

µij
AR B2CK+ A B+ 2DKCy

AK SA BKCy+ 
 
 
 

+ +

γ2 γ0
2<

TraceQ ν0
2<

D21 D22DKDy1+ 0=

T∞ ∞ γ* T2 2 Trace Q*().≤,≤

5 Synthesis of H∞ Controllers

5-20

The Function hinfmix
The function hinfmix implements the LMI approach to mixed H2/H∞ synthesis
with regional pole placement described above. Its syntax is

[gopt,h2opt,K,R,S] = hinfmix(P,r,obj,region)

where

• P is the SYSTEM matrix of the LTI plant P(s). Note that z2 or z∞ can be empty,
or even both when performing pure pole placement

• r is a three-entry vector listing the lengths of z2, y, and u

• obj = [γ0, ν0, α, β] is a four-entry vector specifying the H2/H∞ constraints and
criterion

• region specifies the LMI region for pole placement, the default being the
open left-half plane. Use lmireg to interactively generate the matrix region.

The outputs gopt and h2opt are the guaranteed H∞ and H2 performances, K is
the controller SYSTEM matrix, and R,S are optimal values of the variables R, S
(see “LMI Formulation” on page 5-16).

You can perform the following mixed and unmixed designs by setting obj
appropriately:

Loop-Shaping Design with hinfmix
In the loop-shaping context (see next chapter), the closed-loop poles also
include the poles of the shaping filters. Since these poles are not affected by the

obj Corresponding Design

[0 0 0 0] pole placement only

[0 0 1 0] H∞-optimal design

[0 0 0 1] H2-optimal design

[g 0 0 1] minimize ||T2||2 subject to ||T∞||∞ < g

[0 h 1 0] minimize ||T∞||∞ subject to ||T2||2 < h

[0 0 a b] minimize

[g h a b] most general problem

a T∞ 0
2 b T2 2

2+

Multi-Objective H• Synthesis

5-21

controller, they impose hard limitations on achievable closed-loop clustering
objectives. In particular, shaping filters with modes close to the imaginary axis
will doom any attempt to push the closed-loop modes into a well-damped
region.

When the purpose of such filters is to enforce integral control action, you can
eliminate this difficulty by moving the integrator from the shaping filter to the
control loop itself. This amounts to reparametrizing the controller as

K(s) = (s)

and performing the synthesis for . An example can be found at the end of
Chapter 6.

1
s
---K̃

K̃

5 Synthesis of H∞ Controllers

5-22

References
[1] Chilali, M., and P. Gahinet, “H∞ Design with Pole Placement Constraints:
an LMI Approach,” to appear in IEEE Trans. Aut. Contr., 1995.

[2] Doyle, J.C., Glover, K., Khargonekar, P., and Francis, B., “State-Space
Solutions to Standard H2 and H∞ Control Problems,” IEEE Trans. Aut. Contr.,
AC–34 (1989), pp. 831–847.

[3] Gahinet, P., “Explicit Controller Formulas for LMI-based H∞ Synthesis,”
submitted to Automatica. Also in Proc. Amer. Contr. Conf., 1994, pp. 2396–
2400.

[4] Gahinet, P., and P. Apkarian, “A Linear Matrix Inequality Approach to H∞
Control,” Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421–448.

[5] Gahinet, P., and A.J. Laub, “Reliable Computation of γopt in Singular H∞
Control,” to appear in SIAM J. Contr. Opt., 1995. Also in Proc. Conf. Dec.
Contr., Lake Buena Vista, Fl., 1994, pp. 1527–1532.

[6] Iwasaki, T., and R.E. Skelton, “All Controllers for the General H∞ Control
Problem: LMI Existence Conditions and State-Space Formulas,” Automatica,
30 (1994), pp. 1307–1317.

[7] Scherer, C., “H∞ Optimization without Assumptions on Finite or Infinite
Zeros,” SIAM J. Contr. Opt., 30 (1992), pp. 143–166.

[8] Scherer, C., “Mixed H2H∞ Control,” to appear in Trends in Control: A
European Perspective, volume of the special contributions to the ECC 1995.

6

Loop Shaping
The Loop-Shaping Methodology 6-2

The Loop-Shaping Methodology 6-3

Design Example 6-5

Specification of the Shaping Filters 6-10
Nonproper Filters and sderiv 6-12

Specification of the Control Structure 6-14

Controller Synthesis and Validation 6-16

Practical Considerations 6-18

Loop Shaping with Regional Pole Placement 6-19

References . . 6-24

6 Loop Shaping

6-2

The Loop-Shaping Methodology
Loop shaping is a popular technique for combining specifications such as
tracking performance, bandwidth, disturbance rejection, roll-off, robustness to
model uncertainty, gain limitation, etc. In this frequency domain method, the
design specifications are reflected as gain constraints on the various
closed-loop transfer functions.

Loop-shaping design involves four steps:

1 Express the design specifications as constraints on the gain response of the
closed-loop transfer functions. This defines ideal gain profiles called loop
shapes.

2 Specify the desired loop shapes graphically with the GUI magshape.

3 Specify the control structure, i.e., how the feedback loop is organized and
which input/output transfer functions are relevant to the loop-shaping
objectives.

4 Perform a standard H∞ synthesis on the resulting control structure to
compute an adequate controller.

This chapter contains a tutorial introduction to the loop-shaping methodology
as well as the available tools for loop-shaping design.

The Loop-Shaping Methodology

6-3

The Loop-Shaping Methodology
Loop shaping is a design procedure to formulate frequency-domain
specifications as H∞ constraints and standard H∞ synthesis problems. In
loop-shaping design, the performance and robustness specifications are first
expressed in terms of loop shapes, i.e., of desired gain responses for the various
closed-loop transfer functions. These shaping objectives are then turned into
uniform H∞ bounds by means of shaping filters, and standard H∞ synthesis
algorithms are applied to compute an adequate controller.

To get a feeling for the loop-shaping methodology, consider the MIMO tracking
loop of Figure 6-1 and suppose that we want to design a controller with integral
behavior. This requirement is naturally expressed in terms of the open-loop
response GK(s), for instance by a gain constraint of the form

(6-1)

Figure 6-1: Simple tracking loop

Here the main closed-loop transfer functions are:

• The sensitivity function S = (I + GK)–1 (the transfer function from r to e)

• The complementary sensitivity function T = GK(I + GK)–1 (the transfer
function from r to y).

To express the open-loop specification (6-1) in terms of these closed-loop
transfer functions, observe that σmin(GK(jω)) ≈ 1/σmax(S(jω)) whenever the
open-loop gain is large, i.e., σmin(GK(jω)) >> 1. Thus, (6-1) is equivalent to
requiring that

(6-2)

σmin GK jω()() 1 ω⁄ for ω 1«>

+

− K G

r
r1
r2 
 =

y
y1
y2 
 =e u

σmax S jω()() < ω for ω 1«

6 Loop Shaping

6-4

To turn this frequency-dependent gain constraint into a normalized H∞ bound,
a useful tool is the notion of shaping filter. Shaping filters are rational filters
whose magnitude plot reflects the desired loop shape. Here for instance, the
shaping filter

W(s) = I2

can be used to normalize the constraint (6-2) to

(6-3)

Indeed, (6-3) is equivalent to

(1 + GK(jω)) for all ω,

which in turn constrains GK to

σmin(GK(jω)) > for ω << 1

Likewise, roll-off requirements on GK(jω) are enforced by H∞ bounds of the
form

||W(s)T(s)||∞ < 1

where W(s) is some appropriate high-pass filter. This reformulation is rooted in
the approximation σmax(GK(jω)) ≈ σmax(T(jω)) valid whenever the open-loop
gain is small, i.e., σmax(GK(jω)) << 1. Such constraints are also associated with
robust stability in the face of plant uncertainty of the form G(s) = (I +∆(s))G0(s)
where ∆ satisfies the frequency-dependent bound

σmax(∆(jω)) < |W(jω)|

Finally, shaping filters are useful to incorporate information about the spectral
density of exogenous signals such as disturbances or measurement noise (see
“Example 5.1” on page 5-4).

1
s

W s()S s() ∞ 1<

1
ω
---- σmin<

1
ω
---- 1 1

ω
----≈–

Design Example

6-5

Design Example
Loop shaping design with the LMI Control Toolbox involves four steps:

1 Express the design specifications in terms of loop shapes and shaping filters.

2 Specify the shaping filters by their magnitude profile. This is done
interactively with the graphical user interface magshape.

3 Specify the control loop structure with the functions sconnect and smult, or
alternatively with Simulink.

4 Solve the resulting H∞ problem with one of the H∞ synthesis functions.

A simple tracking problem is used to illustrate this design procedure. Type
radardem to run the corresponding demo.

Example 6.1. Figure 6-2 shows a simplified mechanical model of a radar
antenna. The stiffness K accounts for flexibilities in the coupling between the
motor and the antenna.

The corresponding nominal transfer function from the motor torque u = T to
the angular velocity y = of the antenna isθ· a

G0 s() 30000

s 0.02+() s2 0.99s 30030+ +()
--

·
.=

6 Loop Shaping

6-6

Our goal is to control through the torque T. The control structure is the
tracking loop of Figure 6-3 where the dynamical uncertainty ∆(s) accounts for
neglected high-frequency dynamics and flexibilities.

Figure 6-2: Second-order model of a radar antenna

The design specifications are as follows:

(i)integral control action, open-loop gain of at least 30 dB at 1 rad/s, and
bandwidth of at least 10 rad/s,

(ii)99% rejection of output disturbances d with spectral density in [0, 1] rad/s,

(iii)robustness against the neglected high-frequency dynamics represented by
the multiplicative model uncertainty ∆(s). A bound on |∆(jω)| determined from
experimental data is given in Figure 6-4.

Figure 6-3: Velocity loop for the radar antenna

θ· a

θa

θm

K

Jm

Ja
antenna

motor

T

r +

−
G0(s)K

d

+ +

G(s)

∆

y θ·=

Design Example

6-7

Figure 6-4: Empirical bound on the uncertainty ∆(s)

We first convert these specifications into RMS gain constraints by means of
shaping filters. While the performance requirement (i) amounts to a lower
bound on the open-loop gain, the disturbance rejection target (ii) imposes
|S(jω)| < 0.01 for ω < 1 rad/s. Both requirements can be combined into a single
constraint

(6-4)

where S = 1 = (1 + G0K) and W1(s) is a low-pass filter whose gain lies above the
shaded region in Figure 6-5. From the small gain theorem [2], robust stability
in the face of the uncertainty ∆(s) is equivalent to

(6-5)

10
1

10
2

10
3

10
4

−30

−20

−10

0

10

20

30

40

Frequency (rad/sec)

M
ag

ni
tu

de
 (

dB
)

Frequency−dependent bound on Delta

W1 s()S s() ∞ 1<

W2 s()T s() ∞ 1<

6 Loop Shaping

6-8

where T = G0K = (1 + G0K) and W2 is a high pass filter whose gain follows the
profile of Figure 6-4.

For tractability in the H∞ framework, (6-4)–(6-5) are replaced by the single
RMS gain constraint

(6-6)

Figure 6-5: Magnitude profile for W1(s)

The transfer function

maps r to the signals , in the control loop of Figure 6-6. Hence our original
design problem is equivalent to the following H∞ synthesis problem:

Find a stabilizing controller K(s) that makes the closed-loop RMS

gain from r to less than one.

W1S

W2T ∞

1.<

dB

rad/s1 10
0

40

30

integral action

disturbance rejection

bandwidth

W1S

W2T 
 
 
 

ẽ ỹ

ẽ
ỹ 

 
 

Design Example

6-9

Figure 6-6: Control structure

To perform this H∞ synthesis, we need to

1 Compute two shaping filters W1(s) and W2(s) whose magnitude responses
match the profiles of Figures 6-5 and 6-4.

2 Specify the control structure of Figure 6-6 and derive the corresponding
plant.

3 Call one of the H∞-optimization functions to compute an adequate controller
K(s) for this plant.

The next three sections discuss these steps.

r y+

− K G0

e
W2

W1

u

e ẽ

ỹ

6 Loop Shaping

6-10

Specification of the Shaping Filters
The graphical user interface magshape allows you to specify shaping filters
directly by their magnitude profile. Typing magshape brings up the worksheet
shown in Figure 6-7. To construct the two shaping filters W1(s) and W2(s)
involved in our problem:

1 Type w1,w2 after the prompt Filter names. This tells magshape to write the
filter SYSTEM matrices in MATLAB variables called w1 and w2.

2 Indicate which filter you are about to specify by clicking on the
corresponding button on the right-hand side of the window.

3 Click on the add point button: you can now specify the desired magnitude
profile with the mouse. This profile is sketched with a few characteristic
points marking the asymptotes and the slope changes. Clicking on the
delete point or move point buttons allows you to delete or move particular
points.

4 Once the desired profile is sketched, specify the filter order and click the fit
data button to interpolate the data points by a rational filter. The gain of the
resulting filter appears in solid on the plot, and its realization is written in
the MATLAB variable of the same name. To make adjustments, you can
move some of the points or change the filter order, and then redo the fitting.

5 If w1 is used as a filter name, magshape checks if a SYSTEM matrix of the same
name already exists in the MATLAB environment. When this is the case, its
magnitude plot is drawn when the w1 button is clicked. This is useful to load
existing filters in the magshape window for modification or comparison.

Figure 6-7 is a snapshot of the magshape window after specifying the profiles of
W1 and W2 and fitting the data points (marked by o in the plot). The solid lines
show the rational fits obtained with an order 3 for W1 and an order 1 for W2.

Specification of the Shaping Filters

6-11

The transfer functions of these filters (as given by ltitf(w1) and ltitf(w2))
are approximately

Note that horizontal asymptotes have been added in both filters. Such
asymptotes prevent humps in S and T near the crossover frequency, thus
reducing the overshoot in the step response.

The function magshape always returns stable and proper filters. If you do not
use magshape to generate your filters, make sure that they are stable with poles
sufficiently far from the imaginary axis. To avoid difficulties in the subsequent
H∞ optimization, their poles should satisfy

W1 s() 0.64s3 10.45s2 149.28s 25.87+ + +

s3 1.20s2 0.83s 8.31 10 4–×+ + +
--=

W2 s() 1003.41s 217.75+

s 3.54 104×+
---------------------------------------=

Re s() 10 3––≤

6 Loop Shaping

6-12

Figure 6-7: The magshape interface

Nonproper Filters and sderiv
To impose a given roll-off rate in the open-loop response, it is often desirable to
use nonproper shaping filters, i.e., filters with a derivative action in the
high-frequency range. Because such filters cannot be represented in SYSTEM
matrix form, magshape approximates them by high-pass filters. A drawback of
this approximation is the introduction of fast parasitic modes in the filter and
augmented plant realizations, which in turn may cause numerical difficulties.

Alternatively, you can use sderiv to include nonproper shaping filters in the
loop-shaping criterion. This function appends a SISO proportional-derivator

Specification of the Shaping Filters

6-13

component ns + d to selected inputs and/or outputs of a given LTI system. For
instance, the interconnection

is specified by

Pd = sderiv(P,[1 2],[0.01 1])

In the calling list, [1 2] lists the input and output channels to be filtered by
ns + d (here 1 for “first input” and 2 for “second output”) and the vector [0.01
1] lists the values of n and d. An error is generated if the resulting system Pd
is not proper.

To specify more complex nonproper filters,

1 Specify the proper “low-frequency” part of the filters with magshape.

2 Augment the plant with these low-pass filters.

3 Add the derivative action of the nonproper filters by applying sderiv to the
augmented plant.

This procedure is illustrated in the design example presented in “Loop Shaping
with Regional Pole Placement” on page 6-19.

0.01s+1

0.01s+1P(s)

6 Loop Shaping

6-14

Specification of the Control Structure
To perform the H∞ synthesis, the control structure of Figure 6-6 must be put in
the standard linear-fractional form of Figure 6-8. In this equivalent
representation, P(s) is the nominal plant determined by G0(s) and the control
structure, and Paug(s) is the augmented plant obtained by appending the
shaping filters W1(s) and W2(s). While the H∞ synthesis is performed on Paug(s),
the physical closed-loop transfer functions from r to e and y are fully specified
by P(s) and K(s) (recall that the shaping filters are not part of the physical
control loop).

Figure 6-8: Equivalent standard H∞ problem

The function sconnect computes the SYSTEM matrices of P(s) or Paug(s) given
G0, W1, W2, and the qualitative description of the control structure (Figure 6-6).
With this function, general control structures are described by listing the input
and output signals and by specifying the input of each dynamical system. In
our problem, the plant P(s) corresponding to the control loop

P(s)

K(s)

W1

W2

e

yr

u y

Paug(s)

ẽ

ỹ

r y
+

− K G0

e

e

Specification of the Control Structure

6-15

is specified by

g0 = ltisys('tf',3e4,conv([1.02],[1.99 3.03e4]))

P = sconnect('r(1)','e=r-G0 ; G0','K:e','G0:K',g0)

The ltisys command returns a state-space realization of G0(s). In the
sconnect command, the input arguments are strings or SYSTEM matrices
specifying the control structure as follows:

• The first argument 'r(1)' lists and dimensions the input signals. Here the
only input is the scalar reference signal r.

• The second argument 'e=r-G0 ; G0' lists the two output signals separated
by a semicolon. Outputs are defined as combinations of the input signals and
the outputs of the dynamical systems. For instance, the first output e is
specified as r minus the output y of G0. For systems with several outputs, the
syntax G0([1,3:4]) would select the first, third, and fourth outputs.

• The third argument 'K:e' names the controller and specifies its inputs. A
two-degrees-of-freedom controller with inputs e and r would be specified by
'K: e;r'.

• The remaining arguments come in pairs and specify, for each known LTI
system in the loop, its input list and its SYSTEM matrix. Here 'G0:K' means
that the input of G0 is the output of K, and g0 is the SYSTEM matrix of G0(s).

You can give arbitrary names to G0 and K in the string definitions, provided
that you use the same names throughout.

Similarly, the augmented plant Paug(s) corresponding to the loop of Figure 6-6
would be specified by

Paug = sconnect('r(1)','W1;W2','K:e = r-G0','G0:K',g0,...
'W1:e',w1,'W2:G0',w2)

where w1 and w2 are the shaping filter SYSTEM matrices returned by magshape.
However, the same result is obtained more directly by appending the shaping
filters to P(s) according to Figure 6-8:

Paug = smult(P,sdiag(w1,w2,1))

Finally, note that sconnect is also useful to compute the SYSTEM matrix of
ordinary system interconnections. In such cases, the third argument should be
set to [] to signal the absence of a controller.

6 Loop Shaping

6-16

Controller Synthesis and Validation
After forming the augmented plant Paug(s) with sconnect, it suffices to call
hinfric or hinflmi to test whether the specifications are feasible and compute
an adequate controller K(s). The loop-shaping design is feasible if and only if
the H∞ performance γ = 1 is achievable for Paug. With our choice of shaping
filters, we obtain

[gopt,k] = hinfric(Paug,[1 1],1,1);

Gamma-Iteration:

Gamma Diagnosis
1.0000 : feasible

Best closed-loop gain (GAMMA_OPT): 1.000000

** regularizing D12 or D21 to compute K(s):
..

Hence the specifications are met by the controller k returned by hinfric. The
last two lines indicate that the H∞ problem associated with Paug is singular and
has been regularized.

To validate the controller k, you can form the open-loop response GK by typing

gk = slft(k,g)

or the closed-loop transfer function from r to e and y by typing

Pcl = slft(P,k)

The Bode diagram of GK and the nominal step response are then plotted by

splot(gk,'bo')
splot(ssub(Pcl,1,2),'st')

Controller Synthesis and Validation

6-17

In the second command, ssub(Pcl,1,2) selects the transfer function from r to
y as a subsystem of Pcl. The step response with the controller computed above
appears in Figure 6-9.

Figure 6-9: Step response of the closed-loop system

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

Time (secs)

A
m

pl
itu

de

6 Loop Shaping

6-18

Practical Considerations
When the model G0(s) of the system has poles on the imaginary axis, loop-
shaping design often leads to “singular” H∞ problems with jω-axis zeros in the
(1,2) or (2,1) blocks of Paug. While immaterial in the LMI approach, jω-axis
zeros bar the direct use of standard Riccati-based synthesis algorithms [1]. The
function hinfric automatically regularizes such problems by perturbing the A
matrix of Paug to A + εI for some positive ε. The message

** jw-axis zeros of P12(s) regularized

or

** jw-axis zeros of P21(s) regularized

is then displayed to inform users of the presence of a singularity.

In doing so, however, hinfric shifts the shaping filter poles as part of the poles
of Paug. Since the shaping filters must remain stable for closed-loop
stabilizability, the amount of regularization ε is thereby limited. When some
shaping filters have modes close to the jω-axis, this is likely to result in poor
closed-loop damping because the central controller computed by hinfric tends,
in such problems, to place closed-loop poles within ε of the jω-axis.

If this difficulty arises, a simple remedy consists of perturbing the poles of the
plant P(s) prior to appending the shaping filters. Provided that all poles of G0(s)
are controllable and observable, this typically tolerates much larger ε, which in
turn results in better closed-loop damping. In our example, this would amount
to forming Paug as follows:

P = sconnect('r(1)','e=r-G0 ; G0','K:e','G0:K',g0)

% pre-regularization
[a,b,c,d] = ltiss(P)
a = a + reg * eye(size(a))
Preg = ltisys(a,b,c,d)

Paug = smult(Preg, sdiag(w1,w2,1))

Note that the regularization level reg should always be chosen positive.
Finally, a careful validation of the resulting controller on the true plant P is
necessary since the H∞ synthesis is performed on a perturbed system.

Loop Shaping with Regional Pole Placement

6-19

Loop Shaping with Regional Pole Placement
A weakness of the design outlined above is the plant inversion performed by
the controller K(s). Specifically, the resonant poles of G(s) are cancelled by
zeros of K(s) as seen when comparing the magnitude plots of G and K (see
Figure 6-10). Since such cancellations leave resonant modes in the closed-loop
system, oscillatory responses may result when these modes are excited, e.g., by
a disturbance at the plant input (see Figure 6-11).

There are several ways of circumventing this difficulty. One possible approach
is to impose some minimum closed-loop damping via an additional regional
pole placement constraint. In addition to avoiding cancellations, this is helpful
to tune the transient responses and prevent fast controller dynamics.
Loop-shaping design with pole placement is addressed by the function hinfmix.
As mentioned in the previous chapter, using hinfmix requires extra care
because of possible interferences between the root clustering objective and the
shaping filter poles. Indeed, recall that the “closed-loop” dynamics of the
loop-shaping criterion always comprise the shaping filter modes.

Figure 6-10: Pole-zero cancellation between G and K

10
−1

10
0

10
1

10
2

10
3

−100

−50

0

50

Frequency (rad/sec)

S
in

gu
la

r
V

al
ue

s
dB

G(s)

K(s)

6 Loop Shaping

6-20

Figure 6-11: Response y for an impulse disturbance at the plant input

For “Example 6.1” on page 6-5, we chose as pole placement region the disk
centered at (–1000, 0) and with radius 1000. By inspection of the shaping filters
used in the previous design, this region clashes with the pseudo-integrator in
W1(s) and the fast pole at s = –3.54 × 104 in W2(s). To alleviate this difficulty,

1 Remove the pseudo-integrator from W1(s) and move it to the main loop as
shown in Figure 6-12. This defines an equivalent loop-shaping problem
where the controller is reparametrized as K(s) = (s)/s and the integrator is
now assignable via output feedback.

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

Time (secs)

A
m

pl
itu

de

K̃

Loop Shaping with Regional Pole Placement

6-21

2 Specify W2(s) as a nonproper filter with derivative action. This is done with
sderiv.

Figure 6-12: Modified control structure

A satisfactory design was obtained for the following values of W1 and W2:

A summary of the commands needed to specify the control structure and solve
the constrained H∞ problem is listed below. Run the demo radardem to perform
this design interactively.

% control structure, sint = integrator
sint = ltisys('tf',1,[1 0])
[P,r] = sconnect('r','Int;G','Kt:Int','G:Kt',G0,'Int:e=r-G',
sint)

% add w1
w1=ltisys('tf',[1 16 200],[1 1.2 0.8])
Paug = smult(P,sdiag(w1,1,1))

% add w2
Paug = sderiv(Paug,2,[1/200 0.9])

% interactively specify the region for pole placement
region = lmireg

% perform the H-infinity synthesis with pole placement
r = [0 1 1]

r y+

−
G0

e

e
1/s

W1

W2

ẽ

ỹK̃

W1 s() s2 16s 200+ +

s2 1.2s 0.8+ +
--------------------------------------, W2 s() 0.9 s

200
----------+==

6 Loop Shaping

6-22

[gopt,xx,Kt] = hinfmix(Paug,r,[0 0 1 0],region)

The full controller is then given by

K = smult(sint,Kt)

The resulting open-loop response and the time response to a step r and an
impulse disturbance at the plant input appear in Figure 6-13 and 6-14. Note
that the new controller no longer inverts the plant and that input disturbances
are now rejected with satisfactory transient behavior.

Figure 6-13: Open-loop response GK(s)

10
−1

10
0

10
1

10
2

10
3

−50

0

50

100

Frequency (rad/sec)

G
ai

n
dB

10
−1

10
0

10
1

10
2

10
3

−360

−720

0

Frequency (rad/sec)

P
ha

se
 d

eg

Loop Shaping with Regional Pole Placement

6-23

Figure 6-14: Transient behaviors with the new controller

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5

0

0.5

1

1.5

Time (secs)

A
m

pl
itu

de

Response to a step r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5

0

0.5

1

1.5

2

Time (secs)

A
m

pl
itu

de

Response to an impulse disturbance on u

6 Loop Shaping

6-24

References
[1] Doyle, J.C., Glover, K., Khargonekar, P., and Francis, B., “State-Space
Solutions to Standard H2 and H∞ Control Problems,” IEEE Trans. Aut. Contr.,
AC–34 (1989), pp. 831–847.

[2] Zames, G., “On the Input-Output Stability of Time-Varying Nonlinear
Feedback Systems, Part I and II,” IEEE Trans. Aut. Contr., AC–11 (1966), pp.
228–238 and 465–476.

7
Robust Gain-Scheduled
Controllers

Gain-Scheduled Control 7-3

Synthesis of Gain-Scheduled H• Controllers 7-7

Simulation of Gain-Scheduled Control Systems 7-9

Design Example 7-10

References . .

7 Robust Gain-Scheduled Controllers

7-2

Gain scheduling is a widely used technique for controlling certain classes of
nonlinear or linear time-varying systems. Rather than seeking a single robust
LTI controller for the entire operating range, gain scheduling consists in
designing an LTI controller for each operating point and in switching controller
when the operating conditions change.

This section presents systematic tools to design gain-scheduled H∞ controllers
for linear parameter-dependent systems. These tools are applicable to
time-varying and/or nonlinear systems whose linearized dynamics are
reasonably well approximated by affine parameter-dependent models.

Gain-Scheduled Control

7-3

Gain-Scheduled Control
The synthesis technique discussed below is applicable to affine
parameter-dependent plants with equations

where

p(t) = (p1(t), . . ., pn(t)),

is a time-varying vector of physical parameters (velocity, angle of attack,
stiffness,. . .) and A(.), B1(.), C1(.), D11(.) are affine functions of p(t). This is a
simple model of systems whose dynamical equations depend on physical
coefficients that vary during operation. When these coefficients undergo large
variations, it is often impossible to achieve high performance over the entire
operating range with a single robust LTI controller. Provided that the
parameter values are measured in real time, it is then desirable to use
controllers that incorporate such measurements to adjust to the current
operating conditions [4]. Such controllers are said to be scheduled by the
parameter measurements. This control strategy typically achieves higher
performance in the face of large variations in operating conditions. Note that
p(t) may include part of the state vector x itself provided that the corresponding
states are accessible to measurement.

If the parameter vector p(t) takes values in a box of Rn with corners
, the plant SYSTEM matrix

P .,p()





 x· = A p()x B1 p()w B2u+ +

z = C1 p()x D11 p()w D12u+ +
y = C2x D21w D22u++

pi pi t() pi≤ ≤

Π i{ } i 1=
N N 2n=()

S p() :=

A p() B1 p() B2

C1 p() D11 p() D12

C2 D21 D22 
 
 
 
 
 

7 Robust Gain-Scheduled Controllers

7-4

ranges in a matrix polytope with vertices S(Πi). Specifically, given any convex
decomposition

of p over the corners of the parameter box, the SYSTEM matrix S(p) is given by

S(p) = α1S(Π1) + . . . + αN S(ΠN)

This suggests seeking parameter-dependent controllers with equations

and having the following vertex property:

Given the convex decomposition of the current

parameter value p(t), the values of AK(p), BK(p), . . . are derived from the
values AK(Πi), BK(Πi), . . . at the corners of the parameter box by

In other words, the controller state-space matrices at the operating point p(t)
are obtained by convex interpolation of the LTI vertex controllers

This yields a smooth scheduling of the controller matrices by the parameter
measurements p(t).

p t() α1Π1 … αNΠN, α i 0, α i

i 1=

N

∑ 1=≥+ +=

K .,p()
ζ AK= p()ζ BK+ p()y

u CK= p()ζ DK+ p()y



p t() α iΠ ii 1=

N

∑=

AK p() BK p()

CK p() DK p() 
 
 
 

α i

i 1=

N

∑
AK Π i() BK Π i()

CK Π i() DK Π i() 
 
 
 

=

Ki :=
AK Π i() BK Π i()

CK Π i() DK Π i() 
 
 
 

Gain-Scheduled Control

7-5

For this class of controllers, consider the following H∞-like synthesis problem
relative to the interconnection of Figure 7-1:

Figure 7-1: Gain-scheduled H∞ problem

Design a gain-scheduled controller K(., p) satisfying the vertex property and
such that

• The closed-loop system is stable for all admissible parameter trajectories p(t)

• The worst-case closed-loop RMS gain from w to z does not exceed some level
γ > 0.

Using the notion of quadratic H∞ performance to enforce the RMS gain
constraint, and observing that the closed-loop system is a polytopic system, this
synthesis problem can be reduced to the following LMI problem [3, 2]

Find two symmetric matrices R and S such that

(7-1)

u y

P(. ,p)

K(., p)

w z

p(t)

N12 0

0 I 
 
 

T AiR RAi
T+ RC1i

T B1i

C1iR γI– D11i

B1
T D11i

T γI– 
 
 
 
 
 
 

N12 0

0 I 
 
 

0, i 1 … N, ,=<

7 Robust Gain-Scheduled Controllers

7-6

(7-2)

(7-3)

where

and N12 and N21 are bases of the null spaces of () and (C2, D21),
respectively.

Remark: Requiring the plant matrices B2, C2, D12, D21 to be independent of
p(t) may be restrictive in practice. When B2 and D12 depend on p(t), a simple
trick to enforce these requirements consists of filtering u through a low-pass
filter with sufficiently large bandwidth. Appending this filter to the plant
rejects the parameter dependence of B2 and D12 into the A matrix of the
augmented plant. Similarly, parameter dependences in C2 and D21 can be
eliminated by filtering the output (see [1] for details).

N21 0

0 I 
 
 

T Ai
TS SA+ SB1i C1i

T

B1i
T S γI– D11i

T

C1i D11i γI– 
 
 
 
 
 
 

N21 0

0 I 
 
 

0, i 1 … N, ,=<

R I
I S 

 
 

0≥

Ai B1i

C1i D11i 
 
 
 

 :=
A Π i() B1 Π i()

C1 Π i() D11 Π i() 
 
 
 

B2
T D12

T,()

Synthesis of Gain-Scheduled H• Controllers

7-7

Synthesis of Gain-Scheduled H∞ Controllers
The synthesis of gain-scheduled H∞ controllers is performed by the function
hinfgs. Since such controllers are characterized by their vertex values, both
the plant and the controller are treated as polytopic models by hinfgs. The
calling sequence is

[gopt,pdK] = hinfgs(pdP,r)

Here pdP is an affine or polytopic model of the plant (see psys) and the two-
entry vector r specifies the dimensions of the D22 matrix (set r=[p2 m2] if
y ∈ Rp2 and u ∈ Rm2).

On output, gopt is the best achievable RMS gain and pdK is the polytopic
system consisting of the vertex controllers.

Given any value p of the parameter vector p(t), the corresponding state-space
parameters

of the gain-scheduled controller are returned in SYSTEM matrix format by

c = polydec(pv,p)
Kp = psinfo(pdK,'eval',c)

The function polydec computes the convex decomposition
and returns c = (α1, . . ., αN). The controller state-space data

 at time t is then computed by psinfo. Note that polydec
ensures the continuity of the polytopic coordinates αi as a function of p, thereby
guaranteeing the continuity of the controller state-space matrices along
parameter trajectories.

Ki =
AK Π i() BK Π i()

CK Π i() DK Π i() 
 
 
 

Ki =
AK Π i() BK Π i()

CK Π i() DK Π i() 
 
 
 

K p() =
AK p() BK p()

CK p() DK p() 
 
 
 

p t() α iΠ ii 1=

N

∑=
K p() α iKii 1=

N

∑=

7 Robust Gain-Scheduled Controllers

7-8

Given the polytopic controller representation pdK, a polytopic model of the
closed-loop system is formed by

pcl = slft(pdP,pdK)

and evaluated for a given parameter value p of p(t) by

pclt = psinfo(pcl,'eval',polydec(pv,p))

Simulation of Gain-Scheduled Control Systems

7-9

Simulation of Gain-Scheduled Control Systems
Being time-varying systems, gain-scheduled control systems cannot be
simulated with splot. The function pdsimul is provided to simulate the time
response of such systems along a given parameter trajectory.

With pdsimul, you must first define the parameter trajectory and the input
signal as two functions of time with syntax p=trajfun(t) and u=inputfun(t).
You can then plot the corresponding time response by

pdsimul(pcl,'trajfun',tf,'inputfun')

where pcl is the polytopic representation of the closed-loop system and tf is
the desired duration of the simulation. If 'inputfun' is omitted, the step
response is plotted by default. See the next paragraph for an example.

7 Robust Gain-Scheduled Controllers

7-10

Design Example
This example is drawn from [2] and deals with the design of a gain-scheduled
autopilot for the pitch axis of a missile. Type misldem to run the corresponding
demo.

The missile dynamics are highly dependent on the angle of attack α, the speed
V, and the altitude H. These three parameters undergo large variations during
operation. A simple model of the linearized dynamics of the missile is the
parameter-dependent model

(7-4)

where azv is the normalized vertical acceleration, q the pitch rate, δm the fin
deflection, and Zα, Mα are aerodynamical coefficients depending on α, V, and
H. These two coefficients are “measured” in real time.

As V, H, and α vary in

V ∈ [0.5, 4] Mach, H ∈ [0, 18000] m, α ∈ [0, 40] degrees

during operation, the coefficients Zα and Mα range in

Zα ∈ [0.5, 4], Mα ∈ [0, 106].

Our goal is to control the vertical acceleration azv over this operating range.
The stringent performance specifications (settling time < 0.5 s) and the
bandwidth limitation imposed by unmodeled high frequency dynamics make
gain scheduling desirable in this context.

The control structure is sketched in Figure 7-2. To enforce the performance and
robustness requirements, we can use the loop-shaping criterion

(7-5)

G

α·

q· 
 
  Zα– 1

Mα– 0 
 
  α

q 
 
  0

1 
 
 

δm+=

azv

q 
 
  1– 0

0 1 
 
  α

q 
 
 

=










W1S

W2KS ∞

1<

Design Example

7-11

Note that S = (I + GK)–1 is now a time-varying system and that the H∞ norm
must be understood in terms of input/output RMS gain. Adequate shaping
filters are derived with magshape as

Figure 7-2: Missile autopilot

The gain-scheduled controller synthesis parallels the standard loop-shaping
procedure described in Chapter 6. First enter the parameter-dependent model
(7-4) of the missile pitch axis by:

% parameter range:

Zmin=.5; Zmax=4; Mmin=0; Mmax=106;
pv = pvec('box',[Zmin Zmax ; Mmin Mmax])

% affine model:

s0 = ltisys([0 1;0 0],[0;1],[-1 0;0 1],[0;0])
s1 = ltisys([-1 0;0 0],[0;0],zeros(2),[0;0],0) % Z_al
s2 = ltisys([0 0;-1 0],[0;0],zeros(2),[0;0],0) % M_al
pdG = psys(pv,[s0 s1 s2])

For loop-shaping purposes, we must form the augmented plant associated with
the criterion (7-5). This is done with sconnect and smult as follows:

W1 s() 2.01
s 0.201+
------------------------=

W2 s() 9.678s3 0.029s2+

s3 1.206 104s2 1.136 107s 1.066 1010×+×+×+
---=

r

azv+

− K G

autopilot missile

e u

q

7 Robust Gain-Scheduled Controllers

7-12

% form the plant interconnection

[pdP,r] = sconnect('r','e=r-GP1;K','K:e;G(2)','G:K',pdG);

% append the shaping filters

Paug = smult(pdP,sdiag(w1,w2,eye(2)))

Note that pdP and Paug are polytopic models at this stage.

We are now ready to perform the gain-scheduled controller synthesis with
hinfgs:

[gopt,pdK] = hinfgs(Paug,r)

gopt =

0.205

Our specifications are achievable since the best performance γopt = 0.205 is
smaller than 1, and the polytopic description of a controller with such
performance is returned in pdK.

To validate the design, form the closed-loop system with

pCL = slft(pdP,pdK)

You can now simulate the step response of the gain-scheduled system along
particular parameter trajectories. For the sake of illustration, consider the
spiral trajectory

Zα(t) = 2.25 + 1.70 e–4t cos(100 t)

Mα(t) = 50 + 49 e–4t sin(100 t)

shown in Figure 7-3. After defining this trajectory is a function spiralt.m:

function p = spiral(t)

p = [2.25 + 1.70*exp(-4*t).*cos(100*t) ; ...
50 + 49*exp(-4*t).*sin(100*t)];

you can plot the closed-loop step response along p(t) by

[t,x,y]=pdsimul(pCL,'spiralt',0.5)

plot(t,1-y(:,1))

Design Example

7-13

The function pdsimul returns the output trajectories y(t) = (e(t), u(t))T and the
response azv(t) is deduced by

azv(t) = 1 – e(t)

The second command plots azv(t) versus time as shown in Figure 7-4.

Figure 7-3: Parameter trajectory

0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

100

Z_alpha

M
_a

lp
ha

Parameter trajectory (duration : 1 s)

7 Robust Gain-Scheduled Controllers

7-14

Figure 7-4: Corresponding step response

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

az
v

step response of the gain−scheduled autopilot

References

7-15

References
[1] Apkarian, P., and P. Gahinet,“A Convex Characterization of
Gain-Scheduled H∞ Controllers,” to appear in IEEE Trans. Aut. Contr., 1995.

[2] Apkarian, P., P. Gahinet, and G. Becker, “Self-Scheduled H∞ Control of
Linear Parameter-Varying Systems,” to appear in Automatica, 1995.

[3] Becker, G., Packard, P., “Robust Performance of Linear Parametrically
Varying Systems Using Parametrically Dependent Linear Feedback,” Systems
and Control Letters, 23 (1994), pp. 205–215.

[4] Packard, A., “Gain Scheduling via Linear Fractional Transformations,”
Syst. Contr. Letters, 22 (1994), pp. 79–92.

7 Robust Gain-Scheduled Controllers

7-16

8

The LMI Lab

Background and Terminology 8-3

Overview of the LMI Lab 8-6

Specifying a System of LMIs 8-8

Retrieving Information 8-21

LMI Solvers 8-22

From Decision to Matrix Variables and Vice Versa . . 8-28

Validating Results 8-29

Modifying a System of LMIs 8-30

Advanced Topics 8-33

References . 8-44

8 The LMI Lab

8-2

The LMI Lab is a high-performance package for solving general LMI problems.
It blends simple tools for the specification and manipulation of LMIs with
powerful LMI solvers for three generic LMI problems. Thanks to a
structure-oriented representation of LMIs, the various LMI constraints can be
described in their natural block-matrix form. Similarly, the optimization
variables are specified directly as matrix variables with some given structure.
Once an LMI problem is specified, it can be solved numerically by calling the
appropriate LMI solver. The three solvers feasp, mincx, and gevp constitute
the computational engine of the LMI Control Toolbox. Their high performance
is achieved through C-MEX implementation and by taking advantage of the
particular structure of each LMI.

The LMI Lab offers tools to

• Specify LMI systems either symbolically with the LMI Editor or
incrementally with the lmivar and lmiterm commands

• Retrieve information about existing systems of LMIs

• Modify existing systems of LMIs

• Solve the three generic LMI problems (feasibility problem, linear objective
minimization, and generalized eigenvalue minimization)

• Validate results

This chapter gives a tutorial introduction to the LMI Lab as well as more
advanced tips for making the most out of its potential. The tutorial material is
also covered by the demo lmidem.

Background and Terminology

8-3

Background and Terminology
Any linear matrix inequality can be expressed in the canonical form

L(x) = L0 + x1L1 + . . . + xNLN < 0

where

• L0, L1, . . . , LN are given symmetric matrices

• x = (x1, . . . , xN)T ∈ RN is the vector of scalar variables to be determined. We
refer to x1, . . . , xN as the decision variables. The names “design variables”
and “optimization variables” are also found in the literature.

Even though this canonical expression is generic, LMIs rarely arise in this form
in control applications. Consider for instance the Lyapunov inequality

(8-1)

where and the variable is a symmetric matrix.

Here the decision variables are the free entries x1, x2, x3 of X and the canonical
form of this LMI reads

(8-2)

Clearly this expression is less intuitive and transparent than (8-1). Moreover,
the number of matrices involved in (8-2) grows roughly as n2 /2 if n is the size
of the A matrix. Hence, the canonical form is very inefficient from a storage
viewpoint since it requires storing o(n2 /2) matrices of size n when the single
n-by-n matrix A would be sufficient. Finally, working with the canonical form
is also detrimental to the efficiency of the LMI solvers. For these various
reasons, the LMI Lab uses a structured representation of LMIs. For instance,
the expression ATX + XA in the Lyapunov inequality (8-1) is explicitly
described as a function of the matrix variable X, and only the A matrix is
stored.

ATX XA 0<+

A 1– 2
0 2– 

 
 

= X
x1 x2

x2 x3 
 
 
 

=

x1
2– 2
2 0 

 
 

x2
0 3–
3– 4 

 
 

x3
0 0
0 4– 

 
 

0<+ +

8 The LMI Lab

8-4

In general, LMIs assume a block matrix form where each block is an affine
combination of the matrix variables. As a fairly typical illustration, consider
the following LMI drawn from H∞ theory

(8-3)

where A, B, C, D, N are given matrices and the problem variables are
X = XT ∈ Rn×n and γ ∈ R. We use the following terminology to describe such
LMIs:

• N is called the outer factor, and the block matrix

is called the inner factor. The outer factor needs not be square and is often
absent.

• X and γ are the matrix variables of the problem. Note that scalars are
considered as 1-by-1 matrices.

• The inner factor L(X, γ) is a symmetric block matrix, its block structure being
characterized by the sizes of its diagonal blocks. By symmetry, L(X, γ) is
entirely specified by the blocks on or above the diagonal.

• Each block of L(X, γ) is an affine expression in the matrix variables X and γ.
This expression can be broken down into a sum of elementaryterm terms. For
instance, the block (1,1) contains two elementary terms: ATX and XA.

• Terms are either constant or variable. Constant terms are fixed matrices like
B and D above. Variable terms involve one of the matrix variables, like XA,
XCT , and –γI above.

The LMI (8-3) is specified by the list of terms in each block, as is any LMI
regardless of its complexity.

NT ATX XA+ XCT B
CX γI– D

BT DT γI– 
 
 
 
 
 

N 0<

L X γ,()
ATX XA+ XCT B

CX γI– D

BT DT γI– 
 
 
 
 
 

=

Background and Terminology

8-5

As for the matrix variables X and γ, they are characterized by their dimensions
and structure. Common structures include rectangular unstructured,
symmetric, skew-symmetric, and scalar. More sophisticated structures are
sometimes encountered in control problems. For instance, the matrix variable
X could be constrained to the block-diagonal structure

Another possibility is the symmetric Toeplitz structure

Summing up, structured LMI problems are specified by declaring the matrix
variables and describing the term content of each LMI. This term-oriented
description is systematic and accurately reflects the specific structure of the
LMI constraints. There is no built-in limitation on the number of LMIs that can
be specified or on the number of blocks and terms in any given LMI. LMI
systems of arbitrary complexity can therefore, be defined in the LMI Lab.

X

x1 0 0

0 x2 x3

0 x3 x4 
 
 
 
 
 

=

X

x1 x2 x3

x2 x1 x2

x3 x2 x1 
 
 
 
 
 

=

8 The LMI Lab

8-6

Overview of the LMI Lab
The LMI Lab offers tools to specify, manipulate, and numerically solve LMIs.
Its main purpose is to

• Allow for straightforward description of LMIs in their natural block-matrix
form

• Provide easy access to the LMI solvers (optimization codes)

• Facilitate result validation and problem modification

The structure-oriented description of a given LMI system is stored as a single
vector called the internal representation and generically denoted by LMISYS in
the sequel. This vector encodes the structure and dimensions of the LMIs and
matrix variables, a description of all LMI terms, and the related numerical
data. It must be stressed that users need not attempt to read or understand the
content of LMISYS since all manipulations involving this internal
representation can be performed in a transparent manner with LMI-Lab tools.

The LMI Lab supports the following functionalities:

Specification of a System of LMIs
LMI systems can be either specified as symbolic matrix expressions with the
interactive graphical user interface lmiedit, or assembled incrementally with
the two commands lmivar and lmiterm. The first option is more intuitive and
transparent while the second option is more powerful and flexible.

Information Retrieval
The interactive function lmiinfo answers qualitative queries about LMI
systems created with lmiedit or lmivar and lmiterm. You can also use
lmiedit to visualize the LMI system produced by a particular sequence of
lmivar/lmiterm commands.

Solvers for LMI Optimization Problems
General-purpose LMI solvers are provided for the three generic LMI problems
defined on page 1-5. These solvers can handle very general LMI systems and
matrix variable structures. They return a feasible or optimal vector of decision
variables x*. The corresponding values of the matrix variables are
given by the function dec2mat.

X1
* … XK

*, ,

Overview of the LMI Lab

8-7

Result Validation
The solution x* produced by the LMI solvers is easily validated with the
functions evallmi and showlmi. This allows a fast check and/or analysis of the
results. With evallmi, all variable terms in the LMI system are evaluated for
the value x* of the decision variables. The left- and right-hand sides of each
LMI then become constant matrices that can be displayed with showlmi.

Modification of a System of LMIs
An existing system of LMIs can be modified in two ways:

• An LMI can be removed from the system with dellmi.

• A matrix variable X can be deleted using delmvar. It can also be instantiated,
that is, set to some given matrix value. This operation is performed by
setmvar and allows, for example, to fix some variables and solve the LMI
problem with respect to the remaining ones.

8 The LMI Lab

8-8

Specifying a System of LMIs
The LMI Lab can handle any system of LMIs of the form

NT L(X1, . . . , XK) N < MT R(X1, . . . , XK) M

where

• X1, . . . , XK are matrix variables with some prescribed structure

• The left and right outer factors N and M are given matrices with identical
dimensions

• The left and right inner factors L(.) and R(.) are symmetric block matrices
with identical block structures, each block being an affine combination of X1,
. . . , XK and their transposes.

Important: Throughout this chapter, “left-hand side” refers to what is on the
“smaller” side of the inequality, and “right-hand side” to what is on the
“larger” side. Accordingly, X is called the right-hand side and 0 the left-hand
side of the LMI 0 < X even when this LMI is written as X > 0.

The specification of an LMI system involves two steps:

1 Declare the dimensions and structure of each matrix variable X1, . . . , XK .

2 Describe the term content of each LMI.

This process creates the so-called internal representation of the LMI system.
This computer description of the problem is used by the LMI solvers and in all
subsequent manipulations of the LMI system. It is stored as a single vector
which we consistently denote by LMISYS in the sequel (for the sake of clarity).

There are two ways of generating the internal description of a given LMI
system: (1) by a sequence of lmivar/lmiterm commands that build it
incrementally, or (2) via the LMI Editor lmiedit where LMIs can be specified
directly as symbolic matrix expressions. Though somewhat less flexible and
powerful than the command-based description, the LMI Editor is more
straightforward to use, hence particularly well-suited for beginners. Thanks to
its coding and decoding capabilities, it also constitutes a good tutorial
introduction to lmivar and lmiterm. Accordingly, beginners may elect to skip

Specifying a System of LMIs

8-9

the subsections on lmivar and lmiterm and to concentrate on the GUI-based
specification of LMIs with lmiedit.

A Simple Example
The following tutorial example is used to illustrate the specification of LMI
systems with the LMI Lab tools. Run the demo lmidem to see a complete
treatment of this example.

Example 8.1. Consider a stable transfer function

(8-4)

with four inputs, four outputs, and six states, and consider the set of
input/output scaling matrices D with block-diagonal structure

(8-5)

The following problem arises in the robust stability analysis of systems with
time-varying uncertainty [4]:

Find, if any, a scaling D of structure (8-5) such that the largest gain across
frequency of D G(s) D–1 is less than one.

G s() C sI A–() 1– B=

D

d1 0 0 0

0 d1 0 0

0 0 d2 d3

0 0 d4 d5 
 
 
 
 
 
 
 

=

8 The LMI Lab

8-10

This problem has a simple LMI formulation: there exists an adequate scaling
D if the following feasibility problem has solutions:

Find two symmetric matrices X ∈ R6×6 and S = DT D ∈ R4×4 such that

(8-6)

(8-7)

(8-8)

The LMI system (8-6)–(8-8) can be described with the LMI Editor as outlined
below. Alternatively, its internal description can be generated with lmivar and
lmiterm commands as follows:

setlmis([])
X=lmivar(1,[6 1])
S=lmivar(1,[2 0;2 1])

% 1st LMI
lmiterm([1 1 1 X],1,A,'s')
lmiterm([1 1 1 S],C',C)
lmiterm([1 1 2 X],1,B)
lmiterm([1 2 2 S], 1,1)

% 2nd LMI
lmiterm([2 1 1 X],1,1)

% 3rd LMI
lmiterm([3 1 1 S],1,1)
lmiterm([3 1 1 0],1)

LMISYS = getlmis

Here the lmivar commands define the two matrix variables X and S while the
lmiterm commands describe the various terms in each LMI. Upon completion,

ATX XA CTSC+ + XB

BTX S– 
 
 
 
 

 < 0

X 0>

S 1>

Specifying a System of LMIs

8-11

getlmis returns the internal representation LMISYS of this LMI system. The
next three subsections give more details on the syntax and usage of these
various commands. More information on how the internal representation is
updated by lmivar/lmiterm can also be found in “How It All Works” on
page 8-18.

setlmis and getlmis
The description of an LMI system should begin with setlmis and end with
getlmis. The function setlmis initializes the LMI system description. When
specifying a new system, type

setlmis([])

To add on to an existing LMI system with internal representation LMIS0, type

setlmis(LMIS0)

When the LMI system is completely specified, type

LMISYS = getlmis

This returns the internal representation LMISYS of this LMI system. This
MATLAB description of the problem can be forwarded to other LMI-Lab
functions for subsequent processing. The command getlmis must be used only
once and after declaring all matrix variables and LMI terms.

lmivar
The matrix variables are declared one at a time with lmivar and are
characterized by their structure. To facilitate the specification of this structure,
the LMI Lab offers two predefined structure types along with the means to
describe more general structures:

Type 1: Symmetric block diagonal structure. This corresponds to matrix
variables of the form

X

D1 0 … 0

0 D2

0
0 … 0 Dr 

 
 
 
 
 
 

=

…

… ...
......

8 The LMI Lab

8-12

where each diagonal block Dj is square and is either zero, a full symmetric
matrix, or a scalar matrix

Dj = d × I, d ∈ R

This type encompasses ordinary symmetric matrices (single block) and scalar
variables (one block of size one).

Type 2: Rectangular structure. This corresponds to arbitrary rectangular
matrices without any particular structure.

Type 3: General structures. This third type is used to describe more
sophisticated structures and/or correlations between the matrix
variables. The principle is as follows: each entry of X is specified
independently as either 0, xn, or –xn where xn denotes the n-th
decision variable in the problem. For details on how to use Type 3,
see “Structured Matrix Variables” on page 8-33 below as well as the
lmivar entry of the “Command Reference” chapter.

In “Example 8.1” on page 8-9, the matrix variables X and S are of Type 1.
Indeed, both are symmetric and S inherits the block-diagonal structure (8-5) of
D. Specifically, S is of the form

After initializing the description with the command setlmis([]), these two
matrix variables are declared by

lmivar(1,[6 1]) % X
lmivar(1,[2 0;2 1]) % S

In both commands, the first input specifies the structure type and the second
input contains additional information about the structure of the variable:

• For a matrix variable X of Type 1, this second input is a matrix with two
columns and as many rows as diagonal blocks in X. The first column lists the

S

s1 0 0 0

0 s1 0 0

0 0 s2 s3

0 0 s3 s4 
 
 
 
 
 
 
 

=

Specifying a System of LMIs

8-13

sizes of the diagonal blocks and the second column specifies their nature with
the following convention:

1 → full symmetric block

0 → scalar block

–1 → zero block

In the second command, for instance, [2 0;2 1] means that S has two
diagonal blocks, the first one being a 2-by-2 scalar block and the second one
a 2−βψ−2 full block.

• For matrix variables of Type 2, the second input of lmivar is a two-entry
vector listing the row and column dimensions of the variable. For instance, a
3-by-5 rectangular matrix variable would be defined by

lmivar(2,[3 5])

For convenience, lmivar also returns a “tag” that identifies the matrix variable
for subsequent reference. For instance, X and S in “Example 8.1” could be
defined by

X = lmivar(1,[6 1])
S = lmivar(1,[2 0;2 1])

The identifiers X and S are integers corresponding to the ranking of X and S in
the list of matrix variables (in the order of declaration). Here their values
would be X=1 and S=2. Note that these identifiers still point to X and S after
deletion or instantiation of some of the matrix variables. Finally, lmivar can
also return the total number of decision variables allocated so far as well as the
entry-wise dependence of the matrix variable on these decision variables (see
the lmivar entry of the “Command Reference” chapter for more details).

lmiterm
After declaring the matrix variables with lmivar, we are left with specifying
the term content of each LMI. Recall that LMI terms fall into three categories:

• The constant terms, i.e., fixed matrices like I in the left-hand side of the LMI
S > I

• The variable terms, i.e., terms involving a matrix variable. For instance, ATX
and CTSC in (8-6). Variable terms are of the form PXQ where X is a variable
and P, Q are given matrices called the left and right coefficients, respectively.

8 The LMI Lab

8-14

• The outer factors

The following rule should be kept in mind when describing the term content of
an LMI:

Important: Specify only the terms in the blocks on or above the diagonal. The
inner factors being symmetric, this is sufficient to specify the entire LMI.
Specifying all blocks results in the duplication of off-diagonal terms, hence in
the creation of a different LMI. Alternatively, you can describe the blocks on or
below the diagonal.

LMI terms are specified one at a time with lmiterm. For instance, the LMI

is described by

lmiterm([1 1 1 1],1,A,'s')
lmiterm([1 1 1 2],C',C)
lmiterm([1 1 2 1],1,B)
lmiterm([1 2 2 2], 1,1)

These commands successively declare the terms ATX + XA, CTSC, XB, and –S.
In each command, the first argument is a four-entry vector listing the term
characteristics as follows:

• The first entry indicates to which LMI the term belongs. The value m means
“left-hand side of the m-th LMI,” and m means “right-hand side of the m-th
LMI”

• The second and third entries identify the block to which the term belongs.
For instance, the vector [1 1 2 1] indicates that the term is attached to the
(1, 2) block

• The last entry indicates which matrix variable is involved in the term. This
entry is 0 for constant terms, k for terms involving the k-th matrix variable

ATX XA CTSC+ + XB

BTX S– 
 
 
 
 

 < 0

Specifying a System of LMIs

8-15

Xk , and k for terms involving (here X and S are first and second
variables in the order of declaration).

Finally, the second and third arguments of lmiterm contain the numerical data
(values of the constant term, outer factor, or matrix coefficients P and Q for
variable terms PXQ or PXTQ). These arguments must refer to existing
MATLAB variables and be real-valued. See“Complex-Valued LMIs” on
page 8-35 for the specification of LMIs with complex-valued coefficients.

Some shorthand is provided to simplify term specification. First, blocks are
zero by default. Second, in diagonal blocks the extra argument 's' allows you
to specify the conjugated expression AXB + BTXTAT with a single lmiterm
command. For instance, the first command specifies ATX + XA as the
“symmetrization” of XA. Finally, scalar values are allowed as shorthand for
scalar matrices, i.e., matrices of the form αI with α scalar. Thus, a constant
term of the form αI can be specified as the “scalar” α. This also applies to the
coefficients P and Q of variable terms. The dimensions of scalar matrices are
inferred from the context and set to 1 by default. For instance, the third LMI S
> I in “Example 8.3” on page 8-33 is described by

Recall that by convention S is considered as the right-hand side of the
inequality, which justifies the –3 in the first command.

Finally, to improve readability it is often convenient to attach an identifier
(tag) to each LMI and matrix variable. The variable identifiers are returned by
lmivar and the LMI identifiers are set by the function newlmi. These
identifiers can be used in lmiterm commands to refer to a given LMI or matrix
variable. For the LMI system of “Example 8.1”, this would look like:

setlmis([])
X = lmivar(1,[6 1])
S = lmivar(1,[2 0;2 1])

BRL = newlmi
lmiterm([BRL 1 1 X],1,A,'s')
lmiterm([BRL 1 1 S],C',C)
lmiterm([BRL 1 2 X],1,B)
lmiterm([BRL 2 2 S], 1,1)

lmiterm([–3 1 1 2],1,1) % 1*S*1 = S

lmiterm([3 1 1 0],1) % 1*I = I

Xk
T

8 The LMI Lab

8-16

Xpos = newlmi
lmiterm([-Xpos 1 1 X],1,1)

Slmi = newlmi
lmiterm([-Slmi 1 1 S],1,1)
lmiterm([Slmi 1 1 0],1)

LMISYS = getlmis

Here the identifiers X and S point to the variables X and S while the tags BRL,
Xpos, and Slmi point to the first, second, and third LMI, respectively. Note that
Xpos refers to the right-hand side of the second LMI. Similarly, X would

indicate transposition of the variable X.

The LMI Editor lmiedit
The LMI Editor lmiedit is a graphical user interface (GUI) to specify LMI
systems in a straightforward symbolic manner. Typing

lmiedit

calls up a window with several editable text areas and various pushbuttons. To
specify your LMI system,

1 Declare each matrix variable (name and structure) in the upper half of the
worksheet. The structure is characterized by its type (S for symmetric block
diagonal, R for unstructured, and G for other structures) and by an additional
“structure” matrix. This matrix contains specific information about the
structure and corresponds to the second argument of lmivar (see “lmivar” on
page 8-11 for details).

Please use one line per matrix variable in the text editing areas.

Specifying a System of LMIs

8-17

2 Specify the LMIs as MATLAB expressions in the lower half of the
worksheet. For instance, the LMI

is entered by typing

[a'*x+x*a x*b; b'*x 1] < 0

if x is the name given to the matrix variable X in the upper half of the
worksheet. The left- and right-hand sides of the LMIs should be valid
MATLAB expressions.

Once the LMI system is fully specified, the following tasks can be performed by
pressing the corresponding button:

• Visualize the sequence of lmivar/lmiterm commands needed to describe this
LMI system (view commands buttons). Conversely, the LMI system defined
by a particular sequence of lmivar/lmiterm commands can be displayed as a
MATLAB expression by clicking on the describe... buttons.

Beginners can use this facility as a tutorial introduction to the lmivar and
lmiterm commands.

• Save the symbolic description of the LMI system as a MATLAB string (save
button). This description can be reloaded later on by pressing the load
button.

• Read a sequence of lmivar/lmiterm commands from a file (read button). You
can then click on “describe the matrix variables” or “describe the
LMIs...” to visualize the symbolic expression of the LMI system specified by
these commands. The file should describe a single LMI system but may
otherwise contain any sequence of MATLAB commands.

This feature is useful for code validation and debugging.

Write in a file the sequence of lmivar/lmiterm commands needed to describe
a particular LMI system (write button).

This is helpful to develop code and prototype MATLAB functions based on
the LMI Lab.

ATX XA+ XB

BTX I– 
 
 
 

< 0

8 The LMI Lab

8-18

• Generate the internal representation of the LMI system by pressing create.
The result is written in a MATLAB variable named after the LMI system (if
the “name of the LMI system” is set to mylmi, the internal representation is
written in the MATLAB variable mylmi). Note that all LMI-related data
should be defined in the MATLAB workspace at this stage.

The internal representation can be passed directly to the LMI solvers or any
other LMI Lab function.

As with lmiterm, you can use various shortcuts when entering LMI expressions
at the keyboard. For instance, zero blocks can be entered simply as 0 and need
not be dimensioned. Similarly, the identity matrix can be entered as 1 without
dimensioning. Finally, upper diagonal LMI blocks need not be fully specified.
Rather, you can just type (*) in place of each such block.

Though fairly general, lmiedit is not as flexible as lmiterm and the following
limitations should be kept in mind:

• Parentheses cannot be used around matrix variables. For instance, the
expression
(a*x+b)'*c + c'*(a*x+b)

is invalid when x is a variable name. By contrast,
(a+b)'*x + x'*(a+b)

is perfectly valid.

• Loops and if statements are ignored.

• When turning lmiterm commands into a symbolic description of the LMI
system, an error is issued if the first argument of lmiterm cannot be
evaluated. Use the LMI and variable identifiers supplied by newlmi and
lmivar to avoid such difficulties.

Figure 8-1 shows how to specify the feasibility problem of “Example 8.1” on
page 8-9 with lmiedit.

How It All Works
Users familiar with MATLAB may wonder how lmivar and lmiterm physically
update the internal representation LMISYS since LMISYS is not an argument to
these functions. In fact, all updating is performed through global variables for
maximum speed. These global variables are initialized by setlmis, cleared by

Specifying a System of LMIs

8-19

getlmis, and not visible in the workspace. Even though this artifact is
transparent from the user's viewpoint, be sure to

• Invoke getlmis only once and after completely specifying the LMI system

• Refrain from using the command clear global before the LMI system
description is ended with getlmis

8 The LMI Lab

8-20

Figure 8-1: Graphical user interface lmiedit

Retrieving Information

8-21

Retrieving Information
Recall that the full description of an LMI system is stored as a single vector
called the internal representation. The user should not attempt to read or
retrieve information directly from this vector. Three functions called lmiinfo,
lminbr, and matnbr are provided to extract and display all relevant
information in a user-readable format.

lmiinfo
lmiinfo is an interactive facility to retrieve qualitative information about LMI
systems. This includes the number of LMIs, the number of matrix variables
and their structure, the term content of each LMI block, etc. To invoke lmiinfo,
enter

lmiinfo(LMISYS)

where LMISYS is the internal representation of the LMI system produced by
getlmis.

lminbr and matnbr
These two functions return the number of LMIs and the number of matrix
variables in the system. To get the number of matrix variables, for instance,
enter

matnbr(LMISYS)

8 The LMI Lab

8-22

LMI Solvers
LMI solvers are provided for the following three generic optimization problems
(here x denotes the vector of decision variables, i.e., of the free entries of the
matrix variables X1, . . . , XK):

• Feasibility problem

Find x ∈ RN (or equivalently matrices X1, . . . , XK with prescribed structure)
that satisfies the LMI system

A(x) < B(x)

The corresponding solver is called feasp.

• Minimization of a linear objective under LMI constraints

Minimize cTx over x ∈ RN subject to A(x) < B(x)

The corresponding solver is called mincx.

• Generalized eigenvalue minimization problem

Minimize λ over x ∈ RN subject to

C(x) < D(x)

0 < B(x)

A(x) < λB(x).

The corresponding solver is called gevp.

Note that A(x) < B(x) above is a shorthand notation for general structured LMI
systems with decision variables x = (x1, . . . , xN).

The three LMI solvers feasp, mincx, and gevp take as input the internal
representation LMISYS of an LMI system and return a feasible or optimizing
value x* of the decision variables. The corresponding values of the matrix
variables X1, . . . , XK are derived from x* with the function dec2mat. These
solvers are C-MEX implementations of the polynomial-time Projective
Algorithm Projective Algorithm of Nesterov and Nemirovski [3, 2].

For generalized eigenvalue minimization problems, it is necessary to
distinguish between the standard LMI constraints C(x) < D(x) and the
linear-fractional LMIs

A(x) < λB(x)

LMI Solvers

8-23

attached to the minimization of the generalized eigenvalue λ. When using
gevp, you should follow these three rules to ensure proper specification of the
problem:

• Specify the LMIs involving λ as A(x) < B(x) (without the λ)

• Specify them last in the LMI system. gevp systematically assumes that the
last L LMIs are linear-fractional if L is the number of LMIs involving λ

• Add the constraint 0 < B(x) or any other constraint that enforces it. This
positivity constraint is required for well-posedness of the problem and is not
automatically added by gevp (see the “Command Reference” chapter for
details).

An initial guess xinit for x can be supplied to mincx or gevp. Use mat2dec to
derive xinit from given values of the matrix variables X1, . . . , XK . Finally,
various options are available to control the optimization process and the solver
behavior. These options are described in detail in the “Command Reference”
chapter.

The following example illustrates the use of the mincx solver.

Example 8.2. Consider the optimization problem

Minimize Trace(X) subject to

(8-9)

with data

It can be shown that the minimizer X* is simply the stabilizing solution of the
algebraic Riccati equation

ATX + XA + XBBTX + Q = 0

This solution can be computed directly with the Riccati solver care and
compared to the minimizer returned by mincx.

ATX XA XBBTX Q+ + + <

A
1– 2– 1
3 2 1
1 2– 1– 

 
 
 
 

; B
1
0
1 

 
 
 
 

; Q
1 1– 0
1– 3– 12–
0 12– 36– 

 
 
 
 

===

8 The LMI Lab

8-24

From an LMI optimization standpoint, problem (8-9) is equivalent to the
following linear objective minimization problem:

(8-10)

Since Trace(X) is a linear function of the entries of X, this problem falls within
the scope of the mincx solver and can be numerically solved as follows:

1 Define the LMI constraint (8-9) by the sequence of commands

setlmis([])
X = lmivar(1,[3 1]) % variable X, full symmetric

lmiterm([1 1 1 X],1,a,'s')
lmiterm([1 1 1 0],q)
lmiterm([1 2 2 0], 1)
lmiterm([1 2 1 X],b',1)

LMIs = getlmis

2 Write the objective Trace(X) as cTx where x is the vector of free entries of X.
Since c should select the diagonal entries of X, it is obtained as the decision
vector corresponding to X = I, that is,

c = mat2dec(LMIs,eye(3))

Note that the function defcx provides a more systematic way of specifying
such objectives (see “Specifying cTx Objectives for mincx” on page 8-38 for
details).

3 Call mincx to compute the minimizer xopt and the global minimum
copt = c'*xopt of the objective:

options = [1e 5,0,0,0,0]

Minimize Trace(X) subject to ATX XA Q+ + XB

BTX I– 
 
 
 

< 0

LMI Solvers

8-25

[copt,xopt] = mincx(LMIs,c,options)

Here 1e 5 specifies the desired relative accuracy on copt.

The following trace of the iterative optimization performed by mincx appears
on the screen:

Solver for linear objective minimization under LMI constraints

Iterations : Best objective value so far

1

2 8.511476

3 13.063640

*** new lower bound: 34.023978

4 15.768450

*** new lower bound: 25.005604

5 17.123012

*** new lower bound: 21.306781

6 17.882558

*** new lower bound: 19.819471

7 18-339853

*** new lower bound: 19.189417

8 18.552558

*** new lower bound: 18.919668

9 18.646811

*** new lower bound: 18.803708

10 18.687324

*** new lower bound: 18.753903

11 18.705715

*** new lower bound: 18.732574

12 18.712175

8 The LMI Lab

8-26

Result: feasible solution of required accuracy
best objective value: 18.716695
guaranteed relative accuracy: 9.50e 06
f-radius saturation: 0.000% of R = 1.00e+09

The iteration number and the best value of cTx at the current iteration
appear in the left and right columns, respectively. Note that no value is
displayed at the first iteration, which means that a feasible x satisfying the
constraint (8-10) was found only at the second iteration. Lower bounds on
the global minimum of cTx are sometimes detected as the optimization
progresses. These lower bounds are reported by the message

*** new lower bound: xxx

Upon termination, mincx reports that the global minimum for the objective
Trace(X) is –18.716695 with relative accuracy of at least 9.5-by-10–6. This is
the value copt returned by mincx.

4 mincx also returns the optimizing vector of decision variables xopt. The
corresponding optimal value of the matrix variable X is given by

*** new lower bound: 18.723491

13 18.714880

*** new lower bound: 18.719624

14 18.716094

*** new lower bound: 18.717986

15 18.716509

*** new lower bound: 18.717297

16 18.716695

*** new lower bound: 18.716873

LMI Solvers

8-27

Xopt = dec2mat(LMIs,xopt,X)

which returns

This result can be compared with the stabilizing Riccati solution computed
by care:

Xst = care(a,b,q, 1)
norm(Xopt-Xst)

ans =
6.5390e 05

Xopt

6.3542– 5.8895– 2.2046
5.8895– 6.2855– 2.2201
2.2046 2.2201 6.0771– 

 
 
 
 

=

8 The LMI Lab

8-28

From Decision to Matrix Variables and Vice Versa
While LMIs are specified in terms of their matrix variables X1, . . . , XK , the
LMI solvers optimize the vector x of free scalar entries of these matrices, called
the decision variables. The two functions mat2dec and dec2mat perform the
conversion between these two descriptions of the problem variables.

Consider an LMI system with three matrix variables X1, X2, X3. Given
particular values X1, X2, X3 of these variables, the corresponding value xdec of
the vector of decision variables is returned by mat2dec:

xdec = mat2dec(LMISYS,X1,X2,X3)

An error is issued if the number of arguments following LMISYS differs from the
number of matrix variables in the problem (see matnbr).

Conversely, given a value xdec of the vector of decision variables, the
corresponding value of the k-th matrix is given by dec2mat. For instance, the
value X2 of the second matrix variable is extracted from xdec by

X2 = dec2mat(LMISYS,xdec,2)

The last argument indicates that the second matrix variable is requested. It
could be set to the matrix variable identifier returned by lmivar.

The total numbers of matrix variables and decision variables are returned by
matnbr and decnbr, respectively. In addition, the function decinfo provides
precise information about the mapping between decision variables and matrix
variable entries (see the “Command Reference” chapter).

Validating Results

8-29

Validating Results
The LMI Lab offers two functions to analyze and validate the results of an LMI
optimization. The function evallmi evaluates all variable terms in an LMI
system for a given value of the vector of decision variables, for instance, the
feasible or optimal vector returned by the LMI solvers. Once this evaluation is
performed, the left- and right-hand sides of a particular LMI are returned by
showlmi.

In the LMI problem considered in “Example 8.2” on page 8-23, you can verify
that the minimizer xopt returned by mincx satisfies the LMI constraint (8-10)
as follows:

evlmi = evallmi(LMIs,xopt)
[lhs,rhs] = showlmi(evlmi,1)

The first command evaluates the system for the value xopt of the decision
variables, and the second command returns the left- and right-hand sides of the
first (and only) LMI. The negative definiteness of this LMI is checked by

eig(lhs-rhs)

ans =
2.0387e 04
3.9333e 05
1.8917e 07
4.6680e+01

8 The LMI Lab

8-30

Modifying a System of LMIs
Once specified, a system of LMIs can be modified in several ways with the
functions dellmi, delmvar, and setmvar.

dellmi
The first possibility is to remove an entire LMI from the system with dellmi.
For instance, suppose that the LMI system of “Example 8.1” on page 8-9 is
described in LMISYS and that we want to remove the positivity constraint on X.
This is done by

NEWSYS = dellmi(LMISYS,2)

where the second argument specifies deletion of the second LMI. The resulting
system of two LMIs is returned in NEWSYS.

The LMI identifiers (initial ranking of the LMI in the LMI system) are not
altered by deletions. As a result, the last LMI

S > I

remains known as the third LMI even though it now ranks second in the
modified system. To avoid confusion, it is safer to refer to LMIs via the
identifiers returned by newlmi. If BRL, Xpos, and Slmi are the identifiers
attached to the three LMIs (8-6)–(8-8), Slmi keeps pointing to S > I even after
deleting the second LMI by

NEWSYS = dellmi(LMISYS,Xpos)

dellmi
Another way of modifying an LMI system is to delete a matrix variable, that is,
to remove all variable terms involving this matrix variable. This operation is
performed by delmvar. For instance, consider the LMI

ATX + XA + BW + WTBT + I < 0

with variables X = XT ∈ R4×4 and W ∈ R2×4. This LMI is defined by

setlmis([])
X = lmivar(1,[4 1]) % X
W = lmivar(2,[2 4]) % W

Modifying a System of LMIs

8-31

lmiterm([1 1 1 X],1,A,'s')
lmiterm([1 1 1 W],B,1,'s')
lmiterm([1 1 1 0],1)

LMISYS = getlmis

To delete the variable W, type the command

NEWSYS = delmvar(LMISYS,W)

The resulting NEWSYS now describes the Lyapunov inequality

ATX + XA + I < 0

Note that delmvar automatically removes all LMIs that depended only on the
deleted matrix variable.

The matrix variable identifiers are not affected by deletions and continue to
point to the same matrix variable. For subsequent manipulations, it is
therefore advisable to refer to the remaining variables through their identifier.
Finally, note that deleting a matrix variable is equivalent to setting it to the
zero matrix of the same dimensions with setmvar.

setmvar
The function setmvar is used to set a matrix variable to some given value. As
a result, this variable is removed from the problem and all terms involving it
become constant terms. This is useful, for instance, to fixsetmvar some
variables and optimize with respect to the remaining ones.

Consider again “Example 8.1” on page 8-9 and suppose we want to know if the
peak gain of G itself is less than one, that is, if

||G||∞ < 1

This amounts to setting the scaling matrix D (or equivalently, S = DTD) to a
multiple of the identity matrix. Keeping in mind the constraint S > I, a
legitimate choice is S = 2−βψ−I. To set S to this value, enter

NEWSYS = setmvar(LMISYS,S,2)

8 The LMI Lab

8-32

The second argument is the variable identifier S, and the third argument is the
value to which S should be set. Here the value 2 is shorthand for 2−βψ−I. The
resulting system NEWSYS reads

Note that the last LMI is now free of variable and trivially satisfied. It could,
therefore, be deleted by

NEWSYS = dellmi(NEWSYS,3)

or

NEWSYS = dellmi(NEWSYS,Slmi)

if Slmi is the identifier returned by newlmi.

ATX XA 2CTC+ + XB

BTX 2I– 
 
 
 
 

 < 0

X 0>

2I I>

Advanced Topics

8-33

Advanced Topics
This last section gives a few hints for making the most out of the LMI Lab. It
is directed toward users who are comfortable with the basics described above.

Structured Matrix Variables
Fairly complex matrix variable structures and interdependencies can be
specified with lmivar. Recall that the symmetric block-diagonal or rectangular
structures are covered by Types 1 and 2 of lmivar provided that the matrix
variables are independent. To describe more complex structures or correlations
between variables, you must use Type 3 and specify each entry of the matrix
variables directly in terms of the free scalar variables of the problem (the
so-called decision variables).

With Type 3, each entry is specified as either 0 or ±xn where xn is the n-th
decision variable. The following examples illustrate how to specify nontrivial
matrix variable structures with lmivar. We first consider the case of
uncorrelated matrix variables.

Example 8.3. Suppose that the problem variables include a 3-by-3 symmetric
matrix X and a 3-by-3 symmetric Toeplitz matrix

The variable Y has three independent entries, hence involves three decision
variables. Since Y is independent of X, these decision variables should be
labeled n + 1, n + 2, n + 3 where n is the number of decision variables involved
in X. To retrieve this number, define the variable X (Type 1) by

setlmis([])
[X,n] =
lmivar(1,[3 1])

The second output argument n gives the total number of decision variables
used so far (here n = 6). Given this number, Y can be defined by

Y = lmivar(3,n+[1 2 3;2 1 2;3 2 1])

Y

y1 y2 y3

y2 y1 y2

y3 y2 y1 
 
 
 
 
 

=

8 The LMI Lab

8-34

or equivalently by

Y = lmivar(3,toeplitz(n+[1 2 3]))

where toeplitz is a standard MATLAB function. For verification purposes, we
can visualize the decision variable distributions in X and Y with decinfo:

lmis = getlmis
decinfo(lmis,X)

ans =
1 2 4
2 3 5
4 5 6

decinfo(lmis,Y)

ans =
7 8 9
8 7 8
9 8 7

The next example is a problem with interdependent matrix variables.

Example 8.4. Consider three matrix variables X, Y, Z with structure

where x, y, z, t are independent scalar variables. To specify such a triple, first
define the two independent variables X and Y (both of Type 1) as follows:

setlmis([])
[X,n,sX] = lmivar(1,[1 0;1 0])
[Y,n,sY] = lmivar(1,[1 0;1 0])

The third output of lmivar gives the entry-wise dependence of X and Y on the
decision variables (x1, x2, x3, x4) := (x, y, z, t):

sX =
1 0
0 2

X x 0
0 y 

 
 

, Y z 0
0 t 

 
 

, Z 0 x–
t– 0 

 
 

===

Advanced Topics

8-35

sY =
3 0
0 4

Using Type 3 of lmivar, you can now specify the structure of Z in terms of the
decision variables x1 = x and x4 = t:

[Z,n,sZ] = lmivar(3,[0 sX(1,1);–sY(2,2) 0])

Since sX(1,1) refers to x1 while sY(2,2) refers to x4 , this defines the variable

as confirmed by checking its entry-wise dependence on the decision variables:

sZ =
0 1
4 0

Complex-Valued LMIs
The LMI solvers are written for real-valued matrices and cannot directly
handle LMI problems involving complex-valued matrices. However,
complex-valued LMIs can be turned into real-valued LMIs by observing that a
complex Hermitian matrix L(x) satisfies

L(x) < 0

if and only if

This suggests the following systematic procedure for turning complex LMIs
into real ones:

• Decompose every complex matrix variable X as

X = X1 + jX2

where X1 and X2 are real

Z
0 x1–

x4– 0 
 
 
 

0 x–
t– 0 

 
 

= =

Re L x()() Im L x()()
Im– L x()() Re L x()() 

 
 

0<

8 The LMI Lab

8-36

• Decompose every complex matrix coefficient A as

A = A1 + jA2

where A1 and A2 are real

• Carry out all complex matrix products. This yields affine expressions in X1,
X2 for the real and imaginary parts of each LMI, and an equivalent
real-valued LMI is readily derived from the above observation.

For LMIs without outer factor, a streamlined version of this procedure consists
of replacing any occurrence of the matrix variable X = X1 + jX2 by

and any fixed matrix A = A1 + jA2, including real ones,by

For instance, the real counterpart of the LMI system

(8-11)

reads (given the decompositions M = M1 + jM2 and X = X1 + jX2 with Mj, Xj real):

Note that X = XH in turn requires that and .
Consequently, X1 and X2 should be declared as symmetric and skew-
symmetric matrix variables, respectively.

Assuming, for instance, that M ∈ C5×5, the LMI system (8-11) would be
specified as follows:

X1 X2

X– 2 X1 
 
 
 

A1 A2
A– 2 A1 

 
 
 

MHXM X, X XH I>=<

M1 M2

M– 2 M1 
 
 
 T

X1 X2

X– 2 X1 
 
 
  M1 M2

M– 2 M1 
 
 
  X1 X2

X– 2 X1 
 
 
 

<

X1 X2

X– 2 X1 
 
 
 

I<

X1 XH= X2 X2
T+ 2 0=

Advanced Topics

8-37

M1=real(M), M2=imag(M)
bigM=[M1 M2;-M2 M1]
setlmis([])

% declare bigX=[X1 X2;-X2 X1] with X1=X1' and X2+X2'=0:

[X1,n1,sX1] = lmivar(1,[5 1])
[X2,n2,sX2] = lmivar(3,skewdec(5,n1))
bigX = lmivar(3,[sX1 sX2;-sX2 sX1])

% describe the real counterpart of (1.12):

lmiterm([1 1 1 0],1)
lmiterm([1 1 1 bigX],1,1)
lmiterm([2 1 1 bigX],bigM',bigM)
lmiterm([2 1 1 bigX],1,1)

lmis = getlmis

Note the three-step declaration of the structured matrix variable bigX =

1 Specify X1 as a (real) symmetric matrix variable and save its structure
description sX1 as well as the number n1 of decision variables used in X1 .

2 Specify X2 as a skew-symmetric matrix variable using Type 3 of lmivar and
the utility skewdec. The command skewdec(5,n1) creates a 5-by–5
skew-symmetric structure depending on the decision variables n1 + 1,
n1 + 2,...

3 Define the structure of bigX in terms of the structures sX1 and sX2 of X1 and
X2 .

See the previous subsection for more details on such structure manipulations.

X1 X2

X– 2 X1 
 
 
 

:

8 The LMI Lab

8-38

Specifying cTx Objectives for mincx
The LMI solver mincx minimizes linear objectives of the form cTx where x is the
vector of decision variables. In most control problems, however, such objectives
are expressed in terms of the matrix variables rather than of x. Examples
include Trace(X) where X is a symmetric matrix variable, or uTXu where u is a
given vector.

The function defcx facilitates the derivation of the c vector when the objective
is an affine function of the matrix variables. For the sake of illustration,
consider the linear objective

Trace(X) + Px0

where X and P are two symmetric variables and x0 is a given vector. If lmisys
is the internal representation of the LMI system and if x0, X, P have been
declared by

x0 = [1;1]
setlmis([])
X = lmivar(1,[3 0])
P = lmivar(1,[2 1])

:
:

lmisys = getlmis

the c vector such that cTx = Trace(X) + Px0 can be computed as follows:

n = decnbr(lmisys)
c = zeros(n,1)

for j=1:n,
[Xj,Pj] = defcx(lmisys,j,X,P)
c(j) = trace(Xj) + x0'*Pj*x0

end
The first command returns the number of decision variables in the problem and
the second command dimensions c accordingly. Then the for loop performs the
following operations:

1 Evaluate the matrix variables X and P when all entries of the decision vector
x are set to zero except xj := 1. This operation is performed by the function
defcx. Apart from lmisys and j, the inputs of defcx are the identifiers X and

x0
T

x0
T

Advanced Topics

8-39

P of the variables involved in the objective, and the outputs Xj and Pj are the
corresponding values.

2 Evaluate the objective expression for X := Xj and P := Pj. This yields the
j-th entry of c by definition.

In our example the result is

c =
3
1
2
1

Other objectives are handled similarly by editing the following generic
skeleton:

n = decnbr(LMI system)
c = zeros(n,1)
for j=1:n,

[matrix values] = defcx(LMI system,j,
matrix identifiers)

c(j) = objective(matrix values)
end

Feasibility Radius
When solving LMI problems with feasp, mincx, or gevp, it is possible to
constrain the solution x to lie in the ball

xTx < R2

where R > 0 is called the feasibility radius. This specifies a maximum
(Euclidean norm) magnitude for x and avoids getting solutions of very large
norm. This may also speed up computations and improve numerical stability.
Finally, the feasibility radius bound regularizes problems with redundant
variable sets. In rough terms, the set of scalar variables is redundant when an
equivalent problem could be formulated with a smaller number of variables.

The feasibility radius R is set by the third entry of the options vector of the LMI
solvers. Its default value is R = 109 . Setting R to a negative value means “no
rigid bound,” in which case the feasibility radius is increased during the

8 The LMI Lab

8-40

optimization if necessary. This “flexible bound” mode may yield solutions of
large norms.

Well-Posedness Issues
The LMI solvers used in the LMI Lab are based on interior-point optimization
techniques. To compute feasible solutions, such techniques require that the
system of LMI constraints be strictly feasible, that is, the feasible set has a
nonempty interior. As a result, these solvers may encounter difficulty when the
LMI constraints are feasible but not strictly feasible, that is, when the LMI

L(x) ð 0

has solutions while

L(x) < 0

has no solution.

For feasibility problems, this difficulty is automatically circumvented by
feasp, which reformulates the problem

(8-12)

as

(8-13)

In this modified problem, the LMI constraint is always strictly feasible in x, t
and the original LMI (8-12) is feasible if and only if the global minimum tmin of
(8-13) satisfies

tmin ð 0

For feasible but not strictly feasible problems, however, the computational
effort is typically higher as feasp strives to approach the global optimum tmin
= 0 to a high accuracy.

For the LMI problems addressed by mincx and gevp, nonstrict feasibility
generally causes the solvers to fail and to return an “infeasibility” diagnosis.
Although there is no universal remedy for this difficulty, it is sometimes
possible to eliminate underlying algebraic constraints to obtain a strictly
feasible problem with fewer variables.

Find x such that L x() 0≤

Minimize t subject to Lx t I.×<

Advanced Topics

8-41

Another issue has to do with homogeneous feasibility problems such as

ATP + P A < 0, P > 0

While this problem is technically well-posed, the LMI optimization is likely to
produce solutions close to zero (the trivial solution of the nonstrict problem). To
compute a nontrivial Lyapunov matrix and easily differentiate between
feasibility and infeasibility, replace the constraint P > 0-by-P > αI with α > 0.
Note that this does not alter the problem due to its homogeneous nature.

Semi-Definite B(x) in gevp Problems
Consider the generalized eigenvalue minimization problem

(8-14)

Technically, the positivity of B(x) for some x ∈ Rn is required for the
well-posedness of the problem and the applicability of polynomial-time
interior-point methods. Hence problems where

cannot be directly solved with gevp. A simple remedy consists of replacing the
constraints

A(x) < B(x), B(x) > 0

by

where Y is an additional symmetric variable of proper dimensions. The
resulting problem is equivalent to (8-14) and can be solved directly with gevp.

Efficiency and Complexity Issues
As explained in the beginning of the chapter, the term-oriented description of
LMIs used in the LMI Lab typically leads to higher efficiency than the
canonical representation

Minimize λ subject to A x() λB x(), < B x() 0, > C x() 0.<

B x() B1 x() 0

0 0 
 
 

, with B1 x() 0> strictly feasible=

A x() Y 0
0 0 

 
 

, < Y λ< B1 x() B1 x() 0>,

8 The LMI Lab

8-42

(8-15)

This is no longer true, however, when the number of variable terms is nearly
equal to or greater than the number N of decision variables in the problem. If
your LMI problem has few free scalar variables but many terms in each LMI,
it is therefore preferable to rewrite it as (8-15) and to specify it in this form.
Each scalar variable xj is then declared independently and the LMI terms are
of the form xjAj.

If M denotes the total row size of the LMI system and N the total number of
scalar decision variables, the flop count per iteration for the feasp and mincx
solvers is proportional to

• N3 when the least-squares problem is solved via. Cholesly factorization of the
Hessian matrix (default) [2]

• M-by-N2 when numerical instabilities warrant the use of QR factorization
instead

While the theory guarantees a worst-case iteration count proportional to M, the
number of iterations actually performed grows slowly with M in most
problems. Finally, while feasp and mincx are comparable in complexity, gevp
typically demands more computational effort. Make sure that your LMI
problem cannot be solved with mincx before using gevp.

Solving M + PTXQ + QTXTP < 0
In many output-feedback synthesis problems, the design can be performed in
two steps:

1 Compute a closed-loop Lyapunov function via LMI optimization.

2 Given this Lyapunov function, derive the controller state-space matrices by
solving an LMI of the form

(8-16)

where M, P, Q are given matrices and X is an unstructured m-by-n matrix
variable.

A0 x1A1 … xNAN+ + + 0.<

M PTXQ QTXTP+ + 0<

Advanced Topics

8-43

It turns out that a particular solution Xc of (8-16) can be computed via simple
linear algebra manipulations [1]. Typically, Xc corresponds to the center of the
ellipsoid of matrices defined by (8-16).

The function basiclmi returns the “explicit” solution Xc:

Xc = basiclmi(M,P,Q)

Since this central solution sometimes has large norm, basiclmi also offers the
option of computing an approximate least-norm solution of (8-16). This is done
by

X = basiclmi(M,P,Q,'Xmin')

and involves LMI optimization to minimize ||X||.

8 The LMI Lab

8-44

References
[1] Gahinet, P., and P. Apkarian, “A Linear Matrix Inequality Approach to H∞
Control,” Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421–448.

[2] Nemirovski, A., and P. Gahinet, “The Projective Method for Solving Linear
Matrix Inequalities,” Proc. Amer. Contr. Conf., 1994, pp. 840–844.

[3] Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in
Convex Programming: Theory and Applications, SIAM Books, Philadelphia,
1994.

[4] Shamma, J.S., “Robustness Analysis for Time-Varying Systems,” Proc.
Conf. Dec. Contr., 1992, pp. 3163–3168.

9

Command Reference

9 Command Reference

9-2

This chapter gives a detailed description of all LMI Control Toolbox functions.
Functions are grouped by application in tables at the beginning of this chapter.
In addition, information on each function is aavailable through the online Help
facility.

List of Functions

9-3

List of Functions

Linear Algebra

basiclmi Solve M + PTXQ + QTXTP < 0

care Continuous-time Riccati solver

dare Discrete-time Riccati solver

dricpen Generalized Riccati solver (discrete-time)

ricpen Generalized Riccati solver (continuous-time)

Linear Time-Invariant Systems

ltisys Specify a SYSTEM matrix

ltiss Extract state-space data

ltitf Compute the transfer function (SISO)

sbalanc Balance a state-space realization via diagonal similarity

sinfo Return information about a SYSTEM matrix

sinv Invert an LTI system

splot Plot the time and frequency responses of LTI systems

spol Return the poles of an LTI system

sresp Frequency response of an LTI system

ssub Extract a subsystem from a system

Interconnection of Systems

sadd Form the parallel interconnection of systems

sconnect Describe general control loops

9 Command Reference

9-4

sdiag Append (concatenate) several systems

slft Form linear-fractional interconnections

sloop Form elementary feedback interconnections

smult Form the series interconnection of systems

Polytopic and Parameter-Dependent Systems (P-Systems)

aff2pol Polytopic representation of an affine parameter-dependent
system

pdsimul Simulation of parameter-dependent systems along a
parameter trajectory

psinfo Retrieve information about a P-system

psys Specify a P-system

pvec Specify a vector of uncertain or time-varying parameters

pvinfo Interpret the output of pvec

Dynamical Uncertainty

ublock Specify an uncertainty block

udiag Specify block-diagonal uncertainty from individual
uncertainty blocks

uinfo Display the characteristics of uncertainty structures

aff2lft Linear-fractional representation of an affine
parameter-dependent system

Interconnection of Systems

List of Functions

9-5

Robustness Analysis

decay Quadratic decay rate

dnorminf RMS gain of a discrete-time LTI system

muperf Robust performance of an uncertain LTI system

mustab Robust stability of an uncertain LTI system

norminf H∞ norm (RMS gain) of an LTI system

norm2 H2 performance of an LTI system

quadperf Quadratic performance

quadstab Quadratic stability

pdlstab Robust stability analysis via parameter-dependent
Lyapunov functions

popov Popov criterion

9 Command Reference

9-6

H∞ Control and Loop Shaping

Continuous Time

hinflmi LMI-based H∞ synthesis

hinfmix Mixed H2/H∞ synthesis with regional pole placement

hinfric Riccati-based H∞ synthesis

hinfpar Extract state-space data from the plant SYSTEM matrix

lmireg Specify LMI regions for pole placement

magshape Graphical specification of the shaping filters

msfsyn Multi-model/objective state-feedback synthesis

sconnect Specify general control structures

Discrete Time

dhinflmi LMI-based H∞ synthesis

dhinfric Riccati-based H∞ synthesis

hinfpar Retrieve the plant state-space data

Gain Scheduling

hinfgs Synthesis of robust gain-scheduled controllers

pdsimul Simulation along parameter trajectories

LMI Lab: Specifying and Solving LMIs

9-7

LMI Lab: Specifying and Solving LMIs

Specification of LMIs

lmiedit GUI for LMI specification

setlmis Initialize the LMI description

lmivar Define a new matrix variable

lmiterm Specify the term content of an LMI

newlmi Attach an identifying tag to new LMIs

getlmis Get the internal description of the LMI system

LMI Solvers

feasp Feasibility of a system of LMIs

gevp Generalized eigenvalue minimization under LMI
constraints

mincx Minimization of a linear objective under LMI constraints

dec2mat Convert the output of the solvers into values of the matrix
variables

defcx Help define cTx objectives for mincx

Evaluation of LMIs/Validation of Results

evallmi Evaluate all variable terms for given values of the decision
variables

showlmi Return the left- and right-hand sides of an evaluated LMI

setmvar Set a matrix variable to a given value

9 Command Reference

9-8

LMI Lab: Additional Facilities

Information Retrieval

decinfo Visualize the mapping between matrix variable entries and
decision variables

decnbr Get the number of decision variables, that is, the number of
free scalar variables in a problem

lmiinfo Inquire about an existing system of LMIs

lminbr Get the number of LMIs in a problem

matnbr Get the number of matrix variables in a problem

Manipulations of LMI Variables

decinfo Express each matrix variable entry in terms of the decision
variables

dec2mat Return the matrix variable values given a vector of decision
variables

mat2dec Return the vector of decision variables given the matrix
variable values

Modification of LMI Systems

dellmi Delete an LMI from the system

delmvar Remove a matrix variable from the problem

setmvar Instantiate a matrix variable

aff2lft

9-9

9aff2lftPurpose Compute the linear-fractional representation of an affine parameter-
dependent system

Syntax [sys,delta] = aff2lft(affsys)

Description The input argument affsys describes an affine parameter-dependent system
of the form

E(p) = A(p)x + B(p)u

y = C(p)x + D(p)u

where p = (p1, . . ., pn) is a vector of uncertain or time-varying real parameters
taking values in a box:

Such systems are specified with psys.

Given this affine parameter-dependent model, the function aff2lft returns
the equivalent linear-fractional representation

where

• P(s) is an LTI system called the nominal plant

• The block-diagonal operator ∆ = diag(δ1Ir1
, . . ., δnIrn) accounts for the

uncertainty on the real parameters pj. Each scalar δj is real, possibly
repeated (rj > 1), and bounded by

x·

pj pj pj≤ ≤

∆

P(s)u y

δj

pj pj–
2

----------------≤

aff2lft

9-10

The SYSTEM matrix of P and the description of ∆ are returned in sys and delta.
Closing the loop with ∆ ≡ 0 yields the LTI system

E(pav) = A(pav)x + B(pav)u

y = C(pav)x + D(pav)u

where pav = is the vector of average parameter values.

Example See example in “Sector-Bounded Uncertainty” on page 2-30.

See Also psys, pvec, ublock, udiag

x·

1
2
--- p p+()

aff2pol

9-11

9aff2pol Purpose Convert affine parameter-dependent models to polytopic ones

Syntax polsys = aff2pol(affsys)

Description aff2pol derives a polytopic representation polsys of the affine parameter-
dependent system

(9-1)

(9-2)

where p = (p1, . . ., pn) is a vector of uncertain or time-varying real parameters
taking values in a box or a polytope. The description affsys of this system
should be specified with psys.

The vertex systems of polsys are the instances of (9-1)–(9-2) at the vertices pex
of the parameter range, i.e., the SYSTEM matrices

for all corners pex of the parameter box or all vertices pex of the polytope of
parameter values.

Example “Example 2.1” on page 2-21.

See Also psys, pvec, aff2lft

E p()x· A p()x B p()u+=

y C p()x D p()u+=

A pex() jE pex()+ B pex()

C pex() D pex() 
 
 
 

basiclmi

9-12

9basiclmi Purpose Compute a solution X of M + PTXQ + QTXTP < 0

Syntax X = basiclmi(M,P,Q,option)

Description basiclmi computes a solution X of the LMI

M + PTXQ + QTXTP < 0

where M is symmetric and P,Q are matrices of compatible dimensions. If WP
and WQ are orthonormal bases of the null space of P and Q, this LMI is solvable
if and only if

WP < 0 and WQ < 0

The output is [] when these conditions are not satisfied.

The solution X is derived by standard linear algebra manipulations. When
option is set to 'Xmin', basiclmi computes the least-norm solution by solving
the LMI problem

Minimize τ

subject to M + PTXQ + QTXTP < 0

See Also feasp, mincx

WP
TM WQ

T M

τI X

XT τI 
 
 

0≥

care

9-13

9care Purpose Solve continuous-time Riccati equations (CARE)

Syntax X = care(A,B,Q,R,S,E)
[X,L,G,RR] = care(A,B,Q,R,S,E)

Description This function computes the stabilizing solution X of the Riccati equation

ATXE + ETXA – (ETXB + S)R–1(BTXE + ST) + Q = 0

where E is an invertible matrix. The solution is computed by unitary deflation
of the associated Hamiltonian pencil

For solvability, the pencil H – λL must have no finite generalized eigenvalue
on the imaginary axis.

If the input arguments S and E are omitted, the matrices S and E are set to the
default values S = 0 and E = I. The function care also returns the vector L of
closed-loop eigenvalues, the gain matrix G given by

G = –R–1(BTXE + ST),

and the Frobenius norm RR of the relative residual matrix.

Reference Laub, A. J., “A Schur Method for Solving Algebraic Riccati Equations,” IEEE
Trans. Aut. Contr., AC–24 (1979), pp. 913–921.

Arnold, W.F., and A.J. Laub, “Generalized Eigenproblem Algorithms and
Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984), pp. 1746–
1754.

See Also ricpen, cares, dare

H λL–

A 0 B

Q– A– T
S–

S
T

B
T

R

λ
E 0 0

0 E
T

0
0 0 0

–=

dare

9-14

9dare Purpose Solve discrete-time Riccati equations (DARE)

Syntax X = dare(A,B,Q,R,S,E)
[X,L,G,RR] = dare(A,B,Q,R,S,E)

Description dare computes the stabilizing solution X of the algebraic Riccati equation

(9-3)

where E is an invertible matrix. The solution is computed by unitary deflation
of the associated symplectic pencil

For solvability, the pencil H – λL must have no finite generalized eigenvalue
on the unit circle.

If the input arguments S and E are omitted, the matrices S and E are set to the
default values S = 0 and E = I. The function dare also returns the vector L of
closed-loop eigenvalues, the gain matrix G given by

G = –(BTXB + R)–1(BTXA + ST),

and the Frobenius norm RR of the relative residual matrix.

Remark The function dricpen is a variant of dare where the inputs are the two matrices
H and L defined above. The syntax is

X = dricpen(H,L)

or

[X1,X2] = dricpen(H,L)

This second syntax returns two matrices X1, X2 such that

• has orthonormal columns,

A
T

XA E
T

XE– A
T

XB S+() B
T

XB R+()
1–

B
T

XA S
T

+()– Q+ 0=

H λL–

A 0 B

Q– E– T
S–

S
T

0 R

λ

E 0 0

0 A
T

0

0 B– T
0

–=

X1

X2

dare

9-15

• is the stabilizing solution of (9-3).

Reference Pappas, T., A.J. Laub, and N.R. Sandell, “On the Numerical Solution of the
Discrete-Time Algebraic Riccati Equation,” IEEE Trans. Aut. Contr., AC–25
(1980), pp. 631–641.

Arnold, W.F., and A.J. Laub, “Generalized Eigenproblem Algorithms and
Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984), pp. 1746–
1754.

See Also dricpen, dares, care

X X2X1
1–=

decay

9-16

9decay Purpose Quadratic decay rate of polytopic or affine P-systems

Syntax [drate,P] = decay(ps,options)

Description For affine parameter-dependent systems

E(p) = A(p)x, p(t) = (p1(t), . . ., pn(t))

or polytopic systems

E(t) = A(t)x, (A, E) ∈ Co{(A1, E1), . . ., (An, En)},

decay returns the quadratic decay rate drate, i.e., the smallest α ∈ R such that

ATQE + EQAT < αQ

holds for some Lyapunov matrix Q > 0 and all possible values of (A, E). Two
control parameters can be reset via options(1) and options(2):

• If options(1)=0 (default), decay runs in fast mode, using the least expensive
sufficient conditions. Set options(1)=1 to use the least conservative
conditions.

• options(2) is a bound on the condition number of the Lyapunov matrix P.
The default is 109.

Example See “Example 3.3” on page 3-9.

See Also quadstab, pdlstab, mustab, psys

x·

x·

decinfo

9-17

9decinfo Purpose Describe how the entries of a matrix variable X relate to the decision variables

Syntax decinfo(lmisys)
decX = decinfo(lmisys,X)

Description The function decinfo expresses the entries of a matrix variable X in terms of
the decision variables x1, . . ., xN. Recall that the decision variables are the free
scalar variables of the problem, or equivalently, the free entries of all matrix
variables described in lmisys. Each entry of X is either a hard zero, some
decision variable xn, or its opposite –xn.

If X is the identifier of X supplied by lmivar, the command

decX = decinfo(lmisys,X)

returns an integer matrix decX of the same dimensions as X whose (i, j) entry is

• 0 if X(i, j) is a hard zero

• n if X(i, j) = xn (the n-th decision variable)

• –n if X(i, j) = –xn

decX clarifies the structure of X as well as its entry-wise dependence on
x1, . . ., xN. This is useful to specify matrix variables with atypical structures
(see lmivar).

decinfo can also be used in interactive mode by invoking it with a single
argument. It then prompts the user for a matrix variable and displays in return
the decision variable content of this variable.

Example 1 Consider an LMI with two matrix variables X and Y with structure:

• X = x I3 with x scalar

• Y rectangular of size 2-by-1

If these variables are defined by

setlmis([])
X = lmivar(1,[3 0])
Y = lmivar(2,[2 1])

:
:

lmis = getlmis

decinfo

9-18

the decision variables in X and Y are given by

dX = decinfo(lmis,X)

dX =
1 0 0
0 1 0
0 0 1

dY = decinfo(lmis,Y)

dY =
2
3

This indicates a total of three decision variables x1, x2, x3 that are related to the
entries of X and Y by

Note that the number of decision variables corresponds to the number of free
entries in X and Y when taking structure into account.

Example 2 Suppose that the matrix variable X is symmetric block diagonal with one 2-by-2
full block and one 2-by-2 scalar block, and is declared by

setlmis([])
X = lmivar(1,[2 1;2 0])

:
lmis = getlmis

The decision variable distribution in X can be visualized interactively as
follows:

decinfo(lmis)

There are 4 decision variables labeled x1 to x4 in this problem.

X

x1 0 0

0 x1 0

0 0 x1 
 
 
 
 
 

, Y
x2

x3 
 
 
 

==

decinfo

9-19

Matrix variable Xk of interest (enter k between 1 and 1, or 0 to
quit):

?> 1

The decision variables involved in X1 are among {-x1,...,x4}.
Their entry-wise distribution in X1 is as follows
 (0,j>0,-j<0 stand for 0,xj,-xj, respectively):

X1 :

1 2 0 0
2 3 0 0
0 0 4 0
0 0 0 4

Matrix variable Xk of interest (enter k between 1 and 1, or 0 to
quit):

?> 0

See Also lmivar, mat2dec, dec2mat, decnbr, decinfo

decnbr

9-20

9decnbr Purpose Give the total number of decision variables in a system of LMIs

Syntax ndec = decnbr(lmisys)

Description The function decnbr returns the number ndec of decision variables (free scalar
variables) in the LMI problem described in lmisys. In other words, ndec is the
length of the vector of decision variables.

Example For an LMI system lmis with two matrix variables X and Y such that

• X is symmetric block diagonal with one 2-by-2 full block, and one 2-by-2
scalar block

• Y is 2-by-3 rectangular,

the number of decision variables is

ndec = decnbr(LMIs)

ndec =
 10

This is exactly the number of free entries in X and Y when taking structure into
account (see decinfo for more details).

See Also dec2mat, decinfo, mat2dec

dec2mat

9-21

9dec2mat Purpose Given values of the decision variables, derive the corresponding values of the
matrix variables

Syntax valX = dec2mat(lmisys,decvars,X)

Description Given a value decvars of the vector of decision variables, dec2mat computes the
corresponding value valX of the matrix variable with identifier X. This
identifier is returned by lmivar when declaring the matrix variable.

Recall that the decision variables are all free scalar variables in the LMI
problem and correspond to the free entries of the matrix variables X1, . . ., XK.
Since LMI solvers return a feasible or optimal value of the vector of decision
variables, dec2mat is useful to derive the corresponding feasible or optimal
values of the matrix variables.

Example See the description of feasp.

See Also mat2dec, decnbr, decinfo

defcx

9-22

9defcx Purpose Help specify cTx objectives for the mincx solver

Syntax [V1,...,Vk] = defcx(lmisys,n,X1,...,Xk)

Description defcx is useful to derive the c vector needed by mincx when the objective is
expressed in terms of the matrix variables.

Given the identifiers X1,...,Xk of the matrix variables involved in this
objective, defcx returns the values V1,...,Vk of these variables when the n-th
decision variable is set to one and all others to zero. See the example in
“Specifying cTx Objectives for mincx” on page 8-38 for more details on how to
use this function to derive the c vector.

See Also mincx, decinfo

dellmi

9-23

9dellmi Purpose Remove an LMI from a given system of LMIs

Syntax newsys = dellmi(lmisys,n)

Description dellmi deletes the n-th LMI from the system of LMIs described in lmisys. The
updated system is returned in newsys.

The ranking n is relative to the order in which the LMIs were declared and
corresponds to the identifier returned by newlmi. Since this ranking is not
modified by deletions, it is safer to refer to the remaining LMIs by their
identifiers. Finally, matrix variables that only appeared in the deleted LMI are
removed from the problem.

Example Suppose that the three LMIs

X1 + X1A1 + Q1 < 0

X2 + X2A2 + Q2 < 0

X3 + X3A3 + Q3 < 0

have been declared in this order, labeled LMI1, LMI2, LMI3 with newlmi, and
stored in lmisys. To delete the second LMI, type

lmis = dellmi(lmisys,LMI2)

lmis now describes the system of LMIs

(9-4)

(9-5)

and the second variable X2 has been removed from the problem since it no
longer appears in the system (9-4)–(9-5).

To further delete (9-5), type

lmis = dellmi(lmis,LMI3)

or equivalently

lmis = dellmi(lmis,3)

A1
T

A2
T

A3
T

A1
TX1 X1A1 Q1+ + 0<

A3
TX3 X3A3 Q3+ + 0<

dellmi

9-24

Note that (9-5) has retained its original ranking after the first deletion.

See Also newlmi, lmiedit, lmiinfo

delmvar

9-25

9delmvar Purpose Delete one of the matrix variables of an LMI problem

Syntax newsys = delmvar(lmisys,X)

Description delmvar removes the matrix variable X with identifier X from the list of
variables defined in lmisys. The identifier X should be the second argument
returned by lmivar when declaring X. All terms involving X are automatically
removed from the list of LMI terms. The description of the resulting system of
LMIs is returned in newsys.

Example Consider the LMI

involving two variables X and Y with identifiers X and Y. To delete the variable
X, type

lmisys = delmvar(lmisys,X)

Now lmisys describes the LMI

with only one variable Y. Note that Y is still identified by the label Y.

See Also lmivar, setmvar, lmiinfo

0 ATY BTYA Q+ + CX D+

XTCT DT+ X XT+()– 
 
 
 

<

0 ATYB BTYA Q+ + D

DT 0 
 
 
 

<

dhinflmi

9-26

9dhinflmi Purpose LMI-based H∞ synthesis for discrete-time systems

Syntax gopt = dhinflmi(P,r)
[gopt,K] = dhinflmi(P,r)
[gopt,K,x1,x2,y1,y2] = dhinflmi(P,r,g,tol,options)

Description dhinflmi is the counterpart of hinflmi for discrete-time plants. Its syntax and
usage mirror those of hinflmi.

The H∞ performance γ is achievable if and only if the following system of LMIs
has symmetric solutions R and S:

where N12 and N21 denote bases of the null spaces of and (C2, D21),
respectively. The function dhinflmi returns solutions R = x1 and S = y1 of this
LMI system for γ = gopt (the matrices x2 and y2 are set to gopt-by-I).

Reference Gahinet, P. and P. Apkarian, “A Linear Matrix Inequality Approach to H∞
Control,” Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421–448.

See Also dhinfric, hinflmi

N12 0

0 I 
 
 

T ARAT R– ARC1
T B1

C1RAT γI– C1RC1
T+ D11

B1
T D11

T γI– 
 
 
 
 
 
 

N12 0

0 I 
 
 

0<

N21 0

0 I 
 
 

T ATSA S– ATSB1 C1
T

B1
TSA γI– B1

TSB1+ D11
T

C1 D11 γI– 
 
 
 
 
 
 

N21 0

0 I 
 
 

0<

R I
I S 

 
 

0≥

B2
T D12

T,()

dhinfric

9-27

9dhinfric Purpose Riccati-based H∞ synthesis for discrete-time systems

Syntax gopt = dhinfric(P,r)
[gopt,K] = dhinfric(P,r)
[gopt,K,x1,x2,y1,y2] = dhinfric(P,r,gmin,gmax,tol,options)

Description dhinfric is the counterpart of hinfric for discrete-time plants P(s) with
equations:

xk+1 = Axk + B1 wk + B2uk

zk = C1xk + D11 wk + D12uk

yk = C2xk + D21 wk + D22uk.

See dnorminf for a definition of the RMS gain (H∞ performance) of
discrete-time systems. The syntax and usage of dhinfric are identical to those
of hinfric.

Restriction D12 and D21 must have full rank.

See Also dhinflmi, hinfric

dnorminf

9-28

9dnorminfPurpose Compute the random mean-squares (RMS) gain of discrete-time systems

Syntax [gain,peakf] = dnorminf(g,tol)

Description For sampled-data LTI systems with state-space equations

Exk+1 = Axk + Buk

yk+1 = Cxk + Duk

and transfer function G(z) = D + C(zE – A)–1B, dnorminf computes the peak
gain

(9-6)

of the response on the unit circle. When G(z) is stable, this peak gain coincides
with the RMS gain or H∞ norm of G, that is,

The input g is a SYSTEM matrix containing the state-space data A, B, C, D, E.
On output, dnorminf returns the RMS gain gain and the “frequency” peakf at
which this gain is attained, i.e., the value of ω maximizing (9-6). The relative
accuracy on the computed RMS gain can be adjusted with the optional input
tol (the default value is 10–2).

Reference Boyd, S., V. Balakrishnan, and P. Kabamba, “A Bisection Method for
Computing the H∞ Norm of a Transfer Matrix and Related Problems,” Math.
Contr. Sign. Syst., 2 (1989), pp. 207–219.

Bruisma, N.A., and M. Steinbuch, “A Fast Algorithm to Compute the H∞-Norm
of a Transfer Function Matrix,” Syst. Contr. Letters, 14 (1990), pp. 287–293.

Robel, G., “On Computing the Infinity Norm,” IEEE Trans. Aut. Contr., AC–34
(1989), pp. 882–884.

See Also norminf

G ∞ sup σmax G ejω()()=
ω 0 2π,[]∈

G ∞ sup
y l2
u l2
-----------=

u t2∈
u 0≠

evallmi

9-29

9evallmi Purpose Given a particular instance of the decision variables, evaluate all variable
terms in the system of LMIs

Syntax evalsys = evallmi(lmisys,decvars)

Description evallmi evaluates all LMI constraints for a particular instance decvars of the
vector of decision variables. Recall that decvars fully determines the values of
the matrix variables X1, . . ., XK. The “evaluation” consists of replacing all terms
involving X1, . . ., XK by their matrix value. The output evalsys is an LMI
system containing only constant terms.

The function evallmi is useful for validation of the LMI solvers’ output. The
vector returned by these solvers can be fed directly to evallmi to evaluate all
variable terms. The matrix values of the left- and right-hand sides of each LMI
are then returned by showlmi.

Observation evallmi is meant to operate on the output of the LMI solvers. To evaluate all
LMIs for particular instances of the matrix variables X1, . . ., XK, first form the
corresponding decision vector x with mat2dec and then call evallmi with x as
input.

Example Consider the feasibility problem of finding X > 0 such that

ATXA – X + I < 0

where This LMI system is defined by:

setlmis([])
X = lmivar(1,[2 1]) % full symmetric X

lmiterm([1 1 1 X],A',A) % LMI #1: A'*X*A
lmiterm([1 1 1 X],-1,1) % LMI #1: -X
lmiterm([1 1 1 0],1) % LMI #1: I
lmiterm([-2 1 1 X],1,1) % LMI #2: X
lmis = getlmis

To compute a solution xfeas, call feasp by

[tmin,xfeas] = feasp(lmis)

A 0.5 0.2–
0.1 0.7– 

 
 

.=

evallmi

9-30

The result is

tmin =
-4.7117e+00

xfeas' =
1.1029e+02 -1.1519e+01 1.1942e+02

The LMI constraints are therefore feasible since tmin < 0. The solution X
corresponding to the feasible decision vector xfeas would be given by
X = dec2mat(lmis,xfeas,X).

To check that xfeas is indeed feasible, evaluate all LMI constraints by typing

evals = evallmi(lmis,xfeas)

The left- and right-hand sides of the first and second LMIs are then given by

[lhs1,rhs1] = showlmi(evals,1)
[lhs2,rhs2] = showlmi(evals,2)

and the test

eig(lhs1-rhs1)
ans =

-8.2229e+01
-5.8163e+01

confirms that the first LMI constraint is satisfied by xfeas.

See Also showlmi, setmvar, dec2mat, mat2dec

feasp

9-31

9feasp Purpose Find a solution to a given system of LMIs

Syntax [tmin,xfeas] = feasp(lmisys,options,target)

Description The function feasp computes a solution xfeas (if any) of the system of LMIs
described by lmisys. The vector xfeas is a particular value of the decision
variables for which all LMIs are satisfied.

Given the LMI system

(9-7)

xfeas is computed by solving the auxiliary convex program:

Minimize t subject to .

The global minimum of this program is the scalar value tmin returned as first
output argument by feasp. The LMI constraints are feasible if tmin ð 0 and
strictly feasible if tmin < 0. If the problem is feasible but not strictly feasible,
tmin is positive and very small. Some post-analysis may then be required to
decide whether xfeas is close enough to feasible.

The optional argument target sets a target value for tmin. The optimization
code terminates as soon as a value of t below this target is reached. The default
value is target = 0.

Note that xfeas is a solution in terms of the decision variables and not in terms
of the matrix variables of the problem. Use dec2mat to derive feasible values of
the matrix variables from xfeas.

Control
Parameters

The optional argument options gives access to certain control parameters for
the optimization algorithm. This five-entry vector is organized as follows:

• options(1) is not used

• options(2) sets the maximum number of iterations allowed to be performed
by the optimization procedure (100 by default)

• options(3) resets the feasibility radius. Setting options(3) to a value R >
0 further constrains the decision vector x = (x1, . . ., xN) to lie within the ball

N
T

LxN M
T≤ R x()M,

NTL x()N MTR x()– M tI≤

feasp

9-32

In other words, the Euclidean norm of xfeas should not exceed R. The
feasibility radius is a simple means of controlling the magnitude of solutions.
Upon termination, feasp displays the f-radius saturation, that is, the norm
of the solution as a percentage of the feasibility radius R.

The default value is R = 109. Setting options(3) to a negative value
activates the “flexible bound” mode. In this mode, the feasibility radius is
initially set to 108, and increased if necessary during the course of
optimization

• options(4) helps speed up termination. When set to an integer value J > 0,
the code terminates if t did not decrease by more than one percent in relative
terms during the last J iterations. The default value is 10. This parameter
trades off speed vs. accuracy. If set to a small value (< 10), the code
terminates quickly but without guarantee of accuracy. On the contrary, a
large value results in natural convergence at the expense of a possibly large
number of iterations.

• options(5) = 1 turns off the trace of execution of the optimization
procedure. Resetting options(5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control
parameter to its default value. Consequently, there is no need to redefine the
entire vector when changing just one control parameter. To set the maximum
number of iterations to 10, for instance, it suffices to type

options=zeros(1,5) % default value for all parameters
options(2)=10

Memory
Problems

When the least-squares problem solved at each iteration becomes ill
conditioned, the feasp solver switches from Cholesky-based to QR-based linear
algebra (see“Memory Problems” on page 9-74 for details). Since the QR mode
typically requires much more memory, MATLAB may run out of memory and
display the message

??? Error using ==> feaslv
Out of memory. Type HELP MEMORY for your options.

xi
2

i 1=

N

∑ R2<

feasp

9-33

You should then ask your system manager to increase your swap space or, if no
additional swap space is available, set options(4) = 1. This will prevent
switching to QR and feasp will terminate when Cholesky fails due to
numerical instabilities.

Example Consider the problem of finding P > I such that

(9-8)

(9-9)

(9-10)

with data

This problem arises when studying the quadratic stability of the polytope of
matrices Co{A1, A2, A3} (see“Quadratic Stability” on page 3-6 for details).

To assess feasibility with feasp, first enter the LMIs (9-8)–(9-10) by:

setlmis([])
p = lmivar(1,[2 1])

lmiterm([1 1 1 p],1,a1,'s') % LMI #1
lmiterm([2 1 1 p],1,a2,'s') % LMI #2
lmiterm([3 1 1 p],1,a3,'s') % LMI #3
lmiterm([-4 1 1 p],1,1) % LMI #4: P
lmiterm([4 1 1 0],1) % LMI #4: I
lmis = getlmis

Then call feasp to find a feasible decision vector:

[tmin,xfeas] = feasp(lmis)

A1
TP PA1+ 0<

A2
TP PA2+ 0<

A3
TP PA3+ 0<

A1
1– 2
1 3– 

 
 

= , A2
0.8– 1.5
1.3 2.7– 

 
 

= , A3
1.4– 0.9
0.7 2.0– 

 
 

=

feasp

9-34

This returns tmin = -3.1363. Hence (9-8)–(9-10) is feasible and the dynamical
system = A(t)x is quadratically stable for A(t) ∈ Co{A1, A2, A3}.

To obtain a Lyapunov matrix P proving the quadratic stability, type

P = dec2mat(lmis,xfeas,p)

This returns

It is possible to add further constraints on this feasibility problem. For
instance, you can bound the Frobenius norm of P by 10 while asking tmin to be
less than or equal to –1. This is done by

[tmin,xfeas] = feasp(lmis,[0,0,10,0,0],-1)

The third entry 10 of options sets the feasibility radius to 10 while the third
argument -1 sets the target value for tmin. This yields tmin = -1.1745 and a
matrix P with largest eigenvalue λmax(P) = 9.6912.

Reference The feasibility solver feasp is based on Nesterov and Nemirovski’s Projective
Method described in

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex
Programming: Theory and Applications, SIAM, Philadelphia, 1994.

Nemirovski, A., and P. Gahinet, “The Projective Method for Solving Linear
Matrix Inequalities,” Proc. Amer. Contr. Conf., 1994, Baltimore, Maryland, pp.
840–844.

The optimization is performed by the C-MEX file feaslv.mex.

See Also mincx, gevp, dec2mat

x·

P 270.8 126.4
126.4 155.1 

 
 

=

getdg

9-35

9getdgPurpose Retrieve the D, G scaling matrices in problems

Syntax D = getdg(ds,i)

G = getdg(gs,i)

Description The function mustab computes the mixed-µ upper bound over a grid of
frequencies fs and returns the corresponding D, G scalings compacted in two
matrices ds and gs. The values of D, G at the frequency fs(i) are extracted
from ds and gs by getdg.

See Also mustab

getlmis

9-36

9getlmis Purpose Get the internal description of an LMI system

Syntax lmisys = getlmis

Description After completing the description of a given LMI system with lmivar and
lmiterm, its internal representation lmisys is obtained with the command

lmisys = getlmis

This MATLAB representation of the LMI system can be forwarded to the LMI
solvers or any other LMI-Lab function for subsequent processing.

See Also setlmis, lmivar, lmiterm, newlmi

gevp

9-37

9gevp Purpose Generalized eigenvalue minimization under LMI constraints

Syntax [lopt,xopt] = gevp(lmisys,nlfc,options,linit,xinit,target)

Description gevp solves the generalized eigenvalue minimization problem

Minimize λ subject to:

(9-11)

(9-12)

(9-13)

where C(x) < D(x) and A(x) < λB(x) denote systems of LMIs. Provided that
(9-11)–(9-12) are jointly feasible, gevp returns the global minimum lopt and
the minimizing value xopt of the vector of decision variables x. The
corresponding optimal values of the matrix variables are obtained with
dec2mat.

The argument lmisys describes the system of LMIs (9-11)–(9-13) for λ = 1. The
LMIs involving λ are called the linear-fractional constraints while (9-11)–(9-12)
are regular LMI constraints. The number of linear-fractional constraints (9-13)
is specified by nlfc. All other input arguments are optional. If an initial
feasible pair (λ0, x0) is available, it can be passed to gevp by setting linit to λ0
and xinit to x0. Note that xinit should be of length decnbr(lmisys) (the
number of decision variables). The initial point is ignored when infeasible.
Finally, the last argument target sets some target value for λ. The code
terminates as soon as it has found a feasible pair (λ, x) with λ ð target.

Caution When setting up your gevp problem, be cautious to

• Always specify the linear-fractional constraints (9-13) last in the LMI
system. gevp systematically assumes that the last nlfc LMI constraints are
linear fractional

• Add the constraint B(x) > 0 or any other LMI constraint that enforces it (see
Remark below). This positivity constraint is required for regularity and
well-posedness of the optimization problem (see the discussion in
“Well-Posedness Issues” on page 8-40).

C x() D x()<

0 B x()<

A x() λB x()<

gevp

9-38

Control
Parameters

The optional argument options gives access to certain control parameters of
the optimization code. In gevp, this is a five-entry vector organized as follows:

• options(1) sets the desired relative accuracy on the optimal value lopt
(default = 10–2).

• options(2) sets the maximum number of iterations allowed to be performed
by the optimization procedure (100 by default).

• options(3) sets the feasibility radius. Its purpose and usage are as for
feasp.

• options(4) helps speed up termination. If set to an integer value J > 0, the
code terminates when the progress in λ over the last J iterations falls below
the desired relative accuracy. By progress, we mean the amount by which λ
decreases. The default value is 5 iterations.

• options(5) = 1 turns off the trace of execution of the optimization
procedure. Resetting options(5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control
parameter to its default value.

Example Given

consider the problem of finding a single Lyapunov function V(x) = xTPx that
proves stability of

 = Aix (i = 1, 2, 3)

and maximizes the decay rate . This is equivalent to minimizing

α subject to

(9-14)

(9-15)

A1
1– 2
1 3– 

 
 

= , A2
0.8– 1.5
1.3 2.7– 

 
 

= , A3
1.4– 0.9
0.7 2.0– 

 
 

,=

x·
dV x()

dt
----------------–

I P<

A1
TP PA1+ αP<

gevp

9-39

(9-16)

(9-17)

To set up this problem for gevp, first specify the LMIs (9-15)–(9-17) with α = 1:

setlmis([]);
p = lmivar(1,[2 1])

lemiterm([1 1 1 0],1) % P > I : I
lemiterm([1 1 1 p],1,1) % P > I : P
lemiterm([2 1 1 p],1,a1,'s') % LFC # 1 (lhs)
lemiterm([2 1 1 p],1,1) % LFC # 1 (rhs)
lemiterm([3 1 1 p],1,a2,'s') % LFC # 2 (lhs)
lemiterm([3 1 1 p],1,1) % LFC # 2 (rhs)
lemiterm([4 1 1 p],1,a3,'s') % LFC # 3 (lhs)
lemiterm([4 1 1 p],1,1) % LFC # 3 (rhs)
lmis = getlmis

Note that the linear fractional constraints are defined last as required. To
minimize α subject to (9-15)–(9-17), call gevp by

[alpha,popt]=gevp(lmis,3)

This returns alpha = -0.122 as optimal value (the largest decay rate is
therefore 0.122). This value is achieved for

Remark Generalized eigenvalue minimization problems involve standard LMI
constraints (9-11) and linear fractional constraints (9-13). For well-posedness,
the positive definiteness of B(x) must be enforced by adding the constraint
B(x) > 0 to the problem. Although this could be done automatically from inside
the code, this is not desirable for efficiency reasons. For instance, the set of
constraints (9-12) may reduce to a single constraint as in the example above.
In this case, the single extra LMI “P > I” is enough to enforce positivity of all

A2
TP PA2+ αP<

A3
TP PA3+ αP<

P 5.58 8.35–
8.35– 18.64 

 
 

=

gevp

9-40

linear-fractional right-hand sides. It is therefore left to the user to devise the
least costly way of enforcing this positivity requirement.

Reference The solver gevp is based on Nesterov and Nemirovski’s Projective Method
described in

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex
Programming: Theory and Applications, SIAM, Philadelphia, 1994.

The optimization is performed by the CMEX file fpds.mex.

See Also dec2mat, decnbr, feasp, mincx

hinfgs

9-41

9hinfgs Purpose Synthesis of gain-scheduled H∞ controllers

Syntax [gopt,pdK,R,S] = hinfgs(pdP,r,gmin,tol,tolred)

Description Given an affine parameter-dependent plant

where the time-varying parameter vector p(t) ranges in a box and is measured
in real time, hinfgs seeks an affine parameter-dependent controller

scheduled by the measurements of p(t) and such that

• K stabilizes the closed-loop system

for all admissible parameter trajectories p(t)

• K minimizes the closed-loop quadratic H∞ performance from w to z.

The description pdP of the parameter-dependent plant P is specified with psys
and the vector r gives the number of controller inputs and outputs (set
r=[p2,m2] if y ∈ Rp2 and u ∈ Rm2). Note that hinfgs also accepts the polytopic
model of P returned, e.g., by aff2pol or sconnect.

hinfgs returns the optimal closed-loop quadratic performance gopt and a
polytopic description of the gain-scheduled controller pdK. To test if a

P





 x· = A p()x B1 p()w B2u+ +

z = C1 p()x D11 p()w D12u+ +
y = C2x D21w D22u++

K
ζ· AK p()ζ BK p()y+=

u CK p()ζ DK p()y+=



P

u y

w z

K

hinfgs

9-42

closed-loop quadratic performance γ is achievable, set the third input gmin to γ.
The arguments tol and tolred control the required relative accuracy on gopt
and the threshold for order reduction (see hinflmi for details). Finally, hinfgs
also returns solutions R, S of the characteristic LMI system.

Controller
Implementation

The gain-scheduled controller pdK is parametrized by p(t) and characterized by

the values KΠj
 of at the corners ³j of the parameter box. The

command

Kj = psinfo(pdK,'sys',j)

returns the j-th vertex controller KΠj
 while

pv = psinfo(pdP,'par')
vertx = polydec(pv)
Pj = vertx(:,j)

gives the corresponding corner ³j of the parameter box (pv is the parameter
vector description).

The controller scheduling should be performed as follows. Given the
measurements p(t) of the parameters at time t,

3 Express p(t) as a convex combination of the ³j:

p(t) = α1³1 + . . .+ αN³N, αj Š 0,

This convex decomposition is computed by polydec.

4 Compute the controller state-space matrices at time t as the convex
combination of the vertex controllers KΠj

:

5 Use AK(t), BK(t), CK(t), DK(t) to update the controller state-space equations.

AK p() BK p()

CK p() DK p() 
 
 
 

α j

i 1=

N

∑ 1=

AK t() BK t()

CK t() DK t() 
 
 
 

α j

i 1=

N

∑ KΠ j
.=

hinfgs

9-43

Reference Apkarian, P., P. Gahinet, and G. Becker, “Self-Scheduled H∞ Control of Linear
Parameter-Varying Systems,” submitted to Automatica, October 1995.

Becker, G., Packard, P., “Robust Performance of Linear-Parametrically
Varying Systems Using Parametrically-Dependent Linear Feedback,” Systems
and Control Letters, 23 (1994), pp. 205–215.

Packard, A., “Gain Scheduling via Linear Fractional Transformations,” Syst.
Contr. Letters, 22 (1994), pp. 79–92.

Example See “Design Example” on page 7-10.

See Also psys, pvec, pdsimul, polydec, hinflmi

hinflmi

9-44

9hinflmi Purpose LMI-based H∞ synthesis for continuous-time plants

Syntax gopt = hinflmi(P,r)
[gopt,K] = hinflmi(P,r)
[gopt,K,x1,x2,y1,y2] = hinflmi(P,r,g,tol,options)

Description hinflmi computes an internally stabilizing controller K(s) that minimizes the
closed-loop H∞ performance in the control loop

The H∞ performance is the RMS gain of the closed-loop transfer function
F (P, K) from w to z. This function implements the LMI-based approach to H∞
synthesis. The SYSTEM matrix P contains a state-space realization of the plant
P(s) and the row vector r specifies the number of measurements and controls
(set r = [p2 m2] when y ∈ Rp2 and u ∈ Rm2).

The optimal H∞ performance gopt and an optimal H∞ controller K are returned
by

[gopt,K] = hinflmi(P,r)

Alternatively, a suboptimal controller K that guarantees ||F (P, K)||∞ < g is
obtained with the syntax

[gopt,K] = hinflmi(P,r,g)

The optional argument tol specifies the relative accuracy on the computed
optimal performance gopt. The default value is 10–2. Finally,

[gopt,K,x1,x2,y1,y2] = hinflmi(P,r)

also returns solutions R = x1 and S = y1 of the characteristic LMIs for γ = gopt
(see “Practical Considerations” on page 6-18 for details).

K(s)

P(s)

u y

w z

hinflmi

9-45

Control
Parameters

The optional argument options resets the following control parameters:

• options(1) is valued in [0, 1] with default value 0. Increasing its value
reduces the norm of the LMI solution R. This typically yields controllers with
slower dynamics in singular problems (rank-deficient D12). This also
improves closed-loop damping when p12(s) has jω-axis zeros.

• options(2): same as options(1) for S and singular problems with
rank-deficient D21

• when options(3) is set to ε > 0, reduced-order synthesis is performed
whenever

ρ(R–1 S–1) Š (1 – ε) gopt2

The default value is ε = 10–3

Remark The LMI-based approach is directly applicable to singular plants without
preliminary regularization.

Reference Scherer, C., “H∞ Optimization without Assumptions on Finite or Infinite
Zeros,” SIAM J. Contr. Opt., 30 (1992), pp. 143–166.

Gahinet, P., and P. Apkarian, “A Linear Matrix Inequality Approach to H∞
Control,” Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421–448.

Gahinet, P., “Explicit Controller Formulas for LMI-based H∞ Synthesis,” in
Proc. Amer. Contr. Conf., 1994, pp. 2396–2400.

Iwasaki, T., and R.E. Skelton, “All Controllers for the General H∞ Control
Problem: LMI Existence Conditions and State-Space Formulas,” Automatica,
30 (1994), pp. 1307–1317.

See Also hinfric, hinfmix, dhinflmi, ltisys, slft

hinfmix

9-46

9hinfmix Purpose Mixed H2/H∞ synthesis with pole placement constraints

Syntax [gopt,h2opt,K,R,S] = hinfmix(P,r,obj,region,dkbnd,tol)

Description hinfmix performs multi-objective output-feedback synthesis. The control
problem is sketched in Figure 9.1.

Figure 9-1: Mixed H2/H∞ synthesis

If T∞(s) and T2(s) denote the closed-loop transfer functions from w to z∞ and z2,
respectively, hinfmix computes a suboptimal solution of the following
synthesis problem:

Design an LTI controller K(s) that minimizes the mixed H2/H∞ criterion

subject to

• ||T∞||∞ < γ0

• ||T2||2 < ν0

• The closed-loop poles lie in some prescribed LMI region D.

Recall that ||.||∞ and ||.||2 denote the H∞ norm (RMS gain) and H2 norm of transfer
functions. More details on the motivations and statement of this problem can
be found in “Multi-Objective H• Synthesis” on page 5-15.

On input, P is the SYSTEM matrix of the plant P(s) and r is a three-entry vector
listing the lengths of z2, y, and u. Note that z∞ and/or z2 can be empty. The

K(s)

P(s)

u y

w z∞
z2

α T∞ ∞
2 β T2 2

2+

hinfmix

9-47

four-entry vector obj = [γ0, ν0, α, β] specifies the H2/H∞ constraints and
trade-off criterion, and the remaining input arguments are optional:

• region specifies the LMI region for pole placement (the default region = []
is the open left-half plane). Use lmireg to interactively build the LMI region
description region

• dkbnd is a user-specified bound on the norm of the controller feedthrough
matrix DK (see the definition in “LMI Formulation” on page 5-16). The
default value is 100. To make the controller K(s) strictly proper, set dkbnd =
0.

• tol is the required relative accuracy on the optimal value of the trade-off
criterion (the default is 10–2).

The function hinfmix returns guaranteed H∞ and H2 performances gopt and
h2opt as well as the SYSTEM matrix K of the LMI-optimal controller. You can
also access the optimal values of the LMI variables R, S via the extra output
arguments R and S.

A variety of mixed and unmixed problems can be solved with hinfmix (see list
in “The Function hinfmix” on page 5-20). In particular, you can use hinfmix to
perform pure pole placement by setting obj = [0 0 0 0]. Note that both z∞
and z2 can be empty in such case.

Example See the example in“H• Synthesis” on page 5-10.

Reference Chilali, M., and P. Gahinet, “H∞ Design with Pole Placement Constraints: An
LMI Approach,” to appear in IEEE Trans. Aut. Contr., 1995.

Scherer, C., “Mixed H2 H∞ Control,” to appear in Trends in Control: A European
Perspective, volume of the special contributions to the ECC 1995.

See Also lmireg, hinflmi, msfsyn

hinfpar

9-48

9hinfparPurpose Extract the state-space matrices A, B1, B2, . . .from the SYSTEM matrix
representation of an H∞ plant

Syntax [a,b1,b2,c1,c2,d11,d12,d21,d22] = hinfpar(P,r)
b1 = hinfpar(P,r,'b1')

Description In H∞ control problems, the plant P(s) is specified by its state-space equations

 = Ax + B1w + B2u

z = C1x + D11w + D12u

y = C2x + D21w + D22u

or their discrete-time counterparts. For design purposes, this data is stored in
a single SYSTEM matrix P created by

P = ltisys(a,[b1 b2],[c1;c2],[d11 d12;d21 d22])

The function hinfpar retrieves the state-space matrices A, B1, B2, . . . from P.
The second argument r specifies the size of the D22 matrix. Set r = [ny,nu]
where ny is the number of measurements (length of y) and nu is the number of
controls (length of u).

The syntax

hinfpar(P,r,'b1')

can be used to retrieve just the B1 matrix. Here the third argument should be
one of the strings 'a', 'b1', 'b2',....

See Also hinfric, hinflmi, ltisys

x·

hinfric

9-49

9hinfricPurpose Riccati-based H∞ synthesis for continuous-time plants

Syntax gopt = hinfric(P,r) [gopt,K] = hinfric(P,r)
[gopt,K,x1,x2,y1,y2,Preg] = hinfric(P,r,gmin,gmax,...
tol,options)

Description hinfric computes an H∞ controller K(s) that internally stabilizes the control
loop

and minimizes the RMS gain (H∞ performance) of the closed-loop transfer
function Twz. The function hinfric implements the Riccati-based approach.

The SYSTEM matrix P contains a state-space realization

 = Ax + B1w + B2u

z = C1x + D11w + D12u

y = C2x + D21w + D22u

of the plant P(s) and is formed by the command

P = ltisys(a,[b1 b2],[c1;c2],[d11 d12;d21 d22])

The row vector r specifies the dimensions of D22. Set r = [p2 m2] when y ∈ Rp2
and u ∈ Rm2.

To minimize the H∞ performance, call hinfric with the syntax

gopt = hinfric(P,r)

K(s)

P(s)

u y

w z

x·

hinfric

9-50

This returns the smallest achievable RMS gain from w to z over all stabilizing
controllers K(s). An H∞-optimal controller K(s) with performance gopt is
computed by

[gopt,K] = hinfric(P,r)

The H∞ performance can also be minimized within prescribed bounds gmin and
gmax and with relative accuracy tol by typing

[gopt,K] = hinfric(P,r,gmin,gmax,tol)

Setting both gmin and gmax to γ > 0 tests whether the H∞ performance γ is
achievable and returns a controller K(s) such that ||Twz||∞ < γ when γ is
achievable. Setting gmin or gmax to zero is equivalent to specifying no lower or
upper bound.

Finally, the full syntax

[gopt,K,x1,x2,y1,y2,Preg] = hinfric(P,r)

also returns the solutions X∞ = x2/x1 and Y∞ = y2/y1 of the H∞ Riccati
equations for γ = gopt , as well as the regularized plant Preg used to compute
the controller in singular problems.

Given the controller SYSTEM matrix K returned by hinfric, a realization of the
closed-loop transfer function from w to z is given by

Twz = slft(P,K)

Control
Parameters

hinfric automatically regularizes singular H∞ problems and computes
reduced-order controllers when the matrix I – γ–2X∞Y∞ is nearly singular. The
optional input options gives access to the control parameters that govern the
regularization and order reduction:

• options(1) controls the amount of regularization used when D12 or D21 is
rank-deficient. This tuning parameter is valued in [0,1] with default value 0.
Increasing options(1) augments the amount of regularization. This
generally results in less control effort and in controller state-space matrices
of smaller norm, possibly at the expense of a higher closed-loop RMS gain.

• options(2) controls the amount of regularization used when P12(s) or P21(s)
has jω-axis zero(s). Such problems are regularized by replacing A by A + εI
where ε is a small positive number. Increasing options(2) increases ε and
improves the closed-loop damping. Beware that making ε too large may

hinfric

9-51

destroy stabilizability or detectability when the plant P(s) includes shaping
filters with poles close to the imaginary axis. In such cases the optimal H∞
performance will be infinite (see “Practical Considerations” on page 6-18 for
more details).

• when options(3) is set to ε > 0, reduced-order synthesis is performed
whenever

ρ(X∞Y∞) Š (1 – ε) gopt2

The default value is ε = 10–3

Remark Setting gmin = gmax = Inf computes the optimal LQG controller.

Example See the example in “H• Synthesis” on page 5-10.

Reference Doyle, J.C., Glover, K., Khargonekar, P., and Francis, B., “State-Space
Solutions to Standard H2 and H∞ Control Problems,” IEEE Trans. Aut. Contr.,
AC–34 (1989), pp. 831–847.

Gahinet, P., and A.J. Laub, “Reliable Computation of flopt in Singular H∞
Control,” in Proc. Conf. Dec. Contr., Lake Buena Vista, Fl., 1994, pp. 1527–
1532.

Gahinet, P., “Explicit Controller Formulas for LMI-based H∞ Synthesis,” in
Proc. Amer. Contr. Conf., 1994, pp. 2396–2400.

See Also hinflmi, hinfmix, dhinfric, ltisys, slft

lmiedit

9-52

9lmieditPurpose Specify or display systems of LMIs as MATLAB expressions

Syntax lmiedit

Description lmiedit is a graphical user interface for the symbolic specification of LMI
problems. Typing lmiedit calls up a window with two editable text areas and
various pushbuttons. To specify an LMI system,

1 Give it a name (top of the window).

2 Declare each matrix variable (name and structure) in the upper half of the
window. The structure is characterized by its type (S for symmetric block
diagonal, R for unstructured, and G for other structures) and by an
additional structure matrix similar to the second input argument of lmivar.
Please use one line per matrix variable in the text editing areas.

3 Specify the LMIs as MATLAB expressions in the lower half of the window.
An LMI can stretch over several lines. However, do not specify more than
one LMI per line.

Once the LMI system is fully specified, you can perform the following
operations by pressing the corresponding pushbutton:

• Visualize the sequence of lmivar/lmiterm commands needed to describe this
LMI system (view commands buttons)

• Conversely, display the symbolic expression of the LMI system produced by
a particular sequence of lmivar/lmiterm commands (click the describe...
buttons)

• Save the symbolic description of the LMI system as a MATLAB string (save
button). This description can be reloaded later on by pressing the load
button

• Read a sequence of lmivar/lmiterm commands from a file (read button). The
matrix expression of the LMI system specified by these commands is then
displayed by clicking on describe the LMIs...

• Write in a file the sequence of lmivar/lmiterm commands needed to specify
a particular LMI system (write button)

• Generate the internal representation of the LMI system by pressing create.
The result is written in a MATLAB variable with the same name as the LMI
system

lmiedit

9-53

Remark Editable text areas have built-in scrolling capabilities. To activate the scroll
mode, click in the text area, maintain the mouse button down, and move the
mouse up or down. The scroll mode is only active when all visible lines have
been used.

Example An example and some limitations of lmiedit can be found in “The LMI Editor
lmiedit” on page 8-16.

See Also lmivar, lmiterm, newlmi, lmiinfo

lmiinfo

9-54

9lmiinfoPurpose Interactively retrieve information about the variables and term content of
LMIs

Syntax lmiinfo(lmisys)

Description lmiinfo provides qualitative information about the system of LMIs lmisys.
This includes the type and structure of the matrix variables, the number of
diagonal blocks in the inner factors, and the term content of each block.

lmiinfo is an interactive facility where the user seeks specific pieces of
information. General LMIs are displayed as

N' * L(x) * N < M' * R(x) * M

where N,M denote the outer factors and L,R the left and right inner factors. If
the outer factors are missing, the LMI is simply written as

L(x) < R(x)

If its right-hand side is zero, it is displayed as

N' * L(x) * N < 0

Information on the block structure and term content of L(x) and R(x) is also
available. The term content of a block is symbolically displayed as

C1 + A1*X2*B1 + B1'*X2*A1' + a2*X1 + x3*Q1

with the following conventions:

• X1, X2, x3 denote the problem variables. Upper-case X indicates matrix
variables while lower-case x indicates scalar variables. The labels 1,2,3 refer
to the first, second, and third matrix variable in the order of declaration.

• Cj refers to constant terms. Special cases are I and I (I = identity matrix).

• Aj, Bj denote the left and right coefficients of variable terms. Lower-case
letters such as a2 indicate a scalar coefficient.

• Qj is used exclusively with scalar variables as in x3*Q1.

The index j in Aj, Bj, Cj, Qj is a dummy label. Hence C1 may appear in
several blocks or several LMIs without implying any connection between the
corresponding constant terms. Exceptions to this rule are the notations

lmiinfo

9-55

A1*X2*A1' and A1*X2*B1 + B1'*X2'*A1' which indicate symmetric terms and
symmetric pairs in diagonal blocks.

Example Consider the LMI

where the matrix variables are X of Type 1, Y of Type 2, and z scalar. If this
LMI is described in lmis, information about X and the LMI block structure can
be obtained as follows:

lmiinfo(lmis)

LMI ORACLE

This is a system of 1 LMI with 3 variable matrices

Do you want information on
(v) matrix variables (l) LMIs (q) quit

?> v

Which variable matrix (enter its index k between 1 and 3) ? 1
X1 is a 2x2 symmetric block diagonal matrix
 its (1,1)-block is a full block of size 2

This is a system of 1 LMI with 3 variable matrices
Do you want information on

(v) matrix variables (l) LMIs (q) quit

?> l

Which LMI (enter its number k between 1 and 1) ? 1

This LMI is of the form

0 ð 2X– A+ TYB BTYTA I+ + XC

CTX zI– 
 
 
 

lmiinfo

9-56

0 < R(x)
where the inner factor(s) has 2 diagonal block(s)

Do you want info on the right inner factor ?

(w) whole factor (b) only one block
(o) other LMI (t) back to top level

?> w

Info about the right inner factor

block (1,1) : I + a1*X1 + A2*X2*B2 + B2'*X2'*A2'

block (2,1) : A3*X1

block (2,2) : x3*A4

(w) whole factor (b) only one block
(o) other LMI (t) back to top level

This is a system of 1 LMI with 3 variable matrices

Do you want information on
(v) matrix variables (l) LMIs (q) quit

?> q

It has been a pleasure serving you!

Note that the prompt symbol is ?> and that answers are either indices or
letters. All blocks can be displayed at once with option (w), or you can prompt
for specific blocks with option (b).

Remark lmiinfo does not provide access to the numerical value of LMI coefficients.

See Also decinfo, lminbr, matnbr, decnbr

lminbr

9-57

9lminbrPurpose Return the number of LMIs in an LMI system

Syntax k = lminbr(lmisys)

Description lminbr returns the number k of linear matrix inequalities in the LMI problem
described in lmisys.

See Also lmiinfo, matnbr

lmireg

9-58

9lmiregPurpose Specify LMI regions for pole placement purposes

Syntax region = lmireg
region = lmireg(reg1,reg2,...)

Description lmireg is an interactive facility to specify the LMI regions involved in
multi-objective H∞ synthesis with pole placement constraints (see msfsyn and
hinfmix). Recall that an LMI region is any convex subset D of the complex
plane that can be characterized by an LMI in z and , i.e.,

D = {z ∈ C : L + Mz + MT < 0}

for some fixed real matrices M and L = LT. This class of regions encompasses
half planes, strips, conic sectors, disks, ellipses, and any intersection of the
above.

Calling lmireg without argument starts an interactive query/answer session
where you can specify the region of your choice. The matrix region = [L, M] is
returned upon termination. This matrix description of the LMI region can be
passed directly to msfsyn or hinfmix for synthesis purposes.

The function lmireg can also be used to intersect previously defined LMI
regions reg1, reg2,.... The output region is then the [L, M] description of
the intersection of these regions.

See Also msfsyn, hinfmix

z

z

lmiterm

9-59

9lmitermPurpose Specify the term content of LMIs

Syntax lmiterm(termID,A,B,flag)

Description lmiterm specifies the term content of an LMI one term at a time. Recall that
LMI term refers to the elementary additive terms involved in the block-matrix
expression of the LMI. Before using lmiterm, the LMI description must be
initialized with setlmis and the matrix variables must be declared with
lmivar. Each lmiterm command adds one extra term to the LMI system
currently described.

LMI terms are one of the following entities:

• outer factors

• constant terms (fixed matrices)

• variable terms AXB or AXTB where X is a matrix variable and A and B are
given matrices called the term coefficients.

When describing an LMI with several blocks, remember to specify only the
terms in the blocks on or below the diagonal (or equivalently, only the terms
in blocks on or above the diagonal). For instance, specify the blocks (1,1), (2,1),
and (2,2) in a two-block LMI.

In the calling of limterm, termID is a four-entry vector of integers specifying
the term location and the matrix variable involved.

where positive p is for terms on the left-hand side of the p-th LMI and
negative p i s for terms on the right-hand side of the p-th LMI.

Recall that, by convention, the left-hand side always refers to the smaller side
of the LMI. The index p is relative to the order of declaration and corresponds
to the identifier returned by newlimi.

termID (1)
+p
-p




=

termID (2:3)

0 0,[] for outer factors
i j,[] for terms in the i j,()-th

block of the left or right inner factor





=

lmiterm

9-60

where x is the identifier of the matrix variable X as returned by lmivar.

The arguments A and B contain the numerical data and are set according to:

Note that identity outer factors and zero constant terms need not be specified.

The extra argument flag is optional and concerns only conjugated expressions
of the form

(AXB) + (AXB)T = AXB + BTX(T)AT

in diagonal blocks. Setting flag = 's' allows you to specify such expressions
with a single lmiterm command. For instance,

lmiterm([1 1 1 X],A,1,'s')

adds the symmetrized expression AX + XTAT to the (1,1) block of the first LMI
and summarizes the two commands

lmiterm([1 1 1 X],A,1)
lmiterm([1 1 1 X],1,A')

Aside from being convenient, this shortcut also results in a more efficient
representation of the LMI.

Type of Term A B

outer factor N matrix value of N omit

constant term C matrix value of C omit

variable term
AXB or AXTB

matrix value of A
(1 if A is absent)

matrix value of B
(1 if B is absent)

termID (4)

0 for outer factors
x for variable terms AXB

x– for variable terms AX
T

B





=

lmiterm

9-61

Example Consider the LMI

where X1, X2 are matrix variables of Types 2 and 1, respectively, and x3 is a
scalar variable (Type 1).

After initializing the LMI description with setlmis and declaring the matrix
variables with lmivar, the terms on the left-hand side of this LMI are specified
by:

lmiterm([1 1 1 X2],2*A,A') % 2*A*X2*A'
lmiterm([1 1 1 x3],-1,E) % -x3*E
lmiterm([1 1 1 0],D*D') % D*D'
lmiterm([1 2 1 -X1],1,B) % X1'*B
lmiterm([1 2 2 0],-1) % -I

Here X1, X2, X3 should be the variable identifiers returned by lmivar.

Similarly, the term content of the right-hand side is specified by:

lmiterm([-1 0 0 0],M) % outer factor M
lmiterm([-1 1 1 X1],C,C','s') % C*X1*C'+C*X1'*C'
lmiterm([-1 2 2 X2],-f,1) % -f*X2

Note that CX1CT + C CT is specified by a single lmiterm command with the

flag 's' to ensure proper symmetrization.

See Also setlmis, lmivar, getlmis, lmiedit, newlmi

2AX2AT x3E– DDT+ BTX1

X1
TB I– 

 
 
 
 

MT CX1CT CX1
TCT+ 0

0 f– X2 
 
 
 

M<

X1
T

lmivar

9-62

9lmivarPurpose Specify the matrix variables in an LMI problem

Syntax X = lmivar(type,struct)
[X,n,sX] = lmivar(type,struct)

Description lmivar defines a new matrix variable X in the LMI system currently described.
The optional output X is an identifier that can be used for subsequent reference
to this new variable.

The first argument type selects among available types of variables and the
second argument struct gives further information on the structure of X
depending on its type. Available variable types include:

type=1: Symmetric matrices with a block-diagonal structure. Each diagonal
block is either full (arbitrary symmetric matrix), scalar (a multiple of the
identity matrix), or identically zero.

If X has R diagonal blocks, struct is an R-by-2 matrix where

• struct(r,1) is the size of the r-th block

• struct(r,2) is the type of the r-th block (1 for full, 0 for scalar, 1 for zero
block).

type=2: Full m-by-n rectangular matrix. Set struct = [m,n] in this case.

type=3: Other structures. With Type 3, each entry of X is specified as zero or
±xn where xn is the n-th decision variable.

Accordingly, struct is a matrix of the same dimensions as X such that

• struct(i,j)=0 if X(i, j) is a hard zero

• struct(i,j)=n if X(i, j) = xn

struct(i,j)= n if X(i, j) = –xn

Sophisticated matrix variable structures can be defined with Type 3. To specify
a variable X of Type 3, first identify how many free independent entries are
involved in X. These constitute the set of decision variables associated with X.
If the problem already involves n decision variables, label the new free
variables as xn+1, . . ., xn+p. The structure of X is then defined in terms of
xn+1, . . ., xn+p as indicated above. To help specify matrix variables of Type 3,
lmivar optionally returns two extra outputs: (1) the total number n of scalar
decision variables used so far and (2) a matrix sX showing the entry-wise

lmivar

9-63

dependence of X on the decision variables x1, . . ., xn. For more details, see
Example 2 below and “Structured Matrix Variables” on page 8-33.

Example 1 Consider an LMI system with three matrix variables X1, X2, X3 such that

• X1 is a 3 × 3 symmetric matrix (unstructured),

• X2 is a 2 × 4 rectangular matrix (unstructured),

• X3 =

where ∆ is an arbitrary 5 × 5 symmetric matrix, δ1 and δ2 are scalars, and I2
denotes the identity matrix of size 2.

These three variables are defined by

setlmis([])
X1 = lmivar(1,[3 1]) % Type 1
X2 = lmivar(2,[2 4]) % Type 2 of dim. 2x4
X3 = lmivar(1,[5 1;1 0;2 0]) % Type 1

The last command defines X3 as a variable of Type 1 with one full block of size
5 and two scalar blocks of sizes 1 and 2, respectively.

Example 2 Combined with the extra outputs n and sX of lmivar, Type 3 allows you to
specify fairly complex matrix variable structures. For instance, consider a
matrix variable X with structure

where X1 and X2 are 2-by-3 and 3-by-2 rectangular matrices, respectively. You
can specify this structure as follows:

1 Define the rectangular variables X1 and X2 by
setlmis([])
[X1,n,sX1] = lmivar(2,[2 3])

∆ 0 0
0 δ1 0

0 0 δ2I2 
 
 
 
 

X
X1 0

0 X2 
 
 
 

=

lmivar

9-64

[X2,n,sX2] = lmivar(2,[3 2])

The outputs sX1 and sX2 give the decision variable content of X1 and X2:
sX1

sX1 =
1 2 3
4 5 6

sX2

sX2 =
7 8
9 10
11 12

For instance, sX2(1,1)=7 means that the (1,1) entry of X2 is the seventh
decision variable.

2 Use Type 3 to specify the matrix variable X and define its structure in terms
of those of X1 and X2 :
[X,n,sX] = lmivar(3,[sX1,zeros(2);zeros(3),sX2])

The resulting variable X has the prescribed structure as confirmed by
sX

sX =
1 2 3 0 0
4 5 6 0 0
0 0 0 7 8
0 0 0 9 10
0 0 0 11 12

See Also setlmis, lmiterm, getlmis, lmiedit, skewdec, symdec, delmvar, setmvar

ltiss

9-65

9ltiss Purpose Extract the state-space realization of a linear system from its SYSTEM matrix
description

Syntax [a,b,c,d,e] = ltiss(sys)

Description Given a SYSTEM matrix sys created with ltisys, this function returns the
state-space matrices A, B, C, D, E.

Example The system G(s) = is specified in transfer function form by

sys = ltisys('tf', 2,[1 1])

A realization of G(s) is then obtained as

[a,b,c,d] = ltiss(sys)

a =
-1

b =
1

c =
-2

d =
0

Important If the output argument e is not supplied, ltiss returns the realization

(E–1A,E–1B,C,D).

While this is immaterial for systems with E = I, this should be remembered
when manipulating descriptor systems.

See Also ltisys, ltitf, sinfo

2–
s 1+

ltisys

9-66

9ltisys Purpose Pack the state-space realization (A, B, C, D, E) into a single SYSTEM matrix

Syntax sys = ltisys(a)
sys = ltisys(a,e)
sys = ltisys(a,b,c)
sys = ltisys(a,b,c,d)
sys = ltisys(a,b,c,d,e)
sys = ltisys('tf',num,den)

Description For continuous-time systems,

E = Ax + Bu, y = Cx + Du

or discrete-time systems

Exk+1 = Axk + Buk, yk = Cxk + Duk,

ltisys stores A, B, C, D, E into a single matrix sys with structure

The upper right entry n gives the number of states (i.e., A ∈ Rn×n). This data
structure is called a SYSTEM matrix. When omitted, d and e are set to the default
values D = 0 and E = I.

The syntax sys = ltisys(a) specifies the autonomous system = Ax while
sys = ltisys(a,e) specifies E = Ax. Finally, you can specify SISO systems
by their transfer function

G(s) =

The syntax is then

sys = ltisys('tf',num,den)

where num and den are the vectors of coefficients of the polynomials n(s) and
d(s) in descending order.

x·

A j E I–()+ B
n
0

C D
0

0 -Inf

...

x·
x·

n s()
d s()

ltisys

9-67

Examples The SYSTEM matrix representation of the descriptor system

is created by

sys = ltisys(-1,2,1,0,eps)

Similarly, the SISO system with transfer function G(s) = is specified by

sys = ltisys('tf',[1 4],[1 7])

See Also ltiss, ltitf, sinfo

εx· x– 2u+=
y x=




s 4+
s 7+

ltitf

9-68

9ltitf Purpose Compute the transfer function of a SISO system

Syntax [num,den] = ltitf(sys)

Description Given a single-input/single-output system defined in the SYSTEM matrix sys,
ltitf returns the numerator and denominator of its transfer function

G(s) =

The output arguments num and den are vectors listing the coefficients of the
polynomials n(s) and d(s) in descending order. An error is issued if sys is not a
SISO system.

Example The transfer function of the system

 = –x + 2u, y = x – 1

is given by

sys = ltisys(-1,2,1,-1)
[n,d] = ltitf(sys)

n =
-1 1

d =
1 1

The vectors n and d represent the function

See Also ltisys, ltiss, sinfo

n s()
d s()

x·

G s() s– 1+
s 1+
-----------------=

magshape

9-69

9magshape Purpose Graphical specification of the shaping filters

Syntax magshape

Description magshape is a graphical user interface to construct the shaping filters needed
in loop-shaping design. Typing magshape brings up a window where the
magnitude profile of each filter can be specified graphically with the mouse.
Once a profile is sketched, magshape computes an interpolating SISO filter and
returns its state-space realization. Several filters can be specified in the same
magshape window as follows:

1 First enter the filter names after Filter names. This tells magshape to write
the SYSTEM matrices of the interpolating filters in MATLAB variables with
these names.

2 Click on the button showing the name of the filter you are about to specify.
To sketch its profile, use the mouse to specify a few characteristic points that
define the asymptotes and the slope changes. For accurate fitting by a
rational filter, make sure that the slopes are integer multiples of ±20 dB/dec.

3 Specify the filter order after filter order and click on the fit data button
to perform the fitting. The magnitude response of the computed filter is then
drawn as a solid line and its SYSTEM matrix is written in the MATLAB
variable with the same name.

4 Adjustments can be made by moving or deleting some of the specified points.
Click on delete point or move point to activate those modes. You can also
increase the order for a better fit. Press fit data to recompute the
interpolating filter.

If some of the filters are already defined in the MATLAB environment, their
magnitude response is plotted when the button bearing their name is clicked.
This allows for easy modification of existing filters.

Remark See sderiv for the specification of nonproper shaping filters with a derivative
action.

Acknowledg-
ment

The authors are grateful to Prof. Gary Balas and Prof. Andy Packard for
providing the cepstrum algorithm used for phase reconstruction.

See Also sderiv, frfit, mrfit

matnbr

9-70

9matnbrPurpose Return the number of matrix variables in a system of LMIs

Syntax K = matnbr(lmisys)

Description matnbr returns the number K of matrix variables in the LMI problem described
by lmisys.

See Also decnbr, lmiinfo, decinfo

mat2dec

9-71

9mat2dec Purpose Return the vector of decision variables corresponding to particular values of
the matrix variables

Syntax decvec = mat2dec(lmisys,X1,X2,X3,...)

Description Given an LMI system lmisys with matrix variables X1, . . ., XK and given
values X1,...,Xk of X1, . . ., XK, mat2dec returns the corresponding value
decvec of the vector of decision variables. Recall that the decision variables are
the independent entries of the matrices X1, . . ., XK and constitute the free
scalar variables in the LMI problem.

This function is useful, for example, to initialize the LMI solvers mincx or gevp.
Given an initial guess for X1, . . ., XK, mat2dec forms the corresponding vector
of decision variables xinit.

An error occurs if the dimensions and structure of X1,...,Xk are inconsistent
with the description of X1, . . ., XK in lmisys.

Example Consider an LMI system with two matrix variables X and Y such that

• X is A symmetric block diagonal with one 2-by-2 full block and one 2-by-2
scalar block

• Y is a 2-by-3 rectangular matrix

Particular instances of X and Y are

and the corresponding vector of decision variables is given by

decv = mat2dec(lmisys,X0,Y0)

decv'

ans =

1 3 -1 5 1 2 3 4 5 6

X0

1 3 0 0
3 1– 0 0
0 0 5 0
0 0 0 5 

 
 
 
 
 

, Y0
1 2 3
4 5 6 

 
 

==

mat2dec

9-72

Note that decv is of length 10 since Y has 6 free entries while X has 4
independent entries due to its structure. Use decinfo to obtain more
information about the decision variable distribution in X and Y.

See Also dec2mat, decinfo, decnbr

mincx

9-73

9mincxPurpose Minimize a linear objective under LMI constraints

Syntax [copt,xopt] = mincx(lmisys,c,options,xinit,target)

Description The function mincx solves the convex program

(9-18)

where x denotes the vector of scalar decision variables.

The system of LMIs (9-18) is described by lmisys. The vector c must be of the
same length as x. This length corresponds to the number of decision variables
returned by the function decnbr. For linear objectives expressed in terms of the
matrix variables, the adequate c vector is easily derived with defcx.

The function mincx returns the global minimum copt for the objective cTx, as
well as the minimizing value xopt of the vector of decision variables. The
corresponding values of the matrix variables is derived from xopt with
dec2mat.

The remaining arguments are optional. The vector xinit is an initial guess of
the minimizer xopt. It is ignored when infeasible, but may speed up compu-
tations otherwise. Note that xinit should be of the same length as c. As for
target, it sets some target for the objective value. The code terminates as soon
as this target is achieved, that is, as soon as some feasible x such that
cTx ð target is found. Set options to [] to use xinit and target with the
default options.

Control
Parameters

The optional argument options gives access to certain control parameters of
the optimization code. In mincx, this is a five-entry vector organized as follows:

• options(1) sets the desired relative accuracy on the optimal value lopt
(default = 10–2).

• options(2) sets the maximum number of iterations allowed to be performed
by the optimization procedure (100 by default).

• options(3) sets the feasibility radius. Its purpose and usage are as for
feasp.

minimize cTx subject to NTL x()N MT
≤ R x()M

mincx

9-74

• options(4) helps speed up termination. If set to an integer value J > 0, the
code terminates when the objective cTx has not decreased by more than the
desired relative accuracy during the last J iterations.

• options(5) = 1 turns off the trace of execution of the optimization
procedure. Resetting options(5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control
parameter to its default value. See feasp for more detail.

Tip for
Speed-Up

In LMI optimization, the computational overhead per iteration mostly comes
from solving a least-squares problem of the form

where x is the vector of decision variables. Two methods are used to solve this
problem: Cholesky factorization of ATA (default), and QR factorization of A
when the normal equation becomes ill conditioned (when close to the solution
typically). The message

* switching to QR

is displayed when the solver has to switch to the QR mode.

Since QR factorization is incrementally more expensive in most problems, it is
sometimes desirable to prevent switching to QR. This is done by setting
options(4) = 1. While not guaranteed to produce the optimal value, this
generally achieves a good trade-off between speed and accuracy.

Memory
Problems

QR-based linear algebra (see above) is not only expensiveLMI solvers,memory
shortagememory shortage in terms of computational overhead, but also in
terms of memory requirement. As a result, the amount of memory required by
QR may exceed your swap space for large problems with numerous LMI
constraints. In such case, MATLAB issues the error

??? Error using ==> pds
Out of memory. Type HELP MEMORY for your options.

You should then ask your system manager to increase your swap space or, if no
additional swap space is available, set options(4) = 1. This will prevent

x
min Ax b–

mincx

9-75

switching to QR and mincx will terminate when Cholesky fails due to
numerical instabilities.

Example See “Example 8.2” on page 8-23.

Reference The solver mincx implements Nesterov and Nemirovski’s Projective Method as
described in

Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex
Programming: Theory and Applications, SIAM, Philadelphia, 1994.

Nemirovski, A., and P. Gahinet, “The Projective Method for Solving Linear
Matrix Inequalities,” Proc. Amer. Contr. Conf., 1994, Baltimore, Maryland, pp.
840–844.

The optimization is performed by the C-MEX file pds.mex.

See Also defcx, dec2mat, decnbr, feasp, gevp

msfsyn

9-76

9msfsynPurpose Multi-model/multi-objective state-feedback synthesis

Syntax [gopt,h2opt,K,Pcl,X] = msfsyn(P,r,obj,region,tol)

Description Given an LTI plant P with state-space equations

msfsyn computes a state-feedback control u = Kx that

• Maintains the RMS gain (H∞ norm) of the closed-loop transfer function T∞
from w to z∞ below some prescribed value

• Maintains the H2 norm of the closed-loop transfer function T2 from w to z2
below some prescribed value

• Minimizes an H2/H∞ trade-off criterion of the form

• Places the closed-loop poles inside the LMI region specified by region (see
lmireg for the specification of such regions). The default is the open left-half
plane.

Set r = size(d22) and obj = [γ0, ν0, α, β] to specify the problem dimensions
and the design parameters γ0, ν0, α, and β. You can perform pure pole
placement by setting obj = [0 0 0 0]. Note also that z∞ or z2 can be empty.

On output, gopt and h2opt are the guaranteed H∞ and H2 performances, K is
the optimal state-feedback gain, Pcl the closed-loop transfer function from w

to , and X the corresponding Lyapunov matrix.

The function msfsyn is also applicable to multi-model problems where P is a
polytopic model of the plant:

x· = Ax B1w B2u+ +

z∞ = C1x D11w D12u+ +

z2 = C2x D22u+





γ0 0>

υ0 0>

α T∞ ∞
2 β T2 2

2+

z∞

z2 
 
 

msfsyn

9-77

with time-varying state-space matrices ranging in the polytope

In this context, msfsyn seeks a state-feedback gain that robustly enforces the
specifications over the entire polytope of plants. Note that polytopic plants
should be defined with psys and that the closed-loop system Pcl is itself
polytopic in such problems. Affine parameter-dependent plants are also
accepted and automatically converted to polytopic models.

Example See “Design Example” on page 4-13.

See Also lmireg, psys, hinfmix

x· = A t()x B1 t()w B2 t()u+ +

z∞ = C1 t()x D11 t()w D12 t()u+ +

z2 = C2 t()x D22 t()u+





A t() B1 t() B2 t()

C1 t() D11 t() D12 t()

C2 t() 0 D22 t() 
 
 
 
 
 

Co

Ak Bk B2k

C1k D11k D12k

C2k 0 D22k 
 
 
 
 
 

 : k 1 … K, ,=

 
 
 
 
 
 
 

∈

mubnd

9-78

9mubndPurpose Compute the upper bound for the µ structured singular value

Syntax [mu,D,G] = mubnd(M,delta,target)

Description mubnd computes the mixed-µ upper bound mu = ν∆(M) for the matrix M ∈ Cm×n
and the norm-bounded structured perturbation ∆ = diag(∆1, . . ., ∆n) (see
“Structured Singular Value” on page 3-17). The reciprocal of mu is a guaranteed
well-posedness margin for the algebraic loop

Specifically, this loop remains well-posed as long as

mu x σmax(∆i) < βi

where βi is the specified bound on ∆i.

The uncertainty ∆ is described by delta (see ublock and udiag). The function
mubnd also returns the optimal scaling matrices D and G arising in the
computation of mu.

To test whether where τ > 0 is a given scalar, set the optional argument
target to τ .

See Also mustab, muperf

∆

M

w q

mu τ≤

muperf

9-79

9muperfPurpose Estimate the robust H∞ performance of uncertain dynamical systems

Syntax [grob,peakf] = muperf(P,delta,0,freqs)
[margin,peakf] = muperf(P,delta,g,freqs)

Description muperf estimates the robust H∞ performance (worst-case RMS gain) of the
uncertain LTI system

where ∆(s) = diag(∆1(s), . . ., ∆n(s))

is a linear time-invariant uncertainty quantified by norm bounds
σmax(∆i(jω)) < βi(ω) or sector bounds ∆i ∈ {a, b}. The robust performance γrob is
the smallest γ > 0 such that

||y||L2
 < γ ||u||L2

for all bounded input u(t) and instance ∆(s) of the uncertainty. It is finite if and
only if the interconnection is robustly stable.

muperf converts the robust performance estimation into a robust stability
problem for some augmented ∆ structure (see “Robust Performance” on
page 3-21). The input arguments P and delta contain the SYSTEM matrix of P(s)
and the description of the LTI uncertainty ∆(s) (see ublock and udiag). To
compute the robust H∞ performance grob for the prescribed uncertainty delta,
call muperf with the syntax

[grob,peakf] = muperf(P,delta)

muperf returns grob = Inf when the interconnection is not robustly stable.

Alternatively,

[margin,peakf] = muperf(P,delta,g)

∆(s)

P(s)

u y

muperf

9-80

estimates the robustness of a given H∞ performance g, that is, how much
uncertainty ∆(s) can be tolerated before the RMS gain from u to y exceeds g.
Provided that

σmax(∆i(jω)) < margin × βi(ω)

in the norm-bounded case and

in the sector-bounded case, the RMS gain is guaranteed to remain below g.

With both syntaxes, peakf is the frequency where the worst RMS performance
or robustness margin is achieved. An optional vector of frequencies freqs to be
used for the µ upper bound evaluation can be specified as fourth input
argument.

See Also mustab, norminf, quadperf

∆i
a b+

2
------------- b a–

2
------------– margin, a b+

2
-------------× b a–

2
------------+ margin×

 
 
 

∈

mustab

9-81

9mustab Purpose Estimate the robust stability margin of uncertain LTI systems

Syntax [margin,peak,fs,ds,gs] = mustab(sys,delta,freqs)

Description mustab computes an estimate margin of the robust stability margin for the
interconnection

where G(s) is a given LTI system and ∆ = diag(∆1, . . ., ∆n) is a linear
time-invariant uncertainty quantified by norm bounds σmax (∆i(jω)) < βi(ω) or
sector bounds ∆i ∈ {a, b}. In the norm-bounded case, the stability of this
interconnection is guaranteed for all ∆(s) satisfying

σmax(∆i(jω)) < margin × βi(ω)

See “Robust Stability Analysis” on page 3-19 for the interpretation of margin in
the sector-bounded case.

The value margin is obtained by computing the mixed-µ upper bound ν∆(G(jωi))
over a grid of frequencies ωi. The command

[margin,peak] = mustab(sys,delta)

returns the guaranteed stability margin margin and the frequency peakf
where the margin is weakest. The uncertainty ∆(s) is specified by delta (see
ublock and udiag). The optional third argument freqs is a user-supplied vector
of frequencies where to evaluate ν∆(G(jω)).

To obtain the D, G scaling matrices at all tested frequencies, use the syntax

[margin,peak,fs,ds,gs] = mustab(sys,delta)

Here fs is the vector of frequencies used to evaluate ν∆ and the D, G scalings
at the frequency fs(i) are retrieved by

∆(s)

G(s)

mustab

9-82

D = getdg(ds,i)
G = getdg(gs,i)

Caution margin may overestimate the robust stability margin when the frequency grid
freqs is too coarse or when the µ upper bound is discontinuous due to real
parameter uncertainty. See “Caution” on page 3-21 for more details.

Example See “Example” on page 3-28.

See Also mubnd, muperf, ublock, udiag

newlmi

9-83

9newlmiPurpose Attach an identifying tag to LMIs

Syntax tag = newlmi

Description newlmi adds a new LMI to the LMI system currently described and returns an
identifier tag for this LMI. This identifier can be used in lmiterm, showlmi, or
dellmi commands to refer to the newly declared LMI. Tagging LMIs is optional
and only meant to facilitate code development and readability.

Identifiers can be given mnemonic names to help keep track of the various
LMIs. Their value is simply the ranking of each LMI in the system (in the order
of declaration). They prove useful when some LMIs are deleted from the LMI
system. In such cases, the identifiers are the safest means of referring to the
remaining LMIs.

See Also setlmis, lmivar, lmiterm, getlmis, lmiedit, dellmi

norminf

9-84

9norminfPurpose Compute the random mean-squares (RMS) gain of continuous-time systems

Syntax [gain,peakf] = norminf(g,tol)

Description Given the SYSTEM matrix g of an LTI system with state-space equations

E = Ax + Bu

 y = Cx + Du

and transfer function G(s) = D + C(sE – A)–1B, norminf computes the peak gain

of the frequency response G(jω). When G(s) is stable, this peak gain coincides
with the RMS gain or H∞ norm of G, that is,

The function norminf returns the peak gain and the frequency at which it is
attained in gain and peakf, respectively. The optional input tol specifies the
relative accuracy required on the computed RMS gain (the default value is
10–2).

Example The peak gain of the transfer function

is given by

norminf(ltisys('tf',100,[1 0.01 100]))

ans =

1.0000e+03

Reference Boyd, S., V. Balakrishnan, and P. Kabamba, “A Bisection Method for
Computing the H∞ Norm of a Transfer Matrix and Related Problems,” Math.
Contr. Sign. Syst., 2 (1989), pp. 207–219.

dx
dt

G ∞ sup σmax G jω()()=
ω

G ∞ sup
y L2

u L2

-------------=
u L2∈
u 0≠

G s() 100

s2 0.01s 100+ +
---=

norminf

9-85

Bruisma, N.A., and M. Steinbuch, “A Fast Algorithm to Compute the H∞-Norm
of a Transfer Function Matrix,” Syst. Contr. Letters, 14 (1990), pp. 287–293.

Robel, G., “On Computing the Infinity Norm,” IEEE Trans. Aut. Contr., AC–34
(1989), pp. 882–884.

See Also dnorminf, muperf, quadperf

norm2

9-86

9norm2Purpose Compute the H2 norm of a continuous-time LTI system

Syntax h2norm = norm2(g)

Description Given a stable LTI system

 driven by a white noise w with unit covariance, norm2 computes the H2 norm
(LQG performance) of G defined by

where G(s) = C(sI – A)–1B.

This norm is computed as

where P is the solution of the Lyapunov equation

AP + PAT + BBT = 0

See Also norminf

G:
x· Ax Bw+=
y Cx=



G 2
2 lim E 1

T
---- yT

0

T

∫ t()y t()dt
 
 
 

=

1
2π
------ GH

∞–

∞

∫ jω()G jω()dω=

T ∞→

G 2 Trace CPCT()=

pdlstab

9-87

9pdlstabPurpose Assess the robust stability of a polytopic or parameter-dependent system

Syntax [tau,Q0,Q1,...] = pdlstab(pds,options)

Description pdlstab uses parameter-dependent Lyapunov functions to establish the
stability of uncertain state-space models over some parameter range or
polytope of systems. Only sufficient conditions for the existence of such
Lyapunov functions are available in general. Nevertheless, the resulting
robust stability tests are always less conservative than quadratic stability tests
when the parameters are either time-invariant or slowly varying.

For an affine parameter-dependent system

E(p) = A(p)x + B(p)u

y = C(p)x + D(p)u

with p = (p1, . . ., pn) ∈ Rn, pdlstab seeks a Lyapunov function of the form

V(x, p) = xTQ(p)–1x, Q(p) = Q0 + p1Q1 + . . .pnQn

such that dV(x, p)/dt < 0 along all admissible parameter trajectories. The
system description pds is specified with psys and contains information about
the range of values and rate of variation of each parameter pi.

For a time-invariant polytopic system

E = Ax + Bu

y = Cx + Du

with

(9-19)

pdlstab seeks a Lyapunov function of the form

V(x, α) = xTQ(α)–1x, Q(α) = α1Q1 + . . .+ αnQn

such that dV(x, α)/dt < 0 for all polytopic decompositions (9-19).

x·

x·

A jE+ B
C D 

 
 

α i
A jEi+ Bi

Ci Di 
 
 
 

i 1=

n

∑ , α i 0≥ , α i

i 1=

n

∑ 1= ,=

pdlstab

9-88

Several options and control parameters are accessible through the optional
argument options:

• Setting options(1)=0 tests robust stability (default)

• When options(2)=0, pdlstab uses simplified sufficient conditions for faster
running times. Set options(2)=1 to use the least conservative conditions

Remark For affine parameter-dependent systems with time-invariant parameters,
there is equivalence between the robust stability of

(9-20)

and that of the dual system

(9-21)

However, the second system may admit an affine parameter-dependent
Lyapunov function while the first does not.

In such case, pdlstab automatically restarts and tests stability on the dual
system (9-21) when it fails on (9-20).

See Also quadstab, mustab

E p()x· A p()x=

E p()Tz· A p()Tz=

pdsimul

9-89

9pdsimulPurpose Time response of a parameter-dependent system along a given parameter
trajectory

Syntax pdsimul(pds,'traj',tf,'ut',xi,options)
[t,x,y] = pdsimul(pds,pv,'traj',tf,'ut',xi,options)

Description pdsimul simulates the time response of an affine parameter-dependent system

E(p) = A(p)x + B(p)u

y = C(p)x + D(p)u

along a parameter trajectory p(t) and for an input signal u(t). The parameter
trajectory and input signals are specified by two time functions p=traj(t) and
u=ut(t). If 'ut' is omitted, the response to a step input is computed by default.

The affine system pds is specified with psys. The function pdsimul also accepts
the polytopic representation of such systems as returned by aff2pol(pds) or
hinfgs. The final time and initial state vector can be reset through tf and xi
(their respective default values are 5 seconds and 0). Finally, options gives
access to the parameters controlling the ODE integration (type help gear for
details).

When invoked without output arguments, pdsimul plots the output trajectories
y(t). Otherwise, it returns the vector of integration time points t as well as the
state and output trajectories x,y.

Example See “Design Example” on page 7-10.

See Also psys, pvec, gear

x·

popov

9-90

9popovPurpose Perform the Popov robust stability test

Syntax [t,P,S,N] = popov(sys,delta,flag)

Description popov uses the Popov criterion to test the robust stability of dynamical systems
with possibly nonlinear and/or time-varying uncertainty (see “The Popov
Criterion” on page 3-24 for details). The uncertain system must be described as
the interconnection of a nominal LTI system sys and some uncertainty delta
(see “Norm-Bounded Uncertainty” on page 2-27). Use ublock and udiag to
specify delta.

The command

[t,P,S,N] = popov(sys,delta)

tests the robust stability of this interconnection. Robust stability is guaranteed
if t < 0. Then P determines the quadratic part xTPx of the Lyapunov function
and D and S are the Popov multipliers (see p. ?? for details).

If the uncertainty delta contains real parameter blocks, the conservatism of
the Popov criterion can be reduced by first performing a simple loop
transformation (see “Real Parameter Uncertainty” on page 3-25). To use this
refined test, call popov with the syntax

[t,P,S,N] = popov(sys,delta,1)

Example See “Design Example” on page 7-10.

See Also mustab, quadstab, pdlstab, ublock, aff2lft

psinfo

9-91

9psinfo Purpose Inquire about polytopic or parameter-dependent systems created with psys

Syntax psinfo(ps)
[type,k,ns,ni,no] = psinfo(ps)
pv = psinfo(ps,'par')
sk = psinfo(ps,'sys',k)
sys = psinfo(ps,'eval',p)

Description psinfo is a multi-usage function for queries about a polytopic or
parameter-dependent system ps created with psys. It performs the following
operations depending on the calling sequence:

• psinfo(ps) displays the type of system (affine or polytopic); the number k of
SYSTEM matrices involved in its definition; and the numbers of ns, ni, no of
states, inputs, and outputs of the system. This information can be optionally
stored in MATLAB variables by providing output arguments.

• pv = psinfo(ps,'par') returns the parameter vector description (for
parameter-dependent systems only).

• sk = psinfo(ps,'sys',k) returns the k-th SYSTEM matrix involved in the
definition of ps. The ranking k is relative to the list of systems syslist used
in psys.

• sys = psinfo(ps,'eval',p) instantiates the system for a given vector p of
parameter values or polytopic coordinates.

For affine parameter-dependent systems defined by the SYSTEM matrices S0,
S1, . . ., Sn, the entries of p should be real parameter values p1, . . ., pn and
the result is the LTI system of SYSTEM matrix

S(p) = S0 + p1S1 + . . .+ pnSn

For polytopic systems with SYSTEM matrix ranging in

Co{S1, . . ., Sn},

the entries of p should be polytopic coordinates p1, . . ., pn satisfying pj Š 0
and the result is the interpolated LTI system of SYSTEM matrix

See Also psys, ltisys

S
p1S1 … pnSn+ +

p1 … pn+ +
--=

psys

9-92

9psys Purpose Specify polytopic or parameter-dependent linear systems

Syntax pols = psys(syslist)
affs = psys(pv,syslist)

Description psys specifies state-space models where the state-space matrices can be
uncertain, time-varying, or parameter-dependent.

Two types of uncertain state-space models can be manipulated in the LMI
Control Toolbox:

• Polytopic systems

E(t) = A(t)x + B(t)u

y = C(t)x + D(t)u

whose SYSTEM matrix takes values in a fixed polytope:

where S1, . . ., Sk are given “vertex” systems and

Co{S1, . . ., Sk} =

denotes the convex hull of S1, . . ., Sk (polytope of matrices with vertices
S1, . . ., Sk)

• Affine parameter-dependent systems

E(p) = A(p)x + B(p)u

x·



































































S t() S1


































Sk

A t() jE t()+ B t()
C t() D t()

Co
A1 jE1+ B1

C1 D1

, . . .,
Ak jEk+ Bk

Ck Dk 
 
 
 
 

∈

α iSi

i 1=

k

∑ : α i 0≥ , α i

i 1=

k

∑ 1=

 
 
 
 
 

x·

psys

9-93

y = C(p)x + D(p)u

where A(.); B(.), . . ., E(.) are fixed affine functions of some vector
p = (p1, . . ., pn) of real parameters, i.e.,

where S0, S1, . . ., Sn are given SYSTEM matrices. The parameters pi can be
time-varying or constant but uncertain.

Both types of models are specified with the function psys. The argument
syslist lists the SYSTEM matrices Si characterizing the polytopic value set or
parameter dependence. In addition, the description pv of the parameter vector
(range of values and rate of variation) is required for affine parameter-
dependent models (see pvec for details). Thus, a polytopic model with vertex
systems S1, . . ., S4 is created by

pols = psys([s1,s2,s3,s4])

while an affine parameter-dependent model with 4 real parameters is defined
by

affs = psys(pv,[s0,s1,s2,s3,s4])

The output is a structured matrix storing all the relevant information.

To specify the autonomous parameter-dependent system

 = A(p)x, A(p) = A0 + p1A1 + p2A2,

type

s0 = ltisys(a0)
s1 = ltisys(a1,0)
s2 = ltisys(a2,0)
ps = psys(pv,[s0 s1 s2])


































S0

































S p()

A p() jE p()+ B p()
C p() D p()

=


































S1


































Sn

A0 jE0+ B0

C0 D0

 + p1
A1 jE1+ B1

C1 D1

+ . . . + pn
An jEn+ Bn

Cn Dn

x·

psys

9-94

Do not forget the 0 in the second and third commands. This 0 marks the
independence of the E matrix on p1, p2 . Typing

s0 = ltisys(a0)
s1 = ltisys(a1)
s2 = ltisys(a2)
ps = psys(pv,[s0 s1 s2])

instead would specify the system

E(p) = A(p)x, E(p) = (1+p1 + p2)I, A(p) = A0 +p1A1 +p2A2

Example See “Example 2.1” on page 2-21.

See Also psinfo, pvec, aff2pol, ltisys

x·

pvec

9-95

9pvec Purpose Specify the range and rate of variation of uncertain or time-varying parameters

Syntax pv = pvec('box',range,rates)
pv = pvec('pol',vertices)

Description pvec is used in conjunction with psys to specify parameter-dependent systems.
Such systems are parametrized by a vector p = (p1, . . ., pn) of uncertain or
time-varying real parameters pi. The function pvec defines the range of values
and the rates of variation of these parameters.

The type 'box' corresponds to independent parameters ranging in intervals

The parameter vector p then takes values in a hyperrectangle of Rn called the
parameter box. The second argument range is an n-by-2 matrix that stacks up
the extremal values and of each pj. If the third argument rates is
omitted, all parameters are assumed time-invariant. Otherwise, rates is also
an n-by-2 matrix and its j-th row specifies lower and upper bounds and
on :

Set = Inf and = Inf if pj(t) can vary arbitrarily fast or discontinuously.

The type 'pol' corresponds to parameter vectors p ranging in a polytope of the
parameter space Rn. This polytope is defined by a set of vertices V1, . . ., Vn
corresponding to “extremal” values of the vector p. Such parameter vectors are
declared by the command

pv = pvec('pol',[v1,v2, . . ., vn])

where the second argument is the concatenation of the vectors v1,...,vn.

The output argument pv is a structured matrix storing the parameter vector
description. Use pvinfo to read the contents of pv.

Example Consider a problem with two time-invariant parameters

p1 ∈ [–1, 2], p2 ∈ [20, 50]

pj pj pj≤ ≤

pj pj

νj νjdpj
dt

νj

dpj
dt
-------- νj≤ ≤

νj νj

pvec

9-96

The corresponding parameter vector p = (p1, p2) is specified by

pv = pvec('box',[-1 2;20 50])

Alternatively, this vector can be regarded as taking values in the rectangle
drawn in Figure 9.2. The four corners of this rectangle are the four vectors

Hence, you could also specify p by

pv = pvec('pol',[v1,v2,v3,v4])

Figure 9-2: Parameter box

See Also pvinfo, psys

v1
1–

20 
 
 

= , v2
1–

50 
 
 

= , v3
2

20 
 
 

= , v4
2
50 

 
 

=

-1 2

20

50

p1

p2

pvinfo

9-97

9pvinfo Purpose Describe a parameter vector specified with pvec

Syntax [typ,k,nv] = pvinfo(pv)
[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)
vj = pvinfo(pv,'par',j)
p = pvinfo(pv,'eval',c)

Description pvec retrieves information about a vector p = (p1, . . ., pn) of real parameters
declared with pvec and stored in pv. The command pvinfo(pv) displays the
type of parameter vector ('box' or 'pol'), the number n of scalar parameters,
and for the type 'pol', the number of vertices used to specify the parameter
range.

For the type 'box':

[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)

returns the bounds on the value and rate of variations of the j-th real
parameter pj. Specifically,

 ,

For the type 'pol':

pvinfo(pv,'par',j)

returns the j-th vertex of the polytope of Rn in which p ranges, while

pvinfo(pv,'eval',c)

returns the value of the parameter vector p given its barycentric coordinates c
with respect to the polytope vertices (V1, . . .,Vk). The vector c must be of length
k and have nonnegative entries. The corresponding value of p is then given by

See Also pvec, psys

pmin pj t() pmax≤≤ dpmin
dpj
dt
--------- dpmax≤ ≤

p
cii 1=

k
∑ Vi

cii 1=
k

∑
----------------------------=

quadperf

9-98

9quadperfPurpose Compute the quadratic H∞ performance of a polytopic or parameter-dependent
system

Syntax [perf,P] = quadperf(ps,g,options)

Description The RMS gain of the time-varying system

(9-22)

is the smallest γ > 0 such that

(9-23)

for all input u(t) with bounded energy. A sufficient condition for (9-23) is the
existence of a quadratic Lyapunov function

V(x) = xTPx, P > 0

such that

Minimizing γ over such quadratic Lyapunov functions yields the quadratic H∞
performance, an upper bound on the true RMS gain.

The command

[perf,P] = quadperf(ps)

computes the quadratic H∞ performance perf when (9-22) is a polytopic or
affine parameter-dependent system ps (see psys). The Lyapunov matrix P
yielding the performance perf is returned in P.

The optional input options gives access to the following task and control
parameters:

• If options(1)=1, perf is the largest portion of the parameter box where the
quadratic RMS gain remains smaller than the positive value g (for affine
parameter-dependent systems only). The default value is 0

E t()x· A t()x= B t()u, y C t()x= D t()u++

y L2
γ u L2

≤

u∀ L2∈ , dV
dt
-------- yTy γ2uTu–+ 0<

quadperf

9-99

• If options(2)=1, quadperf uses the least conservative quadratic
performance test. The default is options(2)=0 (fast mode)

• options(3) is a user-specified upper bound on the condition number of P (the
default is 109).

Example See “Example 3.4” on page 3-10.

See Also muperf, quadstab, psys

quadstab

9-100

9quadstabPurpose Quadratic stability of polytopic or affine parameter-dependent systems

Syntax [tau,P] = quadstab(ps,options)

Description For affine parameter-dependent systems

E(p) = A(p)x, p(t) = (p1(t), . . ., pn(t))

or polytopic systems

E(t) = A(t)x, (A, E) ∈ Co{(A1, E1), . . ., (An, En)},

quadstab seeks a fixed Lyapunov function V(x) = xTPx with P > 0 that
establishes quadratic stability (see “Quadratic Lyapunov Functions” on
page 3-3 for details). The affine or polytopic model is described by ps (see psys).

The task performed by quadstab is selected by options(1):

• if options(1)=0 (default), quadstab assesses quadratic stability by solving
the LMI problem

Minimize τ over Q = QT such that

ATQE + EQAT < τI for all admissible values of (A, E)
Q > I

The global minimum of this problem is returned in tau and the system is
quadratically stable if tau < 0

• if options(1)=1, quadstab computes the largest portion of the specified
parameter range where quadratic stability holds (only available for affine
models). Specifically, if each parameter pi varies in the interval

pi ∈ [pi0 – δi, pi0 + δi],

quadstab computes the largest θ > 0 such that quadratic stability holds over
the parameter box

pi ∈ [pi0 – θδi, pi0 + θδi]

This “quadratic stability margin” is returned in tau and ps is quadratically
stable if tau Š 1.

Given the solution Qopt of the LMI optimization, the Lyapunov matrix P is
given by P = . This matrix is returned in P.

x·

x·

Qopt
1–

quadstab

9-101

Other control parameters can be accessed through options(2) and
options(3):

• if options(2)=0 (default), quadstab runs in fast mode, using the least
expensive sufficient conditions. Set options(2)=1 to use the least
conservative conditions

• options(3) is a bound on the condition number of the Lyapunov matrix P.
The default is 109.

Example See “Example 3.1” on page 3-7 and “Example 3.2” on page 3-8.

See Also pdlstab, mustab, decay, quadperf, psys

ricpen

9-102

9ricpen Purpose Solve continuous-time Riccati equations (CARE)

Syntax X = ricpen(H,L)
[X1,X2] = ricpen(H,L)

Description This function computes the stabilizing solution X of the Riccati equation

(9-24)

where E is an invertible matrix. The solution is computed by unitary deflation
of the associated Hamiltonian pencil

The matrices H and L are specified as input arguments. For solvability, the
pencil H – λL must have no finite generalized eigenvalue on the imaginary
axis.

When called with two output arguments, ricpen returns two matrices X1, X2

such that has or thonormal columns, and X = X2 is the stabilizing

solution of (9-24).

If X1 is invertible, the solution X is returned directly by the syntax
X = ricpen(H,L).

ricpen is adapted from care and implements the generalized Schur method for
solving CAREs.

Reference Laub, A. J., “A Schur Method for Solving Algebraic Riccati Equations,” IEEE
Trans. Aut. Contr., AC–24 (1979), pp. 913–921.

Arnold, W.F., and A.J. Laub, “Generalized Eigenproblem Algorithms and
Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984), pp. 1746–
1754.

ATXE ETXA ETXFXE E(TXB– S)R 1– B(TXE ST) Q+ + + + + 0=

H λL–
A F B

Q– A– T S–

ST BT R

λ
E 0 0

0 ET 0
0 0 0

–=

X1

X2

X1
1–

ricpen

9-103

See Also care, dricpen

sadd

9-104

9saddPurpose Parallel interconnection of linear systems

Syntax sys = sadd(g1,g2,...)

Description sadd forms the parallel interconnection

of the linear systems G1, . . ., Gn. The arguments g1, g2,... are either SYSTEM
matrices (dynamical systems) or constant matrices (static gains). In addition,
one (and at most one) of these systems can be polytopic or parameter-
dependent, in which case the resulting system sys is of the same nature.

In terms of transfer functions, sadd performs the sum

G(s) = G1(s) + G2(s) + . . .+ Gn(s)

See Also smult, sdiag, sloop, ltisys

G1

G2

Gn

. . .

+

+

+

G

sbalanc

9-105

9sbalancPurpose Numerically balance the state-space realization of a linear system

Syntax [a,b,c] = sbalanc(a,b,c,condnbr)
sys = sbalanc(sys,condnbr)

Description sbalanc computes a diagonal invertible matrix T that balances the state-space
realization (A, B, C) by reducing the magnitude of the off-diagonal entries of A
and by scaling the norms of B and C. The resulting realization is of the form

(T –1AT, T–1B, CT)

The optional argument condnbr specifies an upper bound on the condition
number of T. The default value is 108.

Example Computing a realization of

with the function tf2ss yields

[a,b,c,d]=tf2ss([1 1 1],[1 1000 500^2])

a =
-1000 -250000
1 0

b =
1
0

c =
-999 -249999

d =
1

To reduce the numerical range of this data and improve numerical stability of
subsequent computations, you can balance this realization by

[a,b,c]=sbalanc(a,b,c)

a =
-1000.00 -3906.25

64.00 0

W s() s2 s 1+ +

s 500+()2
--------------------------=

sbalanc

9-106

b =
64.00
0

c =
-15.61 -61.03

See Also ltisys

sconnect

9-107

9sconnect Purpose Specify general control structures or system interconnections

Syntax [P,r] = sconnect(inputs,outputs,Kin,G1in,g1,G2in,g2,...)

Description sconnect is useful in loop-shaping problems to turn general control structures
into the standard linear-fractional interconnection used in H∞ synthesis. In
this context, sconnect returns:

• The SYSTEM matrix P of the standard H∞ plant P(s)

• The vector r = [p2 m2] where p2 and m2 are the number of input and outputs
of the controller, respectively.

More generally, sconnect is useful to specify complex interconnections of LTI
systems (see Example 1 below).

General control loops or system interconnections are described in terms of
signal flows. Specifically, you must specify

• The exogenous inputs, i.e., what signals enter the loop or interconnection

• The ouput signals, i.e., the signals generated by the loop or interconnection

• How the inputs of each dynamical system relate to the exogenous inputs and
to the outputs of other systems.

The outputs of a system of name G are collectively denoted by G. To refer to
particular outputs, e.g., the second and third, use the syntax G(2:3).

The arguments of sconnect are as follows:

• The first argument inputs is a string listing the exogenous inputs. For
instance, inputs='r(2), d' specifies two inputs, a vector r of size 2 and a
scalar input d

• The second argument outputs is a string listing the outputs generated by the
control loop. Outputs are defined as combinations of the exogenous inputs
and the outputs of the dynamical systems. For instance, outputs='e=r-S;
S+d' specifies two outputs e = r – y and y + d where y is the output of the
system of name S.

• The third argument Kin names the controller and specifies its inputs. For
instance, Kin='K:e' inserts a controller of name K and input e. If no name is
specified as in Kin='e', the default name K is given to the controller.

sconnect

9-108

• The remaining arguments come in pairs and specify, for each known LTI
system in the loop, its input list Gkin and its SYSTEM matrix gk. The input list
is a string of the form
system name : input1 ; input2 ; ... ; input n

For instance, G1in='S: K(2);d' inserts a system called S whose inputs
consist of the second output of the controller K and of the input signal d.

Note that the names given to the various systems are immaterial provided that
they are used consistently throughout the definitions.

Remark One of the dynamical systems can be polytopic or affine parameter-dependent.
In this case, sconnect always returns a polytopic model of the interconnection.

Example 1

This simple example illustrates the use of sconnect to compute
interconnections of systems without controller. The SYSTEM matrix of this
series interconnection is returned by

sys1 = ltisys('tf',1,[1 1])
sys2 = ltisys('tf',[1 0],[1 2])
S = sconnect('r','S2',[],'S1:r',sys1,'S2:S1',sys2)

Note that inputK is set to [] to mark the absence of controller. The same result
would be obtained with

S = smult(sys1,sys2)

r y
1

s + 1

1

s + 2

sconnect

9-109

Example 2

The standard plant associated with this simple tracking loop is given by

g = ltisys('tf',1,[1 1])
P = sconnect('r','y=G','C:r-y','G:C',g)

Example 3

If the SYSTEM matrices of the system G and filters W1, W2, W3, Wd, Wn are stored
in the variables g, w1, w2, w3, wd, wn, respectively, the corresponding
standard plant P(s) is formed by

inputs = 'r;n;d'
outputs = 'W1;W2;W3'
Kin = 'K: e=r-y-Wn'
W3in = 'W3: y=G+Wd'

1

s + 1
C(s)

r e u y+

−

r
+

−
K G

W1 W2

W3

Wn

Wd d

z3

n

+

+
+

+

z2

z3

z1

e

sconnect

9-110

[P,r] = sconnect(inputs,outputs,Kin,'G:K',g,'W1:e',w1,...
'W2:K',w2,W3in,w3,'Wd:d',wd,'Wn:n',wn)

See Also ltisys, slft, ssub, sadd, smult

sderiv

9-111

9sderiv Purpose Apply proportional-derivative action to some inputs/outputs of an LTI system

Syntax dsys = sderiv(sys,chan,pd)

Description sderiv multiplies selected inputs and/or outputs of the LTI system sys by the
proportional-derivator ns + d. The coefficients n and d are specified by setting

pd = [n , d]

The second argument chan lists the input and output channels to be filtered by
ns + d. Input channels are denoted by their ranking preceded by a minus sign.

On output, dsys is the SYSTEM matrix of the corresponding interconnection. An
error is issued if the resulting system is not proper.

Example Consider a SISO loop-shaping problem where the plant P(s) has three outputs
corresponding to the transfer functions S, KS, and T . Given the shaping filters

w1(s) = , w2(s) = 100, w3(s) = 1 + 0.01s,

the augmented plant associated with the criterion

is formed by

w1 = ltisys('tf',1,[1 0])
w2 = 100

paug = smult(p,sdiag(w1,w2,1))
paug = sderiv(paug,3,[0.01 1])

This last command multiplies the third output of P by the filter w3.

See Also ltisys, magshape

1
s

w1S

w2KS

w3T 
 
 
 
 
 

∞

sdiag

9-112

9sdiag Purpose Append (concatenate) linear systems

Syntax g = sdiag(g1,g2,...)

Description sdiag returns the system obtained by stacking up the inputs and outputs of the
systems g1,g2,... as in the diagram.

If G1(s),G2 (s), . . . are the transfer functions of g1,g2,..., the transfer function
of g is

The function sdiag takes up to 10 input arguments. One (and at most one) of
the systems g1,g2,... can be polytopic or parameter-dependent, in which case
g is of the same nature.

. . .

G1

Gn

u1 y1

un
yn

u y

G

G s()
G1 s() 0 0

0 G2 s() 0

0 0 
 
 
 
 

=

...

sdiag

9-113

Example Let p be a system with two inputs u1, u2 and three outputs y1 , y2 , y3. The
augmented system

with weighting filters

w1(s) = , w2(s) = 10, w3(s) =

is created by the commands

w1 = ltisys('tf',1,[1 0])
w3 = ltisys('tf',[100 0],[1 100])
paug = smult(p,sdiag(w1,10,w3))

See Also ltisys, ssub, sadd, smult, psys

P

w1

w2

w3

u1

u2

y1

y2

y3

y1
˜

y2
˜

y3
˜

Paug

1
s
--- 100s

s 100+

setlmis

9-114

9setlmis Purpose Initialize the description of an LMI system

Syntax setlmis(lmi0)

Description Before starting the description of a new LMI system with lmivar and lmiterm,
type

setlmis([])

to initialize its internal representation.

To add on to an existing LMI system, use the syntax

setlmis(lmi0)

where lmi0 is the internal representation of this LMI system. Subsequent
lmivar and lmiterm commands will then add new variables and terms to the
initial LMI system lmi0.

See Also getlmis, lmivar, lmiterm, newlmi

setmvar

9-115

9setmvar Purpose Instantiate a matrix variable and evaluate all LMI terms involving this matrix
variable

Syntax newsys = setmvar(lmisys,X,Xval)

Description setmvar sets the matrix variable X with identifier X to the value Xval. All terms
involving X are evaluated, the constant terms are updated accordingly, and X
is removed from the list of matrix variables. A description of the resulting LMI
system is returned in newsys.

The integer X is the identifier returned by lmivar when X is declared.
Instantiating X with setmvar does not alter the identifiers of the remaining
matrix variables.

The function setmvar is useful to freeze certain matrix variables and optimize
with respect to the remaining ones. It saves time by avoiding partial or
complete redefinition of the set of LMI constraints.

Example Consider the system

 = Ax + Bu

and the problem of finding a stabilizing state-feedback law u = Kx where K is
an unknown matrix.

By the Lyapunov Theorem, this is equivalent to finding P > 0 and K such that

(A + BK)P + P(A + BK)T + I < 0.

With the change of variable Y := KP, this condition reduces to the LMI

AP + PAT + BY + YTBT + I < 0.

This LMI is entered by the commands

n = size(A,1) % number of states
ncon = size(B,2) % number of inputs

setlmis([])
P = lmivar(1,[n 1]) % P full symmetric
Y = lmivar(2,[ncon n]) % Y rectangular

lmiterm([1 1 1 P],A,1,'s') % AP+PA'

x·

setmvar

9-116

lmiterm([1 1 1 Y],B,1,'s') % BY+Y'B'
lmiterm([1 1 1 0],1) % I
lmis = getlmis

To find out whether this problem has a solution K for the particular Lyapunov
matrix P = I, set P to I by typing

news = setmvar(lmis,P,1)

The resulting LMI system news has only one variable Y = K. Its feasibility is
assessed by calling feasp:

[tmin,xfeas] = feasp(news)
Y = dec2mat(news,xfeas,Y)

The computed Y is feasible whenever tmin < 0.

See Also evallmi, delmvar

showlmi

9-117

9showlmi Purpose Return the left- and right-hand sides of an LMI after evaluation of all variable
terms

Syntax [lhs,rhs] = showlmi(evalsys,n)

Description For given values of the decision variables, the function evallmi evaluates all
variable terms in a system of LMIs. The left- and right-hand sides of the n-th
LMI are then constant matrices that can be displayed with showlmi. If evalsys
is the output of evallmi, the values lhs and rhs of these left- and right-hand
sides are given by

[lhs,rhs] = showlmi(evalsys,n)

An error is issued if evalsys still contains variable terms.

Example See the description of evallmi.

See Also evallmi, setmvar

sinfo

9-118

9sinfo Purpose Return the number of states, inputs, and outputs of an LTI system

Syntax sinfo(sys)
[ns,ni,no] = sinfo(sys)

Description For a linear system

E = Ax + Bu

y = Cx + Du

specified in the SYSTEM matrix sys, sinfo returns the order ns of the system
(number of states) and the numbers ni and no of its inputs and outputs,
respectively. Note that ns, ni, and no are the lengths of the vectors x, u, y,
respectively.

Without output arguments, sinfo displays this information on the screen and
also indicates whether the system is in descriptor form (E ¦ I) or not.

See Also ltisys, ltiss, psinfo

x·

sinv

9-119

9sinv Purpose Compute the inverse G(s)–1, if it exists, of a system G(s)

Syntax h = sinv(g)

Description Given a system g with transfer function

G(s) = D + C(sE – A)–1B

with D square and invertible, sinv returns the inverse system with transfer
function H(s) = G(s)–1. This corresponds to exchanging inputs and outputs:

y = G(s)u ⇔ u = H(s)y

See Also ltisys, sadd, smult, sdiag

slft

9-120

9slft Purpose Form the linear-fractional interconnection of two time-invariant systems
(Redheffer’s star product)

Syntax sys = slft(sys1,sys2,udim,ydim)

Description slft forms the linear-fractional feedback interconnection

of the two systems sys1 and sys2 and returns a realization sys of the

closed-loop transfer function from to . The optional arguments

udim and ydim specify the lengths of the vectors u and y. Note that u enters
sys1 while y is an output of this system.When udim and ydim are omitted, slft
forms one of the two interconnections:

w1 z1

u y

w2 z2

sys1

sys2

w1

w2 
 
 
  z1

z2 
 
 
 

slft

9-121

or

depending on which system has the larger number of inputs/outputs. An error
is issued if neither of these interconnections can be performed.

slft also performs interconnections of polytopic or affine
parameter-dependent systems. An error is issued if the result is neither
polytopic nor affine parameter-dependent.

u y

sys1

sys2

w1 z1

u y

sys2

sys1

z2 w2

slft

9-122

Example Consider the interconnection

where ∆(s), P(s), K(s) are LTI systems. A realization of the closed-loop transfer
function from w to z is obtained as

clsys = slft(delta,slft(p,k))

or equivalently as

clsys = slft(slft(delta,p),k)

See Also ltisys, sloop, sconnect

u y

P(s)

K(s)

w
z

∆(s)

sloop

9-123

9sloop Purpose Form the feedback interconnection of two systems

Syntax sys = sloop(g1,g2,sgn)

Description sloop forms the interconnection

The output sys is a realization of the closed-loop transfer function from r to y.
The third argument sgn specifies either negative feedback (sgn = 1) or
positive feedback (sgn = +1). The default value is 1.

In terms of the transfer functions G1(s) and G2(s), sys corresponds to the
transfer function (I – εG1G2)–1G1 where ε =sgn.

Example The closed-loop transfer function from r to y in

is obtained by

sys = sloop(ltisys('tf',1,[1 1]) , ltisys('tf',1,[1 0]))

[num,den] = ltitf(sys)

num =

r y+

sgn

G1

G2

r y+

−
1/(s+1)

1/s

sloop

9-124

0 1.00 0.00

den =
1.00 1.00 1.00

See Also ltisys, slft, sconnect

smult

9-125

9smult Purpose Series interconnection of linear systems

Syntax sys = smult(g1,g2,...)

Description smult forms the series interconnection

The arguments g1, g2,... are SYSTEM matrices containing the state-space
data for the systems G1, . . ., Gn. Constant matrices are also allowed as a
representation of static gains. In addition, one (and at most one) of the input
arguments can be a polytopic or affine parameter-dependent model, in which
case the output sys is of the same nature.

In terms of transfer functions, this interconnection corresponds to the product

G(s) = Gn(s) × . . . × G1(s)

Note the reverse order of the terms.

Example Consider the interconnection

where Wi(s), W0(s) are given LTI filters and G is the affine
parameter-dependent system

 = θ1x + u

y = x – θ2u

parametrized by θ1, θ2. The parameter-dependent system defined by this
interconnection is returned by

y
G2G1 Gn

u
........

G

GWi(s) Wo(s)

x·

smult

9-126

sys = smult(wi,g,w0)

While the SYSTEM matrices wi and w0 are created with ltisys, the
parameter-dependent system g should be specified with psys.

See Also sadd, sdiag, sloop, slft, ltisys

splot

9-127

9splot Purpose Plot the various frequency and time responses of LTI systems

Syntax splot(sys,type,xrange)
splot(sys,T,type,xrange)

Description The first syntax is for continuous-time systems

E = Ax + Bu

y = Cx + Du

The first argument sys is the SYSTEM matrix representation of a system. The
optional argument xrange is a vector of frequencies or times used to control the
x-axis and the number of points in the plot. Finally, the string type consists of
the first two characters of the diagram to be plotted. Available choices include:

Frequency Response

type plot

'bo' Bode plot

'sv' Singular value plot

'ny' Nyquist plot

'li' lin-log Nyquist plot

'ni' Black/Nichols chart

Time Response

type plot

'st' Step response

'im' Impulse response

'sq' Response to a square signal

'si' Response to a sinusoidal signal

x·

splot

9-128

The syntax splot(sys,T,type,xrange) is used for discrete-time systems, in
which case T is the sampling period in seconds.

Remark The Control System Toolbox is needed to run splot.

Example Consider the third-order SISO system with transfer function

To plot the Nyquist diagram of the frequency response G(jω), type

g = ltisys('tf',1,[1 0.001 1 0])
splot(g,'ny')

The resulting plot appears in Figure 9-3. Due to the integrator and poor
damping of the natural frequency at 1 rd/s, this plot is not very informative. In
such cases, the lin-log Nyquist plot is more appropriate. Given the gain/phase
decomposition

G(jω) = γ(ω)ejφ(ω)

of the frequency response, the lin-log Nyquist plot is the curve described by

x = ρ(ω) cos ϕ(ω), y = ρ(ω) sin ϕ(ω)

where

This plot is drawn by the command

splot(g,'li')

and appears in Figure 9-4. The resulting aspect ratio is more satisfactory
thanks to the logarithmic scale for gains larger than one. A more complete
contour is drawn in Figure 9-5 by

splot(g,'li',logspace(-3,2))

G s() 1

s s2 0.001s 1+ +()
---=

p ω()
γω if γω 1≥
1 log10γω if γω 1>+




=

splot

9-129

Figure 9-3: splot(g,'ny')

Figure 9-4: splot(g,'li')

splot

9-130

Figure 9-5: splot(g,'li',logspace(-3,2))

See Also ltisys, bode, nyquist, sigma, step, impulse

spol

9-131

9spol Purpose Return the poles of an LTI system

Syntax poles = spol(sys)

Description The function spol computes the poles of the LTI system of SYSTEM matrix sys.
If (A, B, C, D, E) denotes the state-space realization of this system, the poles
are the generalized eigenvalues of the pencil (A, E) in general, and the
eigenvalues of A when E = I.

See Also ltisys, ltiss

sresp

9-132

9sresp Purpose Frequency response of a continuous-time system

Syntax resp = sresp(sys,f)

Description Given a continuous-time system G(s) of realization (A, B, C, D, E), sresp
computes its frequency response

G(jω) = D + C(jωE – A)–1B

at the frequency ω = f. The first input sys is the SYSTEM matrix of G.

See Also ltisys, splot, spol

ssub

9-133

9ssub Purpose Select particular inputs and outputs in a MIMO system

Syntax subsys = ssub(sys,inputs,outputs)

Description Given an LTI or polytopic/parameter-dependent system sys, ssub extracts the
subsystem subsys mapping the inputs selected by inputs to the outputs
selected by outputs. The resulting subsystem has the same number of states
as sys even though some of these states may no longer be
controllable/observable from the remaining inputs and outputs.

Example If p is a system with 3 inputs and 6 outputs, a realization of the transfer
function from the input channels 1,3 to the output channels 4,5,6 is obtained
as:

ssub(p,[1,3],4:6)

The second and third arguments are the vectors of indices of the selected
inputs/outputs. Inputs and outputs are labeled 1,2,3,... starting from the top of
the block diagram:

See Also ltisys, psys

u1

u2

u3

y1

y2

y3

y4

y5

y6

P

ublock

9-134

9ublock Purpose Specify the characteristics of an uncertainty block

Syntax block = ublock(dims,bound,type)

Description ublock is used to describe individual uncertainty blocks ∆i in a block-diagonal
uncertainty operator

∆ = diag(∆1, . . ., ∆n)

Such operators arise in the linear-fractional representation of uncertain
dynamical systems (see “How to Derive Such Models” on page 2-23).

The first argument dims specifies the dimensions of ∆i. Set dim = [m,n] if ∆i is
m-by-n, i.e., has m outputs and n inputs. The second argument bound contains
the quantitative information about the uncertainty (norm bound or sector
bounds). Finally, type is a string specifying the dynamical and structural
characteristics of ∆i.

The string type consists of one- or two-letter identifiers marking the
uncertainty block properties. Characteristic properties include:

• The dynamical nature: linear time invariant ('lti'), linear time varying
('ltv'), nonlinear memoryless ('nlm'), or arbitrary nonlinear ('nl'). The
default is 'lti'

• The structure: 'f' for full (unstructured) blocks and 's' for scalar blocks of
the form

 ∆i = δi x Iri

Scalar blocks often arise when representing parameter uncertainty. They
are also referred to as repeated scalars. The default is 'f'

• The phase information: the block can be complex-valued ('c') or real-valued
('r'). Complex-valued means arbitrary phase. The default is 'c'.

For instance, a real-valued time-varying scalar block is specified by setting
type = 'tvsr'. The order of the property identifiers is immaterial.

Finally, the quantitative information can be of two types:

• Norm bound: here the second argument bound is either a scalar β for uniform
bounds,

ublock

9-135

||∆||∞ < β,

or a SISO shaping filter W(s) for frequency-weighted bounds ||W –1∆||∞ < 1,
that is,

σmax(∆(jω)) < |W(jω)| for all ω

• Sector bounds: set bound = [a b] to indicate that the response of ∆(.) lies in
the sector {a, b}. Valid values for a and b include Inf and Inf.

Example See the example on p. 2-25 of this manual.

See Also udiag, uinfo, slft, aff2lft

udiag

9-136

9udiag Purpose Form block-diagonal uncertainty structures

Syntax delta = udiag(delta1,delta2,....)

Description The function udiag appends individual uncertainty blocks specified with
ublock and returns a complete description of the block-diagonal uncertainty
operator

∆ = diag(∆1, ∆2, . . .)

The input arguments delta1, delta2,... are the descriptions of ∆1, ∆2,
If udiag is called with k arguments, the output delta is a matrix with k
columns, the k-th column being the description of ∆k.

See Also ublock, udiag, slft, aff2lft

uinfo

9-137

9uinfoPurpose Display the characteristics of a block-diagonal uncertainty structure

Syntax uinfo(delta)

Description Given the description delta of a block-diagonal uncertainty operator

∆ = diag(∆1, . . ., ∆n).

as returned by ublock and udiag, the function uinfo lists the characteristics of
each uncertainty block ∆i.

See Also ublock, udiag

uinfo

9-138

	Preface
	About the Authors
	Acknowledgments

	Introduction
	Linear Matrix Inequalities
	Toolbox Features
	LMIs and LMI Problems
	The Three Generic LMI Problems

	Further Mathematical Background
	References

	Uncertain Dynamical Systems
	Linear Time-Invariant Systems
	SYSTEM Matrix

	Time and Frequency Response Plots
	Interconnections of Linear Systems
	Model Uncertainty
	Uncertain State-Space Models
	Polytopic Models
	Affine Parameter-Dependent Models
	Quantification of Parameter Uncertainty
	Simulation of Parameter-Dependent Systems
	From Affine to Polytopic Models
	Example

	Linear-Fractional Models of Uncertainty
	How to Derive Such Models
	Specification of the Uncertainty
	From Affine to Linear-Fractional Models

	References

	Robustness Analysis
	Quadratic Lyapunov Functions
	LMI Formulation
	Quadratic Stability
	Maximizing the Quadratic Stability Region
	Decay Rate
	Quadratic H• Performance

	Parameter-Dependent Lyapunov Functions
	Stability Analysis

	µ Analysis
	Structured Singular Value
	Robust Stability Analysis
	Robust Performance

	The Popov Criterion
	Real Parameter Uncertainty

	Example
	References

	State-Feedback Synthesis
	Multi-Objective State-Feedback
	Pole Placement in LMI Regions
	LMI Formulation
	Extension to the Multi-Model Case

	The Function msfsyn
	Design Example
	References

	Synthesis of H• Controllers
	H• Control
	Riccati- and LMI-Based Approaches

	H• Synthesis
	Validation of the Closed-Loop System

	Multi-Objective H• Synthesis
	LMI Formulation
	The Function hinfmix
	Loop-Shaping Design with hinfmix

	References

	Loop Shaping
	The Loop-Shaping Methodology
	The Loop-Shaping Methodology
	Design Example
	Specification of the Shaping Filters
	Nonproper Filters and sderiv

	Specification of the Control Structure
	Controller Synthesis and Validation
	Practical Considerations
	Loop Shaping with Regional Pole Placement
	References

	Robust Gain-Scheduled Controllers
	Gain-Scheduled Control
	Synthesis of Gain-Scheduled H• Controllers
	Simulation of Gain-Scheduled Control Systems
	Design Example
	References

	The LMI Lab
	Background and Terminology
	Overview of the LMI Lab
	Specifying a System of LMIs
	A Simple Example
	setlmis and getlmis
	lmivar
	lmiterm
	The LMI Editor lmiedit
	How It All Works

	Retrieving Information
	lmiinfo
	lminbr and matnbr

	LMI Solvers
	From Decision to Matrix Variables and Vice Versa
	Validating Results
	Modifying a System of LMIs
	dellmi
	dellmi
	setmvar

	Advanced Topics
	Structured Matrix Variables
	Complex-Valued LMIs
	Specifying cTx Objectives for mincx
	Feasibility Radius
	Well-Posedness Issues
	Semi-Definite B(x) in gevp Problems
	Efficiency and Complexity Issues
	Solving M + PTXQ + QTXTP < 0

	References

	Command Reference
	List of Functions
	H• Control and Loop Shaping
	LMI Lab: Specifying and Solving LMIs
	LMI Lab: Additional Facilities

