
Discrete-time singular observers: 2/ optimality and unknown inputs

RICARDO H. C. TAKAHASHI² , REINALDO M. PALHARES ³ and PEDRO L. D. PERES§*

This paper presents a family of observers which has as particular cases the `unknown input observers’ and the l̀inear
quadratic/ 2/ optimal observers’. A smooth transition between these particular extreme cases through the general
case is provided, corresponding to a transition of the disturbance patterns from entirely `singular’ to entirely `regular’
ones. Both `hard’ (arbitrary) and `soft’ (Gaussian or °2 signals) disturbances are allowed. The methodology presented
here, although developed for discrete time systems, may be extended to the continuous time case.

1. Notation

R and N are, respectively, the real and natural num-
bers ® elds; denotes either the space of zero-mean
Gaussian signals or °2 signals; is the mathematical
expectation of the argument; q denotes the rank of the
argument; # represents any left inverse of the argu-
ment; is the null space of the argument; is the
image space of the argument; c i denotes the subspace
associated to the state sub-vector xi; and denotes the
direct sum of subspaces.

2. Preliminaries

Consider the following linear discrete-time invariant
system

x k 1 Ax k Bw k Eu k Hf k ,

x 0 x0

y k Cx k Dw k Fu k

z k Tx k

1

in which x k : N R n is the state vector, y k : N R q

is the measurement vector, u k : N R r is a vector of
known (deterministic) inputs, and z k : N R p is the
signal to be estimated. The initial state condition x0 is
considered to be known and without loss of generality it
can be assumed to be zero. Assume that

w k m 2

In this sense, w k : N R m , the noise signal vector, is
said to be the s̀oft’ disturbance vector, while

f k : N R f is the `hard’ disturbance vector, since
there is no assumption on it. However, a `matching
condition’ is required for its input matrix H . De® ne

R : R D 3

The matching condition is

q H q RCH 4

The observability of the system (1) is assumed here. It is
also assumed that all the system invariant zeros (if they
exist) lie inside the open unit disc. Matrix C is also
considered to be of full row rank, without loss of
generality. The generic problem addressed here is the
determination of an asymptotically stable ® lter with
the structure

x̂ k 1 Fx̂ k
k n

i 0

Liy i H iu i ,

x̂ 0 0

ẑ k T x̂ k

5

such that

e k x̂ k x k

lim
k

e k 0
6

holds. This constitutes a kind of `smoother’ , with poss-
ibly non-causal dynamics. For on-line estimation pur-
poses, the structure (5) is modi® ed as

x̂ k 1 n Fx̂ k n
k

i k n

Liy i H iu i ,

x̂ 0 0

ẑ k n T x̂ k n

7

The ® lter equation (7) possesses causal dynamics, since
the system state vector depends only on its past values
and on input signals y and u up to instant k. In fact, this
formulation implies that the computation of x̂ k must
be performed with a time delay of n 1 units, in the
worst case.
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The observer is designed in such a way that it mini-
mizes a transfer function norm criterion (in fact, the
norm minimization is guaranteed to occur only after
the s̀ingular error’ vanishes, which happens, in the
worst case, after n 1 time intervals), for the non-causal
formulation (5). The 2 and/or norm of the transfer
matrix from the disturbance input vector w t to the
estimation error ~z k 7 z k ẑ k are considered
here. Note that the optimality of the on-line estimation
of x k n in (7) is assured. The interpretation of
x̂ k n as an estimation of x k , however, is no longer
optimal. The optimal estimator for x k would involve,
necessarily, some kind of prediction.

Note that only the regular part of the output (i.e. the
one which is corrupted by the noise signal) contributes
to the transfer function norm. In this sense, the 2 and/
or criteria will be de® ned with respect to the reduced
regular kernel in §5.

2.1. Historical perspective

The observer design techniques have long been faced
with the problem of estimating the states of a system in
the presence of exogenous disturbances. Two main
streams have been followed up to now.

(1) Unknown input observers. This class of observers
has been devoted to the decoupling of disturb-
ances of arbitrary nature, entering the system
state space in some speci® c space directions (a
`matching condition’ like (4) is always necess-
ary). The earlier references on the subject are
Wang et al. (1975) and Kudva et al. (1980).
Takahashi and Peres (1996) present a uni® ed
view of the ® eld, performing a comparison
between conventional unknown input and slid-
ing mode observers.

(2) Optimal 2/ ® ltering. This stream of works
has dealt with rather di� erent problems, in which
there is a disturbance vector entering, in prin-
ciple, the whole state space and measurement
space. This disturbance vector (often called
`noise’ ) has necessarily some characterization as
(2) which allows the de® nition of an optimiza-
tion problem. The disturbances are not com-
pletely decoupled, but attenuated. The optimal
attenuation is usually de® ned in the 2 (or linear
quadratic) sense (Petersen and McFarlane 1994)
or, more recently, also in the sense (Takaba
and Katayama 1996). Palhares and Peres (1998)
present these optimization problems in a L inear
Matrix Inequalities (LMIs) setting. The results
therein will be employed here.

See also Hayer et al. (1996) for a combination of these
two perspectives.

A particular vein in optimal ® ltering literature deals
with the singular ® ltering problems. This is the case of
problems in which some (or all) measured variables are
noise-free, leading to noise-free estimates of subspaces
of the state space. The 2 singular ® ltering has been
addressed in Schumacher (1985), and the case,
more recently, in Hsu and Yu (1996) and Chevrel and
Bourles (1993).

An important property of these singular problem
solutions is the emergence of some directions of the
state space with the complete disturbance decoupling
feature. This fact has not been exploited in the literature
yet, to the authors’ knowledge, except in Takahashi et
al. (1997) (by the same authors, in a continuous time
setting). That property establishes a natural connection
between the optimal 2/ observers and the
unknown input observers, making them become particu-
lar cases of a more general structure. The disturbance
patterns associated with each particular problem will
determine the choice of a particular observer form in
that general family. The present paper, in this way,
rather than just combining di� erent techniques, presents
a unifying foundation for observer design.

Only the discrete-time case is approached here in
order to simplify the derivations and for space reasons.
The continuous time case may be dealt with through the
same methodology, with di� erences concerning (a)
hypothesis on transmission zeros and (b) the implemen-
tation structure.

3. Singular/regular canonical form

System (1) may be put into the form (see Appendix)

x1 k 1

x2 k 1

x3 k 1

x4 k 1

x5 k 1

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

0 A42 A43 A44 A45

0 0 0 0 A55

x1 k

x2 k

x3 k

x4 k

x5 k

B11

B21

B31

0

0

w k

H11

H21

H31

H41

H51

g k

E11

E21

E31

E41

E51

u k

8
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y1 k

y2 k

y3 k

C11 C12 C13 C14 C15

0 0 C23 C24 0

0 0 0 0 C35

x1 k

x2 k

x3 k

x4 k

x5 k

D11

0

0

w k

F11

F21

F31

u k

8

In the above

g k f k Vx k Uw k 9

with V and U de® ned in (63) in the appendix. This form
has the following properties:

(C1) C35 is square and full rank
(C2) C23 C24 is square and full rank
(C3) D11 is full row rank
(C4) A42, if not vanishing, has full column rank
(C5) H51 is square and full rank

Further decompositions may be performed in
subspace c1 c2 c3 if A42 is non-null and
B21 B31 D11 is not full row rank. In this case

x1 k 1

x2 k 1

x3 k 1

x4 k 1

x5 k 1

x6 k 1

x7 k 1

A11 A12 A13 A14 A15 A16 A17

A21 A22 A23 A24 A25 A26 A27

A31 A32 A33 A34 A35 A36 A37

0 A42 A43 A44 A45 A46 A47

A51 A52 A53 A54 A55 A56 A57

0 0 A63 A64 A65 A66 A67

0 0 0 0 0 0 A77

x1 k

x2 k

x3 k

x4 k

x5 k

x6 k

x7 k

B11

B21

B31

0

B51

0

0

w k

H11

H21

H31

H41

H51

H61

H71

g k

E11

E21

E31

E41

E51

E61

E71

u k

10

y1 k

y2 k

y3 k

C11 C12 C13 C14 C15 C16 C17

0 0 0 0 C25 C26 0

0 0 0 0 0 0 C37

x1 k

x2 k

x3 k

x4 k

x5 k

x6 k

x7 k

D11

0

0

w k

F11

F21

F31

u k

10

Subspace c1 c2 c3 c5 may be further decom-
posed, if A42 0 and B21 B31 B51 D11 is not a full
row rank matrix.

De® ne the matrices

M1 Æ

Mi

Mi 1

Bi1
, if Bi1 0

Mi 1, if Bi1 0

i 2
11

In the ultimate format, an additional property of the
canonical form is

(C6) one of the following conditions occurs:

(1) c1 vanishes
(2) c1 does not vanish Mi D11 is full row

rank, for maximal i, or c2 vanishes)

In case (C6.2) there is a regular kernel in the system
dynamic equations, given by subspace c1. In this case,
regular optimal ® ltering problems may be de® ned, as
stated in §5.

In case (C6.1), however, the system is fully singular.
In this case, the observation error may be eliminated in a
® nite number of steps.

4. Observer design

Consider a system with the structure (10). This is
the smallest system which exhibits the full problem
complexity. In order to avoid cumbersome notation,
the observer will be developed here for this system. Its
generalization for systems with more blocks is straight-
forward.

The ® rst steps will be devoted to the determination
of the singular states. Start with subspace c7

x7 k C 1
37 y3 k F31u k 12

The next step is the determination of the hard disturb-
ance vector g k

g k H 1
71 x7 k 1 A77x7 k E71u k 13

Now ® nd c6 c5

x5 k

x6 k
C25 C26

1 y2 k F21u k 14
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The acquired information is employed in the determina-
tion of c4 c3

x3 k

x4 k
A63 A64

#

x6 k 1 A65 A66 A67

x5 k

x6 k

x7 k

H61g k E61u k

15

The last perfect information subspace is c2

x2 k A#
42

x4 k 1 A43 A44 A45 A46 A47

x3 k

x4 k

x5 k

x6 k

x7 k

H41g k E41u k

16

A perfect information vector p k is de® ned as

p k x2 k x3 k x4 k x5 k x6 k x7 k g k u k

17

Now, the soft noise corrupted information is grouped.
De® ne a new `measured’ regularly disturbed variable:

q k Px1 k Qw k

C11

A21

A31

A51

x1 k

D11

B21

B31

B51

w k

y1 k

x2 k 1

x3 k 1

x5 k 1

C12 C13 C14 C15 C16 C17 0 F11

A22 A23 A24 A25 A26 A27 H21 E21

A32 A33 A34 A35 A36 A37 H31 E31

A52 A53 A54 A55 A56 A57 H51 E51

p k

18

In the above, B21 means a full row rank partition of B21
(possibly subject to a coordinate transformation) and
A21 its corresponding rows in A21. The regularly dis-
turbed ® ltering problem is de® ned as the search for an
optimal ® ltering gain matrix L

x̂1 k 1 A11 L P x̂1 k L q k Erp k 19

in which

Er 7 A12 A13 A14 A15 A16 A17 H11 E11

Equations (12) ± (16) express the algebraic connection
of the perfect measurements y2, y3 and deterministic
inputs u with the state estimates x̂2 . . . x̂7 . The dynamic
dependence of x1 with y1, y2, y3 and u is expressed in

equations (17) ± (19). The general structure (7) is
embedded implicitly in these equations.

5. Filtering scheme

In the case of c1 not vanishing, the reduced order
system obtained from the decomposition procedure is
given by

x1 k 1 A11x1 k B11w k Erp k ,

x1 0 x0

q k Px1 k Qw k

zr k Trx1 k

20

in which x1 k : N R nr is the reduced-order state vec-
tor, w k : N R m is the (full-order) exogenous s̀oft
disturbance’ input vector, q k : N R l is the extended
measurement output vector, zr k : N R pr is a linear
combination of the reduced-order state variables to be
estimated and p k : N R rr is a known deterministic
input vector including the deterministic input vector
u k , the hard disturbance vector g k (de® ned in (9))
and also the singularly determined states xj k ,
j 2, . . . , b. The amount nr corresponds to the dimen-
sion of c1.

The aim is to determine an asymptotically stable lin-
ear ® lter of order nr given by

x̂1 k 1 A11x̂1 k L q k Px̂1 k Erp k ,

x̂1 0 0

ẑr k T rx̂1 k

21

where L R nr l is an unknown matrix to be deter-
mined. Considering e k 7 x1 k x̂1 k and ~zr k 7
zr k ẑr k , the estimation error dynamics is given by

e k 1 A w e k B w w k , e 0 x1 0 x̂1 0

~zr k Tre k

22

where A w 7 A11 L P , Bw 7 B11 L Q . Three opti-
mal ® lter schemes are presented in the next subsections
in terms of LMIs: the optimal 2, the optimal and
the central ones. The correspondence of these LMIs
with the classical 2/ ® ltering results can be found
in Palhares and Peres (1998).

5.1. Optimal 2 Filtering

Suppose that the power spectral density matrix of w
is known, with joint covariance matrix given by

w k w k
B11B11 B11Q

QB11 QQ

484 R. H. C. Takahashi et al.



The regular 2 ® lter design is concerned with the mini-
mization of the estimation error variance given by

lim
k

~zr
~zr 23

If A w is asymptotically stable, the estimation error vari-
ance (23) is asymptotically bounded by

Tr B w GB w 24

where G G 0, G R nr nr solves the Lyapunov
equation

G 0 25
with

G 7 Aw GA w G Tr Tr 26

The next theorem states, in terms of LMIs, an optimiza-
tion procedure whose optimal solution yields the opti-
mal 2 ® lter gain.

Theorem 1: The optimal solution of

min
J,Y ,W

Tr J 27

subject to

J B11Y Q W

YB11 WQ Y
0 28

Y YA11 WP 0

A11 Y P W Y Tr

0 Tr I

0 29

Y > 0 30

with Y Y R nr nr, W R nr q and J J R m m is
such that Tr J limk

~zr
~zr and

L Y 1W

is the optimal 2 ® lter gain.

Proof:
(Su� ciency) Suppose that there exist Y Y > 0

and W satisfying (29). Then, by a standard Schur com-
plement argument, (29) is equivalent to

YA11 WP Y 1 YA11 WP Y Tr Tr 0 31

or

A11 Y 1 WP Y A11 Y 1 WP Y Tr Tr 0

32

implying that L 7 Y 1W and G7 Y are feasible
solutions to G 0, where A w A11 L P, and
hence (21) is asymptotically stable.

(Necessity) Consider a pair of matrices G, L satisfy-
ing (25), thus implying G 0 (note that it is equiva-
lent to suppose system (21) as being asymptotically
stable), then after some algebraic manipulations, one
gets

GA11 GL P G 1 GA11 GL P G Tr Tr 0 33

following that W 7 GL and Y G satisfy the inequality
(29).

From the objective function and applying the Schur
complement to inequality (28) with Y > 0, one gets

Tr J Tr YB11 WQ Y 1 YB11 WQ

Tr B11 Y 1 WQ Y B11 Y 1 WQ

Tr Bw YB w lim
k

~zr
~zr 34

In fact, since no other constraint is imposed to the
variable J, the minimization of the linear cost (27)
ensures that

Tr J Tr YB11 WQ Y 1 YB11 WQ

Furthermore, since that G, L satisfy (24) ± (25),
then Y G, W L Y and J YB11 WQ Y 1

YB11 WQ are feasible solutions to the above optimi-
zation problem, implying that

Tr J lim
k

~zr
~zr

holds. h

5.2. Optimal ® ltering

Supposing that the input disturbance has unknown
spectrum with w °2 0; , the optimal regular
® ltering design can be used. In this case, the problem
is to determine a stable ® lter of the form (21) in order to
ensure the minimum disturbance attenuation level g
such that

H~zrw sup
0 w °2 0;

~zr 2

w 2
< g

where H~zrw denotes the transfer function from the noise
signal w to the output ~zr. As it is well known (de Souza
and Xie 1992), with A w asymptotically stable,
H~zrw < g if and only if the following Riccati ® ltering

equation

Aw XA w X Tr Tr g 2A w XBw

I g 2B w XBw
1B w XA w 0 35

admits a positive de® nite matrix X as its solution. The
optimal gain can be obtained through the following
optimization procedure.

Theorem 2: The optimal solution of

min
Y ,W , d

d 36

subject to
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Y 0 A11 Y P W Tr

0 d I B11Y Q W 0

YA11 WP YB11 WQ Y 0

Tr 0 0 I

0

37

Y > 0 38

where d 7 g 2 and Y Y R nr nr , Z R nr q is such
that

H~zrw d 39

and L Y 1 W is the optimal ® lter gain.

Proof: First, the equivalence between a triple
Y , W , d satisfying (37) ± (38) and X, L , g solution of

(35) is shown.
(Su� ciency) Using Schur’ s complement, (37) can be

rewritten as

YA11 WP YB11 WQ

Tr 0

Y 1 0

0 I

YA11 WP YB11 WQ

Tr 0

Y 0

0 d I
0 40

where d 7 g 2. It is straightforward to rewrite (40) as

A11 Y 1 WP B11 Y 1 WQ

Tr 0

Y 0

0 I

A11 Y 1 WP B11 Y 1 WQ

Tr 0

Y 0

0 g 2I
0 41

implying, by a standard Schur complement argument,
that L 7 Y 1 W , X7 Y and g solve (35), ensuring that
H~zrw g .

(Necessity) Suppose that, for a ® xed g > 0,
there exists L such that H~zrw g and thus X > 0

satisfying (35), it follows from Schur complement
and some algebraic manipulations that (35) is equi-
valent to

YA11 Y L P YB11 Y L Q

Tr 0

Y 1 0

0 I

YA11 Y L P YB11 Y L Q

Tr 0

Y 0

0 g 2I
0 42

implying that W 7 Y L , Y 7 X and d 7 g 2 are feasible
solutions to (37).

Furthermore, since the optimization problem is con-
vex (linear criterion under linear constraints), the opti-
mal solution Y , W , d yields L Y 1 W , such that
min H~zrw g d . h

5.3. Central ® ltering

The central ® ltering design deals with the prob-
lem of determining a stable ® lter (21) which guarantees
the minimization of an upper bound to the 2 perform-
ance criterion and satis® es the bound H~zrw < g for a
given g . In other words, this ® lter design (also called the
mixed 2/ ® lter design) claims to achieve a compro-
mise between both performance criteria.

Theorem 3: The optimal solution of

min
J,Y ,W

Tr J 43

subject to

J B11 Y Q W

YB11 WQ Y
0 44

Y 0 A11Y P W Tr

0 g 2I B11 Y Q W 0

YA11 WP YB11 WQ Y 0

Tr 0 0 I

0

45

Y > 0 46

with Y Y R n n, W R n r and J J R m m is
such that

Tr J H~zrw
2
2; H~zrw g 47

and the ® ltering gain is given by

L Y 1 W 48

Proof: Firstly, suppose that for g > 0 given, there
exists Y , W solution of (45) ± (46). Applying the Schur
complement, it follows (see Theorem 2) that (45) is
equivalent to (35), implying that L 7 Y 1W , X7 Y
and g solve (35), ensuring H~zrw g .

Since the inequality (45) can be rewritten as (35) such
that L 7 Y 1W , X7 Y , the following inequality,
derived from map (26),

X g 2A w XB w I g 2B w XB w
1B w XA w 49

holds, and since the system is observable with X > 0, it
follows from de Souza and Xie (1992, Theorem 2.1) that
I g 2Bw XB w > 0, thus X 0 and hence, X G in
(25), such that (47) holds. h

6. Numerical example

An academic example is provided, in order to
illustrate the synthesis method developed here. No

486 R. H. C. Takahashi et al.



a priori known inputs will be considered. Consider the
system:

A

0.0381 0.2347 0.1938 0.3096 0.3422 0.1206 0.1151

0.4873 0.0045 0.0504 0.1326 0.0624 0.1428 0.0318

0 0 0.4582 0.1222 0.0787 0.4735 0.0320

0.3341 0.3333 0.7975 0.2134 0.1174 0.0341 0.0707

0 0 0.4458 0.5110 0.3513 0.8987 0.1885

0 0 0.0766 0.3650 0.1159 0.0304 0.1672

0 0 0 0 0 0 0.2722

B

0.2666 0.2467 0.6940 0.8171

0.9701 0.8440 0.4558 0.0221

0 0 0 0

0.1607 0.7078 0.5824 0.9915

0 0 0 0

0 0 0 0

0 0 0 0

C

0.6762 0.9448 0.4604 0.6056 0.3438 0.0150 0.7830

0 0 0 0 0.6701 0.8292 0

0 0 0 0 0 0.5228 0

0 0 0 0 0 0 0.2742

D

0.7467 0.4364 0.0063 0.5848

0 0 0 0

0 0 0 0

0 0 0 0

H 0.7539 0.1712 0.0043 0.4957 0.0799 0.1631 0.9033

50

The system is already presented in the decomposed
form. This system has one regularly disturbed measure-
ment variable, y1, and three singular measurement vari-
ables, y2, y3 and y4. The state variables x5, x6 and x7 are
directly obtainable from these singular measurements.
From the equation of x7 k 1 comes the determination
of the hard disturbance variable g k de® ned in (9).
From x5 and x6 equations, state variables x3 and x4
are also directly extracted. The equation of x4 k 1
may not furnish exact information, since it is corrupted
by noise. Although the equation of x3 k 1 is noise-
free, it is unusable for the purpose of getting further
exact information about the state vector too, because
A32 0. The system regular kernel is, therefore, com-
posed by states x1 and x2. The regularly corrupted avail-
able information sources are the equations of y1 and
x4 k 1 . Note that the equation of x3 k 1 is also
unusable for the purpose of furnishing noise corrupted
information, since it is noise-free. Note also that matrix
B11 B21 B41 D11 is square and full rank, which

means there is no further information redundancy to
be exploited.

Vector p k , de® ned in (17), is obtained from

p k 1

2.6984 0.5623 2.2503 1.3858 0.7631 0.3119

0.5663 5.1225 1.3319 0.1830 1.0710 1.2450

0 0 0 1.4923 2.3669 0

0 0 0 0 1.9128 0

0 0 0 0 0 3.6470

0 0 4.0374 0 0 1.0990

y2 k

y3 k

y4 k

y2 k 1

y3 k 1

y4 k 1

51

This matrix equation synthesizes the observer design
equations (12) ± (16). The noisy information vector
q k , de® ned in (18) is given by

q k 1
y1 k 1

p2 k

0.4604 0.6056 0.3438 0.0150 0.7830 0

0.7975 0.2134 0.1174 0.0341 0.0707 0.4957

p k 1 52

The reduced order regular kernel estimator, follow-
ing (19), is given by

x̂1 k 1

x̂2 k 1

0.0381 0.2347

0.4873 0.0045

x̂1 k

x̂2 k

L q k
0.6762 0.9448

0.3341 0.3333

x̂1 k

x̂2 k

0.1938 0.3096 0.3422 0.1206 0.1151 0.7539

0.0504 0.1326 0.0624 0.1428 0.0318 0.1712

p k 53

The noise w k enters the reduced-order system through
matrices

B11

0.2666 0.2467 0.6940 0.8171

0.9701 0.8440 0.4558 0.0221

Q
0.7467 0.4364 0.0063 0.5848

0.1607 0.7078 0.5824 0.9915

54

The ® ltering weighting matrix Tr is chosen as:

Tr 1 0 55

In this way, the algorithm of central ® ltering with
the bound H~zrw g 0.7305 leads to the constant
® ltering gain matrix:

L
0.0316 0.7273

0.2428 0.3731
56
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The minimal upper bound to the 2 norm is found to be
Tr J 0.1995.

The observer design is complete. A simulation is now
performed in order to demonstrate the resulting obser-
ver features. Let g k be given by

g k 10 sin
p k
10

1.23 57

The initial state vector is randomly chosen as:
x 0 19.3389 13.6889 6.1921 13.4566 9.3444 32.2866 10.7033

58

The input vector w k is chosen to be zero mean white
noise with identity covariance matrix. The system states
evolution is shown in ® gure 1. The state estimation error
er of the regular sub-system x1 x2 and es of the
singular sub-system x3 x7 are shown in ® gure 2
top and bottom, respectively.

Alternatively, 2 or synthesis could be used for
the regular reduced order system ® lter design, following
the results of Theorems 1 and 2, leading to di� erent ® lter
gain matrices.

7. Conclusions

In this paper, the intrinsic relationship between the
disturbance patterns considered in a system model and

the structure of optimal observers for the system state
vector has been investigated. It has been found that
di� erent disturbance patterns lead to di� erent speci® c
observer structures.

Only discrete time systems have been considered, but
the same methodology could be employed for the con-
tinuous-time case.

Two kinds of disturbances have been dealt with: the
`hard’ disturbances, of entirely arbitrary nature, and
the s̀oft’ ones, which receive some particular character-
ization (as being Gaussian or belonging to °2). Due to
their nature, the hard disturbances must be decoupled,
while the soft disturbances may be only attenuated.
These tasks are both accomplished by the proposed
observer design. Additionally, the problem singularity
may lead to more disturbance decoupling directions,
which contain only soft disturbances.

Acknowledgments

This research has been supported in part by grants
from `FundacË aÄ o de Amparo aÁ Pesquisa do Estado de
Minas Gerais’ , FAPEMIG, TEC 1027/98, and
`Conselho Nacional de Desenvolvimento CientõÂ ® co e
TecnoloÂ gico’ , CNPq, Brazil.

488 R. H. C. Takahashi et al.

Figure 1. State vector evolution.



Appendix: regular/singular decomposition

This appendix describes the algorithm proposed for
system decomposition into a singular part and a regular
part. The `regular’ sub-system is associated with the sub-
space in which the noise and uncertainties corrupt the
state estimates. The s̀ingular’ sub-system is associated
with the noise and uncertainty-free subspace. In this
way, the singular sub-system allows the deterministic
extraction of state trajectories from the available meas-
urements. The system equations (1) are initially rewrit-
ten:

x k 1 Ax k Bw k Hf k Eu k ,

x 0 x0

y k Cx k Dw k Fu k

59

Part I: hard disturbances isolation

The algorithm ® rst part makes the reduction of the
full problem to a problem without `hard disturbances’ .

Step 1. Matrix D is singular (in the sense it does not
corrupt at least one measurement direction) if

and only if it has row rank de® ciency. Remem-
ber also that C has full row rank. This means
that there are coordinate transformations in y
and x vectors such that:

x1 k 1

x2 k 1

A11 A12

A21 A22

x1 k

x2 k

B11

B21

w k

H11

H21

f k
E11

E21

u k

y1 k

y2 k

C11 C12

0 C22

x1 k

x2 k

D11

0
w k

F11

F21

u k

60

Let ° q D11 denote the number of regularly
disturbed outputs, and s m ° denote the
number of disturbance-f ree (singularly meas-
ured) outputs. In system (60) sub-vector
y2 R s . A corresponding partition of x has
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Figure 2. State estimation error: regular states (top) and singular states (bottom).



been de® ned such that x2 R s , which de® nes
the partition in the dynamic equation.

After this step, the relevant full-rank blocks
are:

D11 full row rank
C11 full row rank
C22 R s s full row and column rank
H21 full column rank. This comes from
the matching condition hypothesis.

Step 2. Now transform the basis of sub-vector x2, in
order to obtain a square non-singular H31

x1 k 1

x2 k 1

x3 k 1

A11 A12 A13

A21 A22 A23

A31 A32 A33

x1 k

x2 k

x3 k

B11

B21

B31

w k

H11

0

H31

f k

E11

E21

E31

u k

y1 k

y2 k

C11 C12 C13

0 C22 C23

x1 k

x2 k

x3 k

D11

0
w k

F11

F21

u k

61

After this step, the relevant full-rank blocks are

D11 full row rank
C11 full row rank
C22 C23 full row and column rank

H31 full row and column rank

Step 3. De® ne now the variable:

d k H 1
31 x3 k 1 A33x3 k 62

Note that this variable is, in principle, exactly
known from the uncorrupted measurement y2.
Variable f k is written as:

f k d k H 1
31 A31x1 k A32x2 k B31w k

63

The system equation becomes:

x1 k 1

x2 k 1

x3 k 1

A11 H11H 1
31 A31 A12 H11H 1

31 A32 A13

A21 A22 A23

0 0 A33

x1 k

x2 k

x3 k

B11 H11H 1
31 B31

B21

0

w k

H11

0

H31

d k

E11

E21

E31

u k

y1 k

y2 k

C11 C12 C13

0 C22 C23

x1 k

x2 k

x3 k

D11

0
w k

F11

F21

u k

64

Step 4. Take now only the sub-vector x1 x2
equations:

x1 k 1

x2 k 1

A11 H11H 1
31 A31 A12 H11H 1

31 A32

A21 A22

x1 k

x2 k

B11 H11H 1
31 B31

B21

w k

H11 A13 E11

0 A23 E21

d k

x3 k

u k

y1 k

y2 k

C11 C12

0 C22

x1 k

x2 k

D11

0
w k

0 C13 F11

0 C23 F21

d k

x3 k

u k

67

Note that all `deterministic inputs’ have been
grouped into a single vector. In this way, the system
decomposition has fallen into a system like (59), with
H 0.

Part II: regular/singular decomposition

The second part of the algorithm provides the
determination of the system r̀egular kernel’ , if it exists.
Start with system in the form
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x1 k 1

x2 k 1

A11 A12

A21 A22

x1 k

x2 k

B11

B21

w k
E11

E21

u k

y1 k

y2 k

C11 C12

0 C22

x1 k

x2 k

D11

0
w k

F11

F21

u k

66

Let ° q D11 denote the number of regularly disturbed
outputs, and s m ° denote the number of the
remaining disturbance-f ree (singularly measured) out-
puts, after part I. In system (66) the sub-vector
y2 R s. A corresponding partition of x has been de® ned
such that x2 R s, which de® nes the partition in the
dynamic equation.

The relevant full-rank blocks are

D11 full row rank
C11 full row rank
C22 R s s full row and column rank

If B21 D11 is full row rank, there is nothing to do.
The algorithm stops, and the regular kernel is c1, with
measurement vector y1 x2 . Otherwise, the algorithm
part II must be performed.

Step 1. Decompose B21, ® nding a full row rank (note
that the state variables may be combined with
some component of the noisy output measure-
ment vector) B21 D11 in B21 0 D11

x1 k 1

x2 k 1

x3 k 1

A11 A12 A13

A21 A22 A23

A31 A32 A33

x1 k

x2 k

x3 k

B11

B21

0

w k

E11

E21

E31

u k

y1 k

y2 k

C11 C12 C13

0 C22 C23

x1 k

x2 k

x3 k

D11

0
w k

F11

F21

u k

67

If q A31 0, then the decomposition stops
here. In such a case, there is no means of getting
further exact information about x1, and the reg-
ular kernel is sub-space c1 with measurement
vector y1. Otherwise, go to step 2.

Step 2. As q A31 0, there is a decomposition of x1 in
which

x1 k 1

x2 k 1

x3 k 1

x4 k 1

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

0 A42 A43 A44

x1 k

x2 k

x3 k

x4 k

B11

B21

B31

0

w k

E11

E21

E31

E41

u k

y1 k

y2 k

C11 C12 C13 C14

0 0 C23 C24

x1 k

x2 k

x3 k

x4 k

D11

0
w k

F11

F21

u k

68

After this step, A42 is full column rank (by con-
struction) and sub-vector x2 is completely deter-
minable from x4 k 1 equation.

At this point, if B21 B31 D11 is full row
rank, the algorithm stops and the system regular
kernel is c1 with measurement vector y1.

If dim x1 0, the algorithm also stops, and
there is no regular kernel in the system.

If dim x1 0 and B21 B31 D11 is not full
row rank, take the sub-system given by
c1 c2 c3 and return to step 1. As the dimen-
sion of the considered subspace is strictly smal-
ler at each iteration, the algorithm stops after a
® nite number of iterations.
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