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Estimation of Pareto sets in the mixed H2=H1 control problem

RICARDO H. C. TAKAHASHIy, REINALDO M. PALHARESz*, DANIEL A. DUTRAy and
LEILA P. S. GONÇALVES§

Multiobjective design problems give rise to a well-defined object: the Pareto-set. This
paper proposes some verifiable conditions that are applicable to sets with finite
number of elements, to corroborate or falsify the hypothesis of the elements of that
set being samples of the Pareto set. These conditions lead to several generic criteria
that can be employed in the evaluation of algorithms as multiobjective optimization
mechanisms. A conceptual multiobjective genetic algorithm is proposed, exploiting
the group properties of the intermediate Pareto-set estimates to generate a consistent
final estimate. The methodology is applied to the case of a mixed H2=H1 control
design. Recent dedicated multiobjective algorithms are evaluated under the proposed
methodology, and it is shown that they can generate sub-optimal or non-consistent solu-
tion sets. It is shown that the proposed synthesis methodology can lead to both enhanced
objectives and enhanced consistency in the Pareto-set estimate.

1. Introduction

The statement of system design problems in terms of
multiobjective optimization formulations is known to
be more suitable to describe real-life design desiderata
than single-objective formulations (Takahashi et al.
2000). In abstract contexts, multiobjective design
methods can be seen as a way of generating design
alternatives that vary along some sets of the solution
space that are known to have ‘good solutions’. In fact,
multiobjective solutions can have the definable property
of producing large enhancements in some objectives for
small debasements in others (Chankong and Haimes
1983).

Consider a generic design problem:

Problem 1 (design problem): Consider the design param-
eter vector x 2 R

n, the feasible solution set X f � R
n, and

the design objective vector f ð�Þ : Rn �R
m. Consider that

there is the connotation that fiðaÞ < fiðbÞ implies that
solution a is better than solution b in the objective fið�Þ.
Find a solution vector x ¼ x� 2 X f such that all
fiðx

�Þ, i ¼ 1, . . . ,m attain the smallest possible values. œ

The problem of finding optimal design solutions can
be posed inside the stream of single-objective optimiza-
tion methods as:

Problem 2 (single-objective setting): Given problem 1,
find x� 2 R

n such that:

x� ¼ argmin fiðxÞ

subject to:
x 2 X f

fjðxÞ � �j, ð j ¼ 1, . . . ,m, j 6¼ iÞ:

�
ð1Þ

œ

Problem 1 does not uniquely define a corresponding
problem 2. In this formulation, objective fi has been
arbitrarilly chosen as the reference, and the others
have been taken as constraints.

Another point of view can be adopted: the multiobjec-
tive approach. This approach works over a solution set,
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instead of working over a single solution. In this way,
a well-defined object emerges from the definition of
problem 1: the Pareto set.

Definition 1 [Pareto set (1)]: Define Si as the set of all
solutions to problem 2 when objective fi is fixed as the
reference, and vector � 2 R

m�1 assumes all possible
values. The set P defined by:

P ¼ S1 \ S2 \ . . . \ Sm ð2Þ

is called the efficient solution set, or the Pareto set of
problem 1. œ

This set should be recognized as the set of all ‘reason-
able solutions’ for problem 1. An equivalent definition
for the same set can be stated in a ‘relative’ fashion:

Definition 2 [Pareto set (2)]: Consider X � R
n and

f : Rn �R
m. Then:

P ¼
4

x� 2 X f j 69 x 2 X f such that
�
f ðxÞ � f ðx�Þ and f ðxÞ 6¼ f ðx�Þg ð3Þ

defines the set P, that is called the Pareto set or efficient
solution set of Problem 1. œ

The equivalence of definitions 1 and 2 can be demon-
strated (Chankong and Haimes 1983). Although these
definitions lead to the same solution set P, the first
is conceptually supported in a series of independent
solutions of a single-objective optimization mechanism.
The second, instead, links any solution belonging
to the set P to all others. The group properties
that characterize Pareto sets are emphasized with this
definition, which will be employed, therefore, as the
basis for the development of analysis and synthesis
tools in this work. With this definition, the design
problem becomes:

Problem 3 (multiobjective setting): Given problem 1, find
the set P. œ

Like the optimal solution of single-objective optimiza-
tion problems, the Pareto set of multiobjective optimi-
zation problems is a conceptual object that should
be approached numerically via suitable algorithms. In
single-objective optimization, some optimality criteria
(such as Kuhn–Tucker conditions) should be employed
for testing each single candidate solution. In multiobjec-
tive optimization, similar criteria for testing single
points that are candidates for belonging to the Pareto
set also exist. However, there are also group criteria
that can be employed in the whole set of points that
are candidates for belonging to set P.
This paper deals with the construction of such

group criteria that are intended to be applied to sets
of candidate solutions of multiobjective problems.

With these criteria, existing algorithm solution sets can
be evaluated and compared with the solution sets of
other algorithms.

A genetic algorithm is built on the basis of these
criteria, and it is shown to perform better than algo-
rithms based on single-point criteria.

As a case study, this paper approaches one of the
most traditional multiobjective design problems that
appear in control theory literature: the H2=H1 problem
(Khargonekar and Rotea 1991a, 1991b, Scherer 1995,
Scherer et al. 1997, Takahashi et al. 1997), taken here
in the contexts of state-feedback and static output feed-
back. An extra reference about multiobjective design
techniques in control theory can be found in Dorato
(1991). Recently developed algorithms for this problem
(Cao et al. 1998, Shimomura and Fujii 2000) that
employ formulations with the form of Problem 2
are analysed, and their outputs are shown to not be
consistent from the viewpoint of the group properties
of a Pareto set.

The multiobjective genetic algorithm proposed here
leads to solution sets that enhance the aforementioned
algorithm solution sets. However, the proposed
methodology is not restricted to this particular problem.
It is known that several control objectives have been
stated by means of matrix inequalities like Riccati or
LMIs (Linear Matrix Inequalities). These formulations
lead to sufficient descriptions of these objectives, which
means that, in most of cases, there is a gap between
necessity and sufficiency. The reduction of this gap
has been exploited in two research lines: Lyapunov
parameter-dependent formulations (Leite and Peres
2003) and LMI relaxation of variables (de Oliveira
et al. 2002). Nevertheless, these formulations have
not completely filled that gap in the context of multi-
objective design problems (Scherer et al. 1997). The
approach proposed in this paper is the usage of the
multiobjective genetic algorithm to search for better
solutions inside that gap. A further discussion on
this issue can be found in Fleming and Purshouse
(2002).

2. Multiobjective analysis

For the purpose of discussing the Pareto-set proper-
ties that are relevant here, figure 1 presents typical
structures that emerge after the execution of any com-
putation to estimate some points belonging to P. A
problem with only two objectives is considered, for the
purpose of visualization. The analysis, however, is
valid for any number of objective functions.

The ‘exact’ Pareto set P is the continuous curve
in figure 1. This ‘exact’ set, however, is in principle
unavailable, for generic functionals f1 and f2, in the
sense that, even if one has a set of points that belong
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to it, there have been no means, up to now, for proving
that fact. To characterize solutions that are ‘likely’ to
belong to P (the Pareto candidates), another relation is
defined here, employing only points that are ‘available’:

Definition 3 (Pareto candidate set): Let f ð�Þ be a vector
of objectives and K � Domð f ð�ÞÞ be a set with a finite
number of elements: K ¼ x1, . . . , xvf g, where Domð f ð�ÞÞ
denotes the domain of f ð�Þ. The set �ðKÞ, defined by:

�ðKÞ ¼
4

xp 2 Kj 6 9 xi 2 K such that
�

f ðxiÞ � f ðxpÞ and f ðxiÞ 6¼ f ðxpÞ
�

ð4Þ

is called the Pareto candidate set, associated with the
‘sample set’ K. œ

In fact, owing to the unavailability of the set P, the
characterization of solution sets �ð�Þ as Pareto candi-
dates is performed with falsification procedures, which
can show that some sets are not candidates but cannot
ever show that any set is in fact a Pareto set. This is
the role of the Pareto candidate set concept.

2.1. Consistency

Given any set X , it can be considered as a Pareto
candidate only if �ðXÞ ¼ X . If this occurs, the set is
said to be auto-consistent. Otherwise, the possibility of
X being a subset of the Pareto set P is falsified.

2.2. Ordering and dominance

Given two sets, X 1 and X 2, ordering relations between
these sets are defined:

X1 � X 2 , �ðX1 [ X 2Þ � X 1 and �ðX1 [ X 2Þ 6� X 2

� �
X 1 � X2 , �ðX1 [ X 2Þ � X 1

� �
: ð5Þ

In the case of X 1 � X 2, the possibility of set X 2 being a
subset of the Pareto set P is falsified, while the set X 1

remains being a Pareto candidate. In this case, X1 is
said to dominate X 2. There are two possibilities of non-
dominance: if both relations X 1 � X 2 and X 2 � X1 do
not hold, then both sets become falsified as Pareto
candidates; and if both relations X 1 � X 2 and X 2 � X 1

hold, both sets continue to be Pareto candidates.
With these concepts, figure 1 is analysed. The set of

estimates �PP5 is not auto-consistent and therefore is falsi-
fied as a Pareto candidate. The sets �PP1 to �PP4 are each one
auto-consistent and could be considered, therefore, as
Pareto candidates if only one of them were available.
There is an ordering relation among these Pareto-set
estimates:

P � �PP1 � �PP2 � �PP3, �PP4

� �
� �PP5: ð6Þ

This ordering corresponds to a dominance ordering. If
all these sets were available, the only Pareto candidate

Figure 1. Typical computational estimates of the Pareto-set P, in the space of objectives. Exact Pareto-set P (continuous line);

estimated set �PP1 (	); estimated set �PP2 (E); estimated set �PP3 (
); estimated set �PP4 (�); estimated set �PP5 (þ). Dashed lines denote the

optimal values of the objectives f1 and f2.
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would be �PP1, since:

�PP1 ¼ �ð �PP1 [ �PP2 [ �PP3 [ �PP4 [ �PP5Þ: ð7Þ

The only sets that are not ‘ordered’, in figure 1, are �PP3

and �PP4. If they were both available, they would be
both falsified as Pareto candidates, without need for
any additional information.

2.3. Extension

Another kind of analysis that is useful for evaluation
of a Pareto-set estimate is determining to what extent
it covers the Pareto surface. For this purpose, some
additional definitions are necessary.
Consider the space Y of the objective vectors. Let

� > 0 be a fixed real number and h 2 Y a solution
point. The set �ð�, �Þ is defined by:

�ð�, hÞ ¼ g 2 Y such that jg� hj � �
� �

ð8Þ

Take the set X ¼ x1, . . . , xvf g, X � Y.

Definition 4 (�-extension): The set �ð�,XÞ defined by

�ð�,XÞ ¼
[v
i¼1

�ð�, xiÞ ð9Þ

is the �-extension of the set X . œ

For any set X , �ð�,XÞ � X trivially.
Consider now two sets X 1 and X2 such that X 1 � X 2

and X 2 � X 1, i.e. both sets are Pareto candidates, and
let � > 0. The following relations become defined:

�ð�,X 1Þ � X 2 , X1 �
�
X 2

�ð�,X 1Þ 6� X 2 , X1 6�
�
X 2:

ð10Þ

The following situations can occur:

(1) X 1�
�
X 2 and X 2�

�
X 1: In this case, the sets X 1 and

X 2 are said to be extent-equivalent.

(2) X 1�
�
X 2 and X 2 6�

�
X 1: In this case, the set X 2 is said

to be an extent subset of set X1.

(3) X 1 6�
�
X 2 and X2 6�

�
X1: In this case, the sets are said

to be extent-incommensurable.

If a set is an extent subset or if it is extent-incommen-
surable when compared with another set, it becomes
falsified as a Pareto candidate.

2.4. Extremal data

There are other consistency data that can be known
a priori in some cases: the individual optima of some
or all the objectives can be known, for instance by

using analytical tools. This means that the extremal
points of the Pareto set are known. In figure 1, if this
were the case, the sets �PP3 and �PP4 would become both fal-
sified as Pareto candidates. The sets �PP1 and �PP2, taken
individually, would remain as candidates.

3. Multiobjective decision and synthesis

The multiobjective analysis that has been presented
can be used in two distinct ways:

(1) As a validation procedure for the analysis of specific
algorithm outputs. In this case, any algorithm that
claims to ‘solve’ a multiobjective problem should
produce outputs that pass the analysis being still a
Pareto candidate. Summarizing the analysis proce-
dure, the following criteria can be employed in the
evaluation of an algorithm A against a reference
algorithm1

B:

Criterion 1: Any set of output points �PPa, generated
by A, should be auto-consistent.

Criterion 2: Given a set of algorithm B output
points �PPb, the ordering relation �PPa � �PPb should
hold.

Criterion 3: The relation �PPa �
� �PPb should hold.

Criterion 4: If the problem has individual optima
known a priori, the relation �ð �PPa [ OÞ � �PPa should
hold, with O denoting the set of individual solu-
tions of the objective functions. Additionally, the
algorithm A should be equipped with a parameter
that allows the generation of Oð2,1Þ, at least
asymptotically.

(2) As an aggregation procedure that takes a set of
points (that could be generated by a single algorithm
or by any combination of different algorithms) and
produces a subset that is a Pareto candidate. Let
�PP1, . . . , �PPN be the output sets of N different algo-
rithms. The estimate of the Pareto set, given these
sets, is the set: �PPe ¼ �ð �PP1 [ . . . [ �PPNÞ.

In usage (1), a set of solution points that are
derived from a given algorithm are taken as represen-
tative of that algorithm, and are analysed using
criteria 1–4. Each set of points, originating from a
single algorithm, is viewed as an entire object. The
comparison between two such objects is performed
as a representative comparison between the algorithms
that have given rise to them. When applied to the
analysis of algorithms that are built on the basis of

1An arbitrary algorithm that is used as a comparison basis for the

evaluation of A.
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pointwise criteria (formulated as Problem 2), the
above criteria 1 and 4 can introduce some consistency
information in the solution set. Any two different
algorithms can be compared with each-other, using
the comparison criteria 2 and 3.
Usage (2), instead, will take a set of solution points

that can be obtained anyway, and will apply the criteria
1 and 4 to eliminate several non-consistent points. As
an instance of this usage, a multiobjective genetic
algorithm is proposed here, employing this procedure
to ‘borrow’ the output set of other algorithms, thereby
becoming ‘better than or equal to’ any of these algo-
rithms, in a tautological manner. There is, however, an
‘information gain’ that leads the multiobjective genetic
algorithm output beyond the trivial tautology, because
the algorithm operators usually lead its output set
strictly better than the initial input set. Even in the
case of the output becoming ‘equal to’ the initial set,
there is an information gain in the form of some
‘corroboration’ to the hypothesis of the solution set
being a Pareto-set sample.

4. Multiobjective genetic algorithm

The problem of optimization of arbitrary functionals
has been, since the early development of the optimiza-
tion theory, a main goal. However, each different
method that was developed was built with several
assumptions on the structure of the function to be
optimized: linearity, convexity, differentiability, etc.
The class of methods that has attained the best
approximation to the problem of ‘arbitrary functional
optimization’ is the family of ‘stochastic optimization
methods’. A group of methods that has attained a high
applicability from this class is the family of ‘genetic
algorithms’.
Owing to the ‘global optimization’ properties of the

genetic algorithms, they have become a natural tool
for problems like the H2=H1 design (Chen et al. 1995).
Another potential reason for this suitability is
pointed out here: since the genetic algorithms work
with populations of candidate solutions, instead of a
single candidate solution like other optimization
methods, they are able to incorporate operators that
exploit the group properties of the Pareto-set estimates
(Coello 2001).

4.1. Multiobjective genetic algorithm construction

The multiobjective genetic algorithm can be built
through the modification of any mono-objective genetic
algorithm (Fonseca and Fleming 1995).
A genetic algorithm can be defined as the succes-

sive application of the following operations to a set of

tentative solutions of the problem (called a ‘popula-
tion’):

(1) Crossover: The population is divided into pairs,
and each pair of solutions is replaced by a new
pair, that is generated employing information
retained from the original pair;

(2) Mutation: Some solutions (‘individuals’) are
chosen randomly to receive a perturbation in
their parameters;

(3) Selection: The population that arises after the
crossover and mutation operations is modified,
with the exclusion of some ‘individuals’ and
the replication of others, while maintaining the
total size of the population. The probability
of being replicated is greater for the greater opti-
mization functional values (for maximization
problems);

(4) Elitism: Some individuals (the ‘best’ ones) are
deterministically maintained in the population.

After several applications of these operations, the ‘popu-
lation’ converges to solutions that, in some sense, are
‘good approximations’ of the global solutions of the
problem.

Any mono-objective genetic algorithm can be adapted
through the following guidelines, to produce a multi-
objective genetic algorithm:

(1) Select, from the initial population Q0, the group of
individuals that form the maximal consistent subset
�PP0. This operation is defined by: �PP0 ¼ �ðQ0Þ.

(2) At each iteration, a new population Qi is generated
by the application of the genetic operators.
Recalculate the estimate �PPi ¼ �ðQiÞ, eventually
excluding some individuals and including others.
The set �PPi is employed as the ‘elite set’ in the
‘elitism’ operation.

(3) A ‘niche’ technique should be employed, to avoid
the inclusion of points that are much close to each-
other in the set �PP. In this way, the solution set
of the multiobjective genetic algorithm (MGA),
denoted as �PPMGA pressure for covering the whole
set P.

(4) The functional that guides the selection operation
should be composed with the individual functionals
that compose the objective vector. In the specific
implementation employed here, they are scaled
and then aggregated with the operator max.

In this way, instead of searching for single
solutions, the whole set P is searched, as an object
with intrinsic properties. The design procedure
starts with any non-consistent or conservative algorithm,
which furnishes an initial solution set �PPa that is
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further refined by a Multiobjective Genetic Algorithm
(MGA).
Denote by �PPi the Pareto-set candidate produced by

MGA at the ith iteration. The multiobjective genetic
operators have been tailored such that:

(1) nicheþselection produces a pressure that leads the
Pareto estimate �PPMGA to increase its ‘extension’;

(2) elitism deterministically guarantees that: (i)
�PPiþ1 � �PPi and (ii) �PPiþ1 �

� �PPi.

(3) selection produces the enhancement pressure that
eventually allows �PPiþ1 � �PPi and �PPi 6�

�
�PPiþ1.

The set operators � and 6�
�

have been defined in (5)
and (10).
The multiobjective genetic algorithm, therefore,

extends the initial algorithm solutions in the sense that
some ‘failures’ in the estimate of P are ‘repaired’ by
the MGA. Some ‘holes’ in the Pareto-set estimates can
be filled by the MGA, thereby enhancing the Pareto
estimate.
The MGA used here is the real-biased genetic algo-

rithm described in Ramos et al. (2003).

5. H2=H1 control problem statement

To verify the applicability of the proposed methodol-
ogy, a design problem that is longstanding in the field
of control theory is examined here: the mixed H2=H1

control problem. Several current approaches for the
approximation of this problem solutions are studied,
and then the proposed methodology is applied.
Consider the following linear time-invariant dynamic

system:

_xxðtÞ ¼ AxðtÞ þ BuðtÞ þ
XN
k¼1

BkwkðtÞ

zkðtÞ ¼ CkxðtÞ þDkuðtÞ, k ¼ 1, . . . ,N

yðtÞ ¼ CxðtÞ þ
XN
k¼1

EkwkðtÞ,

8>>>>>>><
>>>>>>>:

ð11Þ

in which x 2 R
n is the system state vector, u 2 R

m is the
control input vector, and wk 2 R

p
k, k ¼ 1, . . . ,N are

the exogenous disturbance vector, zk 2 R
q
k, are the

controlled output, and y 2 R
r is the measurement

output. This system configuration describes N channels
from the disturbance input wk to the controlled variable
output zk, and associated with each channel, a perfor-
mance index can be defined to be minimized or upper-
bounded.
For control purposes, the static output control law is

considered: uðtÞ ¼ KyðtÞ. As a special case, in the stan-
dard setting of the static state feedback design problem,
the state vector x is considered to be available for
control law synthesis with C¼ I and uðtÞ ¼ KxðtÞ.

In particular, the closed-loop transfer functions from
wk to zk are denoted2 by

Hzkwk
ðsÞ ¼ C

ðkÞ
cl ðsI � AclÞ

�1B
ðkÞ
cl , ð12Þ

in which

Acl ¼ Aþ BKC

B
ðkÞ
cl ¼ Bk þ BKEk

C
ðkÞ
cl ¼ Ck þDkKC

ð13Þ

for static output feedback. For static state feedback, just
consider C¼ I and Ek ¼ 0, k ¼ 0, . . . ,N.

Several different performance criteria could be defined
for the closed-loop transfer matrix Hzkwk

ðsÞ. In this
paper, the H2 and H1 norms are used.

The main multiobjective problem to be addressed in
this paper is stated for k¼ 2.

Problem 4 (the mixed H2=H1 controller set

computation): Let �2 denote the value of the H1 norm
of the closed-loop system with optimal H2 norm, and �1
the optimal H1 norm. Let S denote the set of stabilizing
static controllers with compatible dimensions. Determine
the set K21 such that:

K21¼
4

K21j

K21¼argK inf
K
kHw1z1k2

subject to
kHw2z2k1��

K 2S

8<
:

2
6664

3
7775, �1����2

8>>><
>>>:

9>>>=
>>>;
:

ð14Þ

œ

The research tradition in the problem of H2=H1 con-
trol synthesis has dealt with the question of finding one
controller that is expected to belong to the set K21, or at
least approximates it (Khargonekar and Rotea 1991b,
Scherer 1995, Scherer et al. 1997, Thakahashi et al.
1997). Formulation of Problem 4 is, therefore, similar
to the process in Problem 2. The approach that is pro-
posed here, on the other hand, is based on a search
for a representative set of solutions describing the
Pareto-set P, to take advantage of the cross-validation
possibilities of the solutions belonging to this set.

In a multiobjective setting, Problem 4 is stated in
terms of the objectives kHðKÞk2, the H2 norm, and
kHðKÞk1, the H1 norm of the closed-loop system for
controller K, considered in the appropriate channels.

2 The following assumption is made: Dcl ¼ DkKEk ¼ 0,

k ¼ 1, . . . ,N:
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These norms define the control objectives, which are
organized in the objective vector:

f ðKÞ ¼ kHðKÞk2 kHðKÞk1
� �T

: ð15Þ

6. Current approaches

The following constrained mono-objective optimiza-
tion problem is the usual formulation for the generation
of solutions for the multiobjective H2=H1 problem:

Problem 5 (the mixed H2=H1 single-run design): Let
the disturbance attenuation level �> 0 be assigned with
a fixed value. Let S denote the set of stabilizing static
controllers of compatible dimensions. Find K21 2 S such
that:

K21 minimizes kHw1z1ðKÞk2

subject to kHw2z2 ðKÞk1 � �

(
ð16Þ

œ

This is a constrained non-linear, non-smooth and
non-convex mono-objective optimization problem with
a possibly non-convex and unbounded feasible set.
The set of solutions of the multiobjective problem is
obtained by varying the constraint parameter �. Note
that, because of these characteristics, the set of exact
solutions for different �s cannot be affirmatively char-
acterized—this implies the need for a falsification proce-
dure for solution characterization.
Consider any optimization algorithm to solve

Problem 5 several times, with different �s, to generate
an estimate of the Pareto set. The estimated set is
likely to be not only a Pareto sub-optimum, but even
non-auto-consistent, because:

(1) a single solution is found in each optimization
algorithm run;

(2) the solutions are not taken as a set with set
properties;

(3) the mono-objective optimization algorithms that
are employed are likely to find only local minima
of Problem 5;

(4) these minima are not necessarily related, from one
run to another.

These is one exception for the earlier Linear Matrix
Inequalities (LMI) formulation of the mixed objective
problem, in terms of conservative convex algorithms.
It is based on sufficient, but not necessary, conditions
(Khargonekar and Rotea 1991b), which means that
Problem 5 is modified in LMI formulation, being only
approximately solved. Therefore, these algorithms lead
to solutions that do not belong to the Pareto set and,
in fact, can be significantly far from it. However, since
the LMI formulation becomes convex, any single run

of the optimization problem leads to its global solution.
Because of this, the LMI algorithm does furnish points
that are auto-consistent. However, it is an easy task to
find other solutions that lie below the curve �PPLMI

found with the LMI algorithm.
Different algorithms have been employed as optimiza-

tion engine instances for solving Problem 5. Recently, an
iterative non-convex algorithm that solves a sequence of
LMI problems that approximate the exact Bilinear
Matrix Inequalities (BMI) form of Problem 5 has been
proposed to furnish less conservative solutions to
H2=H1 problems (Shimomura and Fujii 2000). Other
heuristic solutions have been proposed for these prob-
lems, sometimes employing genetic algorithms (Chen
et al. 1995) or other non-convex optimization schemes
(Takahashi et al. 1997), with the aim of approaching
solutions belonging to the set P. All these algorithms
can furnish solutions that are not auto-consistent.

The old, popular, and conservative LMI formulation
and its succedaneum, the BMI formulation, are
studied here as reference solutions that will initialize
the multiobjective algorithm. Any other solutions
could be employed for the same purpose.

6.1. Matrix inequalities formulations

In a matrix inequality setting, the exact mixed control
problem, as formulated above, is the direct combination
of the actual H2 norm computation with the Bounded
Real Lemma. That is, assuming that the closed-loop
system is asymptotically stable, the optimal H2 norm
computation is performed by

kHw1z1k
2
2 ¼ inf

X2, J
Tr ðJÞ
� �

ð17Þ

s.t.
J C

ð1Þ
cl

ðC
ð1Þ
cl Þ

0 X2

2
4

3
5 > 0 ð18Þ

A0
clX2 þ X2Acl X2B

ð1Þ
cl

ðB
ð1Þ
cl Þ

0X2 �I

2
4

3
5 < 0: ð19Þ

However, the Bounded Real Lemma is stated in the
following way: �>0, Acl is asymptotically stable,
and kHz2w2

k1 < � if, and only if, there is a symmetric
definite positive matrix X1 such that

A0
clX1 þ X1Acl X1B

ð2Þ
cl ðC

ð2Þ
cl Þ

0

ðB
ð2Þ
cl Þ

0X1 �I 0

C
ð2Þ
cl 0 ��2I

2
664

3
775 < 0: ð20Þ

Thus, the exact mixedH2=H1 control problem can be
completely restated as in the following, with the simple
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substitution of the closed-loop matrices given in (13)
into (18), (19), and (20):

Problem 6 (exact matrix inequalities formulation):

Determine a stabilizing static feedback control K
that achieves

�¼ min
X2,X1,J,K

TrðJÞ
� �

s.t.
J C1þD1KC

ðC1þD1KCÞ
0 X2

" #
> 0

ðAþBKCÞ0X2þX2ðAþBKCÞ X2ðB1þBKE1Þ

ðB1þBKE1Þ
0X2 �I

" #
< 0

ðAþBKCÞ
0X1

þX1ðAþBKCÞ
X1ðB2þBKE2Þ ðC2þD2KCÞ

0

ðB2þBKE2Þ
0X1 �I 0

C2þD2KC 0 ��2I

2
66664

3
77775< 0

X1 > 0:

œ

6.2. Standard LMI formulation

For the state feedback case, the conventional strategy
adopted in the literature is based on the simple change
of variables of type K ¼ ZW�1 (Bernussou et al.
1989), with the imposition W ¼ X�1

2 ¼ X�1
1 , C¼ I and

Ek¼ 0, k¼ 1, 2 in Problem 6. From this, the following
optimization LMI control synthesis description can be
obtained:

Problem 7 (standard LMI formulation):

�¼ min
Z,W ,J

Tr Jf g

s.t.
J C1W þD1Z

ðC1W þD1ZÞ
0 W

" #
> 0

AW þWA0 þZ0B0 þBZ B1

B0
1 �I

" #
< 0

AW þWA0 þZ0B0 þBZ B2 ðC2W þD2ZÞ
0

B0
2 �I 0

C2W þD2Z 0 ��2I

2
664

3
775< 0;

where kHz1w1
k22 � �, kHz2w2

k1 < � and the static state
feedback gain is given by K ¼ ZW�1. œ

6.3. BMI formulation

This formulation is derived from Shimomura and
Fujii (2000). The key idea is to handle the non-affine

characteristics introduced by non-positive quadratic
terms when one substitutes (13) in (18)–(20) by means
of matrix upper bounds. Completing the square relative
to the non-affine terms in Problem 6, and upper-bound-
ing the non-positive quadratic terms generated, the
following mixed problem (Shimomura and Fujii 2000)
can be obtained:

Problem 8 (BMI formulation):

� ¼ min
X2,X1 , J,K

TrðJÞ
� �

s.t.
J C1 þD1KC

ðC1 þD1KCÞ
0 X2

" #
> 0

�21 X2B1 X2Bþ C0K 0 X2B

B0
1X2 �22 0 E0

1K
0

B0X2 þ KC 0 �I 0

B0X2 KE1 0 �I

2
66666664

3
77777775
< 0

�11 X1B2 X1Bþ KC X1B ðC2 þD2KCÞ
0

B0
2X1 �12 0 E0

2K
0 0

B0X1 þ KC 0 �I 0 0

B0X1 KE2 0 �I 0

C2 þD2KC 0 0 0 ��2I

2
66666666664

3
77777777775
< 0

X1 > 0,

ð21Þ

where

�21 ¼ A0X2 þ X2A� 2X2BL1 � 2L0
1B

0X2 þ 2L0
1L1

� C0K 0M �M0KC þM0M ð22Þ

�11 ¼ A0X1 þ X1A� 2X1BL2 � 2L0
2B

0X1 þ 2L0
2L2

� C0K 0M �M0KC þM0M ð23Þ

�22 ¼ �I � E0
1K

0N1 �N 0
1KE1 þN 0

1N1 ð24Þ

�12 ¼ �I � E0
2K

0N2 �N 0
2KE2 þN 0

2N2 ð25Þ

M ¼ KC, L1 ¼ B0X2, L2 ¼ B0X1,

N1 ¼ KE1, N2 ¼ KE2:
ð26Þ

œ

Note that Problem 8 can be easily restated as a static
state feedback mixed problem with C¼ I and Ek¼ 0,
k¼ 1, 2.

Adopting the above formulation, the following itera-
tive algorithm is proposed in Shimomura and Fujii
(2000). For simplicity, Step 1 is characterized for the
state feedback case, and then the static output feedback
problem is discussed.
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Iterative algorithm:

Step 1. Set K ð0Þ ¼ K , where K is the optimal solution
of Problem 7 as well as ðX

ð0Þ
2 Þ

�1
¼ ðX ð0Þ

1 Þ
�1

¼

W and �ð0Þ ¼ �ð0Þ ¼ � . Set i¼ 1.

Step 2A. In Problem 6 set X2 ¼ X
ði�1Þ
2 , X1 ¼ X ði�1Þ

1

and � ¼ �ði�1Þ.

Step 2B. With K ¼ K ði�1Þ fixed, solve Problem 6 with
respect to X

ði�1Þ
2 > 0, X ði�1Þ

1 > 0 and �ði�1Þ.

Step 2C. In Problem 8, set M¼K ði�1ÞC, L1¼B0X
ði�1Þ
2 ,

L2¼B0X ði�1Þ
1 , N1¼K ði�1ÞE1 and N2¼

K ði�1ÞE2 (for the particular case of state feed-
back Ek¼ 0, k¼ 1, 2 and C¼ I ).

Step 3. Solve Problem 8 for X
ðiÞ
2 > 0, X ðiÞ

1 > 0, K ðiÞ

and �ðiÞ.

Step 4. If k�ði�1Þ ��ðiÞk < � for a sufficiently small
positive scalar �, then stop. Else, set i ¼
i þ 1 and return to Step 2A.

For the static output feedback problem, the algorithm
can be started with any feasible controller K that ensures
a disturbance attenuation level �, i.e. kHz2w2

k1 < � and
with finite kHz1w1

k22. In this case, the approach proposed
by Cao et al. (1998), for example, can be used.

7. Examples of H2=H1 design

In this section, two examples of algorithm combi-
nation with the multiobjective genetic algorithm are
presented. Single-channel cases are employed, for sim-
plicity. Both examples adopt 50 generations, and the
population size is dynamically varied inside the MGA
from 75 to 150 individuals. The figures show the results
of typical runs.

7.1. Full state feedback

A very simple system is presented in the first place, to
visualize both the objective space (of H2 and H1 closed-
loop norms) and the controller parameter space.
The system equations are:

_xx ¼
�0:3868 0:0751

0 �0:0352

" #
xþ

�0:6965

1:6961

" #
u

þ
0:0591 0

0 1:7971

" #
w

z ¼
0:0346 0:0535

0 0

" #
xþ

0

0:5297

" #
u:

This system is controlled with a state-feedback
controller:

u ¼ K1 K2

� �
x

The controller design problem is solved through: (1)
the standard (conservative) LMI formulation defined
in Problem 4; (2) the ‘less conservative’ BMI formula-
tion defined in Problem 5; and (3) the multiobjective
genetic algorithm, starting from both the solution set
of Problem 4 and that of Problem 5. The closed-loop
norms obtained are ploted in figure 2, and the controller
parameters in figure 3. Figure 3 shows the frontier in the
space of the optimization parameters (the controller
parameters) for which the LMI and BMI approaches
can lead. Note that the genetic algorithm starting from
both solutions sets, derived from LMI and BMI, reaches
a single frontier in the controller parameter space. The
region, in the controller parameter space, between
the genetic algorithm frontier and the LMI and BMI
frontiers is a good illustration of the gap that the multi-
objective genetic algorithm can transpose.

These figures show that, in this case, the BMI formu-
lation has generated some solutions that are even
more conservative than those generated with the LMI
formulation. Such behaviour can be explained by the
non-convex nature of the BMI solutions. Both initial
condition sets for the multiobjective genetic algorithm
have led to the same solution set (in the sense of the
frontier obtained in the objective space) that is less
conservative and consistent with the characteristics
of a Pareto set. The MGA solution sets cover all the
extension between the two individual optima, while the
BMI solution set leaves some spaces unfilled.

7.2. Static output feedback

The following unstable system of order three,
with two control inputs and two measured outputs, is
investigated:

_xx¼

1:9574 �0:3398 1:1902

0:5045 0 �1:1162

1:8645 �0:2111 0:6353

2
664

3
775x

þ

�0:6014 0

0:5512 �2:0046

�1:0998 �0:4931

2
664

3
775uþ

0:4620 0 0

0 �0:3210 0

0 0 1:2366

2
664

3
775w

y ¼
0 0:2311 0

�2:3252 0 0

" #
x

z¼

0:1372 0:4374 0:7258

0:5216 0:4712 0

0:8952 0 0:3584

0 0 0

0 0 0

2
6666664

3
7777775
xþ

0 0

0 0

0 0

0:6264 0:9781

0:2412 0:6405

2
6666664

3
7777775
u:
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The control structure that is employed, in this case, is
the static output feedback:

u ¼
k11 k12
k21 k22

� �
:

Some stabilizing controllers for this system can be found
using the H1-algorithm presented in Cao et al. (1998).
The different controllers are obtained by varying the
H1-norm upper-bound parameter �. These stabilizing
controllers are then employed as starting points to
the iterative algorithm of the BMI formulation in

Figure 2. Pareto-set estimates, in the space of objectives, obtained from: LMI standard formulation (continuous line); BMI ‘less

conservative’ formulation (	); multiobjective genetic algorithm starting from the LMI solutions (
); multiobjective genetic algorithm

starting from the BMI solutions (�). In the bottom, a detail of the figure is shown.
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Problem 8. The H2 and H1 norms associated with each
controller derived from the two algorithms have been
evaluated and are shown in figure 4.
The combination of all these controllers is used as an

initial ‘population’ for the multiobjective genetic algo-
rithm, used to search for an estimate �PP of the Pareto
set. The results are also shown in figure 4.
Note that none of the two first groups of solutions

have reached the Pareto-set estimate that has been
found by the multiobjective genetic algorithm. Neither
the solution sets of the H1 algorithm or the BMI
formulation are auto-consistent (this is due to the non-
convexity nature of these formulations). Moreover,
both algorithms have points that falsify some points of
the other algorithm. Then, under the analysis stated in
Section 2, both algorithms are shown to be unable to
generate the Pareto set. However the multiobjective
genetic algorithm estimated set is auto-consistent, domi-
nant, and has a larger extension.
Notice that in these examples of small dimension,

random initial population can generate the same
estimate for the Pareto set. However, for larger cases,
even recovering the LMIs or BMIs solution perfor-
mances could be very difficult for the MGA. In this
case, starting from the LMIs or BMIs solutions is still
a natural choice that can help find better solutions.

8. Conclusions

By construction, it becomes tautologous that the
output �PPMGA of the proposed multiobjective genetic
algorithm is the best estimate available for the Pareto
set in mixed H2=H1 control design problems. The
main consequences of this are:

(1) Any algorithm that claims to find ‘the least conser-
vative’ solutions for this problem should have its
output set �PPlc such that �PPlc � �PPmga and �PPlc �

� �PPmga.

The proposed scheme can be seen, therefore, as a
strong validation procedure for any mixed-criteria
controller design algorithm.

(2) Otherwise, any algorithm should be coupled to
MGA, to be able to generate the best approxima-
tion to the Pareto-set P. Any algorithm that does
not intend to solve the mixed problem completely,
but only finds tentative solutions can be aggregated
in this way.

Up to now, the best design for the mixed H2=H1 pro-
blem is always finished by the application of MGA, for
finding better solutions, or for corroborating the conjec-
ture (that cannot be proved) that some solution is
already the best possible solution.

Figure 3. Pareto-set estimates, in the space of controller parameters, obtained from: LMI standard formulation (continuous line);

BMI ‘less conservative’ formulation (	); multiobjective genetic algorithm starting from the LMI solutions (
); multiobjective genetic

algorithm starting from the BMI solutions (�).
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The methodology presented here, although presented
in the context of theH2=H1 control problem, is not spe-
cific for this domain. Any design problem with multiple
objectives could be analysed using the proposed tools,
with minor adaptations.
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