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Abstract: This work deals with the robust eigenvalue assignment problem for periodic discrete-
time systems with polytopic uncertainties. By employing a sampled state-feedback control law,
a suitable time-invariant reformulation describing a period ahead dynamics associated with
the uncertain periodic system is obtained. The obtained results are based on a special class
of parameter-dependent Lyapunov functions that adequately cope with the one period ahead
dynamics. The robust eigenvalue assignment problem is solved via a convex problem. The
proposed conditions ensure that all eigenvalues of the proposed time-invariant reformulation
subject to uncertainties are within a specified circular region in the complex plane. Numerical
simulations are presented to illustrate the effectiveness of the proposed conditions.

Keywords: Robust control; Periodic systems; Sampled state-feedback control; Polytopic
uncertainty; Linear matrix inequality.

1. INTRODUCTION

In modern control theory, pole (or eigenvalue) assignment
via state-feedback has become a popular strategy for mod-
ifying the closed-loop dynamic response of linear systems.
A number of processes present in a variety of areas can be
modeled as periodic linear systems. Therefore, they consti-
tute an important subclass of general linear systems (Bit-
tanti and Colaneri, 2009; Sreedhar and Van Dooren, 1993).
Well-known applications include satellite attitude control
and vibration attenuation in helicopters (Bittanti and
Cuzzola, 2002), stabilization of unstable periodic orbits in
chaotic systems (Chagas et al., 2018), wind turbine control
and multirate sampled data systems and others (see Yang
(2018) and references therein).

One of the widespread approaches for analysis and synthe-
sis of linear periodic systems is based on their conversion
to some equivalent linear time-invariant representation
(TIR). It allows employing well-established tools devel-
oped for linear time-invariant (LTI) systems (Lv et al.,
2010). A common procedure for that is the discrete-time
lifting proposed by Meyer and Burrus (1975). Based on this
TIR for periodic discrete-time systems, important results
have been reported such as periodic Lyapunov and Riccati
equations (Bittanti and Colaneri, 2009), pole placement
(Colaneri, 1991; Sreedhar and Van Dooren, 1993) and
Linear Quadratic optimal control.

? This work was supported in part by the Brazilian agencies CAPES,
CNPq, and FAPEMIG.

In practical applications, systems are usually affected by
parametric uncertainties. Taking them into account in the
control design is crucial to ensure closed-loop performance
and stability. Based on the Lyapunov stability theory,
several approaches have been proposed for robust control
of periodic systems with polytopic uncertainties. One of
the greatest advantages in considering the polytopic de-
scription is that synthesis conditions can be derived in the
form of linear matrix inequalities (LMIs), which can be ef-
ficiently solved using semidefinite programming (Löfberg,
2004). Examples of robust control techniques for this class
of periodic systems include state and output-feedback de-
sign (De Souza and Trofino, 2000), state-feedback control
with H2 performance (Farges et al., 2007) and periodically
time-varying memory state-feedback controller (Ebihara
et al., 2011), which was extended for H∞ synthesis (Tré-
gouët et al., 2012). Recently, robust stability analysis con-
ditions have been proposed for periodic systems with time-
varying uncertainties (Agulhari and Lacerda, 2018) and
observer-based control design for discrete-time uncertain
periodic systems has been tackled by Agulhari and Lacerda
(2019) and Keles et al. (2019).

With respect to eigenvalue assignment for uncertain pe-
riodic systems, previous results (Colaneri, 1991; Sreed-
har and Van Dooren, 1993) can not be directly applied
because they do not guarantee the closed-loop stabil-
ity/performance in the presence of uncertainties. Based on
solutions of generalized Sylvester matrix equations, robust
eigenvalue assignment was solved in Lv et al. (2010) by
converting it into a nonconvex optimization problem.
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Motivated by the aforementioned discussion, this work
tackles the problem of eigenvalue assignment for the
class of linear discrete-time periodic systems subject to
polytopic uncertainties. By employing a sampled periodic
state-feedback control scheme, a TIR (also affected by
uncertainties) is obtained. Since precise eigenvalue assign-
ment is not possible due to the presence of uncertainties,
the D-stability concept for uncertain LTI systems (Chilali
and Gahinet, 1996; Mao and Chu, 2009) is exploited to as-
sign the closed-loop eigenvalues in a specified region in the
complex plane. In addition, as the TIR corresponds to one
period ahead dynamics, the application of conventional
Lyapunov functions is not direct. Thus, the proposed con-
ditions are based on a special class of Lyapunov functions
employed by Kruszewski et al. (2008) in the context of
“k-samples variation” approach for fuzzy systems. In con-
trast to Kruszewski et al. (2008), in which the step ahead
variation “k” is arbitrarily selected, here, it is appropri-
ately defined as the system period to incorporate the one
period ahead dynamics. Finally, a systematic procedure is
provided to obtain tractable LMI design conditions.

The structure of this paper is as follows. In Section 2, it
is presented the discrete-time linear periodic system with
polytopic uncertainties and the related TIR. The main
results of this work are in Section 3, a sufficient condition
for robust eigenvalue assignment and the procedure to
obtain LMI design conditions. The effectiveness of the
proposed approach is illustrated in Section 4. Finally,
conclusion is given in Section 5.

Notation The space of real symmetric matrices of order n
is denoted by Sn. The set I[1,p] ⊂ N denotes {1, . . . , p}. The
identity matrix of order n is denoted by In and null matrix
of appropriate dimension by 0. Λ(X) denotes the spectrum
of X. In the product of sequences of matrices, right

multiplication is considered, i.e.,
∏N
i=1Xi = X1X2 · · ·XN .

2. PROBLEM FORMULATION

Consider the linear p-periodic discrete-time system subject
to a polytopic uncertainty described by the difference
equation:

xk+1 = Ak(θ)xk +Bk(θ)uk, (1)

where k ∈ N is the time index, xk ∈ Rn is the state
vector, uk ∈ Rm is the input vector, Ak(θ) ∈ Rn×n is
the state matrix and Bk(θ) ∈ Rn×m is the input matrix.
The periodicity of the system is verified by

Ak+p(θ) = Ak(θ), Bk+p(θ) = Bk(θ), p ∈ N∗.
In addition, the system matrices belong to a polytopic
domain parameterized by the time-invariant parameter θ,
such that

(Ak(θ) Bk(θ)) =

N∑
i=1

θi

(
A

[i]
k B

[i]
k

)
, (2)

where N is the number of polytope’s vertices, and θ
belongs to the following standard unit simplex:

ΘN =

{
θ ∈ RN :

N∑
i=1

θi = 1, θi ≥ 0, i ∈ I[1,N ]

}
. (3)

Observe that each polytope vertex (A
[i]
k , B

[i]
k ) is p-periodic,

which implies that the polytopic domain varies periodically
as well (Agulhari and Lacerda, 2018).

Hereafter, we denote by Φ(τ2, τ1, θ) the state transition
matrix of (1) with uk ≡ 0:

Φ(τ2, τ1, θ) ,


In, τ2 = τ1
τ2−τ1∏
m=1

Aτ2−m(θ), τ2 > τ1.

Due to periodicity, the following property is verified:
Φ(τ2 + p, τ1 + p, θ) = Φ(τ2, τ1, θ). In addition, the mon-
odromy matrix at τ is defined by:

Ψ(τ, θ) , Φ(τ + p, τ, θ)

=

p∏
m=1

 N∑
ip−m=1

θip−m
A

[ip−m]
τ+p−m


=

N∑
ip−1=1

. . .

N∑
i0=1

p∏
m=1

θip−m
A

[ip−m]
τ+p−m.

The eigenvalues of Ψ(τ, θ) are called characteristic mul-
tipliers. For a shorthand notation, we define the multi-
simplex variable ζ ∈ Θp

N such that the monodromy matrix
can be rewritten as follows:

Ψ(τ, ζ) = A(ζ) =
∑
i∈Ip

ζiA[i], (4)

where A[i] =
∏p
m=1A

[ip−m]
τ+p−m, and i = (ip−1, . . . , i0) is a

multi-index defined within the index set:

Ip , {i = (ip−1, . . . , i0) : ij ∈ I[1,N ], j ∈ I[0,p−1]}.
Notice that A(ζ) is a homogeneous polynomial matrix of
order p with respect to the parameter θ.

2.1 Deriving the Time-Invariant Reformulation

The considered control scheme, called sampled feedback
control (SFC), is based on the sample and hold strat-
egy (Bittanti and Colaneri, 2009). It consists in applying
the input signal using one sampled state per cycle, as
defined in the following control law:

uk(xl) = Kkxl, k ∈ I[l,l+p−1], (5)

where l = ip + τ , i ∈ N, Kk ∈ Rm×n is a p-periodic gain
matrix to be designed and τ ∈ N is a fixed tag in time
related to the initial condition.

The sampling scheme is illustrated in Figure 1 for a system
with period p = 3 and τ = 1. The time instants when the
system state is sampled and the start of the sequence of
p control actions is applied are marked with ‘•’ in the
discrete-time axis ‘k’.

After substituting (5) into (1), the closed-loop dynamics
for one period p ahead becomes:

xl+p = (A(ζ) + B(ζ)K)xl, (6)

where A(ζ) is defined in (4), B(ζ) , (B1 · · · Bp), with

Bj = Φ(τ + p, τ + j, θ)Bτ+j−1(θ)

=

N∑
ip−1=1

. . .

N∑
ij−1=1

p∏
m=j

θip−m
A

[ip−m]
τ+p−mB

[ij−1]
τ+j−1,
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Figure 1. Sampling strategy of SFC for p = 3 and τ = 1.
The sampling times are marked with ‘•’, but control
actions are applied every time step using the last
sampled information as detailed in (5).

for j ∈ I[1,p], and K ,
(
K>τ · · · K>τ+p−1

)>
. The system (6)

will be referred as the time-invariant reformulation of (1)
in feedback with (5). As expected, the TIR is also affected
by the uncertain parameters.

As pointed out by Colaneri (1991), in adopting the SFC
scheme in (5), the system dynamics is affected by latent
variables due to the sample and hold device governed by
the following state periodic equations:

vk+1 = Skvk +Qkxk
uk = KkSkvk +KkQkxk,

where Qk , In − Sk, and Sτ = 0n, Sk = In, for all
k ∈ I[τ+1,τ+p−1]. Thus, it is possible to write the dynamics

of the 2n-dimensional extended state vector (x>k v
>
k )> as

follows:(
xk+1

vk+1

)
= Ãk(θ)

(
xk
vk

)
,

Ãk(θ) =

(
Ak(θ) +Bk(θ)KkQk BkKkSk

Qk Sk

)
.

By computing the monodromy matrix of the last system
dynamics at τ , one has:(

A(ζ) + B(ζ)K 0
In 0

)
.

Then, it is clear that the n nonzero eigenvalues of the above
matrix are exactly those of (6). In addition, the eigenvalues
of A(ζ) coincide with the characteristic multipliers of the
monodromy matrix Ψ(τ, θ) of the unforced (or input-free)
system (1).

From the Floquet theory, the unforced system (1) is
asymptotically stable if and only if all the characteristic
multipliers belong to the open unit disk in the complex
plane (Bittanti and Colaneri, 2009). Thus, the stability
of (1) in feedback with the control law (5) can be studied
using the TIR in (6) with the advantage of employing well
established results in the context of uncertain LTI systems
such as D-stability.

This analysis follows for other structural properties. In
particular, a useful result is that system (6) is controllable
if and only if system (1) is controllable (Bittanti and
Colaneri, 2009). Thus, it is possible to design the periodic
control gainKk, k ∈ I[l,l+p−1], based on the uncertain TIR.

2.2 Eigenvalue Assignment via SFC

For motivation, consider a p-periodic discrete-time linear
system without uncertainties

xk+1 = Akxk +Bkuk (7)

in feedback with control law (5), which produces the
following closed-loop dynamics

xl+p = (A+ BK)xl, (8)

with A and B obtained as previously but not considering
uncertainties. In this case, the problem of eigenvalue
assignment via SFC is stated as follows.

Problem 1. Design a matrix K such that Λ (A+ BK) = Γ,
where Γ ∈ Cn is a vector of n specified eigenvalues.

It is clear that the eigenvalue assignment, as stated in
Problem 1, for periodic uncertain systems as (1) is much
more involved since the eigenvalues of (A(ζ) +B(ζ)K) are
affected by the polytopic uncertainties. Thus, designing a
matrix K to ensure Λ (A(ζ) + B(ζ)K) = Γ, or at least in
its vicinity, may not be possible.

Alternatively, the idea to be exploited here is suitably
selecting a region in the complex plane, instead of a unique
point Γ ∈ Cn, for which all the eigenvalues of (6) should
be assigned for all admissible polytopic uncertainties.

The region considered for the eigenvalue assignment prob-
lem is

D(α, r) , {z ∈ C : |z − α| < r}, |α|+ r < 1,

which represents a disk in the complex plane with radius r
and centered at α+j0. This is a typical region for discrete-
time systems since it is possible to allocate the eigenvalues
such that usual closed-loop performance specifications
such as decay rate and damping ratio can be ensured
(Chilali and Gahinet, 1996; Mao and Chu, 2009). Based
on that, the control problem to be addressed here is stated
as follows.

Problem 2. Design a matrix K such that all eigenvalues of
(6) belong to the region D(α, r) in the complex plane.

If the above control problem is solved, the closed-loop
system (6) is said to be D(α, r)-stable.

3. MAIN RESULT

In this section, a sufficient condition to solve Problem 2 is
presented. As this condition is given in terms of the multi-
simplex variable ζ, a procedure to derive a finite set of
LMI conditions to solve it is presented.

The conditions are derived regarding Lyapunov stability
theory. However, as the time-invariant reformulation (6)
is written as a one period p ahead dynamics, usual Lya-
punov functions such as quadratic V (xl) = x>l P

−1xl or
even parameter-dependent as V (xl) = x>l P (ζ)−1xl can
not be directly employed because the p ahead dynamics
can not be properly introduced in the one step ahead
variation V (xl+1)−V (xl). As an alternative, the proposed
conditions are based on the following Lyapunov function
candidate:

V (xl) =

p∑
i=1

x>l+i−1P (ζ)−1xl+i−1, (9)

where P (ζ) � 0 ∈ Sn and p ∈ N∗ is the period of
system (1). This Lyapunov function candidate is based on
the one used by Kruszewski et al. (2008). By computing
the difference ∆V = V (xl+1)−V (xl), a condition to ensure
the origin of (6) is asymptotically stable, i.e., all their
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eigenvalues belong to the open unit disk in the complex
plane, is given by the following inequality:

∆V = x>l+pP (ζ)−1xl+p − x>l P (ζ)−1xl < 0, (10)

which is a difference between the state function evalu-
ated at xl+p and xl. Moreover, considering a parameter-
dependent matrix P (ζ) in the Lyapunov function (9) in-
stead of a fixed one P � 0 ∈ Sn it is possible to reduce
conservativeness.

3.1 Proposed Conditions

The proposed condition to design the control gain K such
that the eigenvalues of (6) belong to a given region D(α, r)
in the complex plane is stated in Theorem 1.

Theorem 1. If there exist matrices P (ζ) ∈ Sn, H ∈ Rn×n
and L ∈ Rmp×n such that (11) hold. Then, the control gain
K = LH−1 ensures the closed-loop system (6) is D(α, r)-
stable. (

r2
(
−H −H> + P (ζ)

)
•

A(ζ)H − αH + B(ζ)L −P (ζ)

)
≺ 0. (11)

Proof. Assume that condition (11) holds. It follows that
H + H> � P (ζ) � 0, which ensures the regularity of H.
Thus, from K = LH−1, (11) can be written as follows:(

r2
(
−H −H> + P (ζ)

)
•

(A(ζ) + B(ζ)K − αIn)H −P (ζ)

)
≺ 0. (12)

From the property:

H>P (ζ)−1H � H +H> − P (ζ),

inequality (12) imply(
−r2H>P (ζ)−1H •

(A(ζ) + B(ζ)K − αIn)H −P (ζ)

)
≺ 0.

Multiplying the last inequality with

(
H−> 0

0 P (ζ)−1

)
on

the left and its transpose on the right gives(
−r2P (ζ)−1 •

P (ζ)−1Acl(ζ)− αP (ζ)−1 −P (ζ)−1

)
≺ 0. (13)

where Acl(ζ) , A(ζ) + B(ζ)K.

Let λ be any eigenvalue of Acl(ζ) and v ∈ Cn be a nonzero
vector such that vHAcl(ζ)> = λvH . Multiplying (13) with
I2 ⊗ vH on the left and its transpose on the right gives

vHP (ζ)−1v

(
−r2 λ− α
λ− α −1

)
≺ 0.

As P (ζ)−1 � 0, from Schur complement, it is immediate
to conclude that |λ − α| < r. Thus, since this is true for
any eigenvalue of Acl(ζ), all of them belong to D(α, r).
This completes the proof.

Remark 1. In Theorem 1, the control gain K is computed
independently of the parameter-dependent matrix P (ζ).
Performing this computation based on the matrix trans-
formation in terms of H contributes to reduce conserva-
tiveness.

Remark 2. If the region is selected as D(0, 1), Theorem 1
corresponds to a standard robust stabilization condition
with respect to the Lyapunov function candidate (9). To
see that, apply a Schur complement in (13) such that:

Acl(ζ)>P (ζ)−1Acl(ζ)− P (ζ)−1 ≺ 0.

Multiplying the last inequality by x>l on the left and its
transpose on the right and noting that x>l+p = x>l Acl(ζ)>,
one has:

x>l+pP (ζ)−1xl+p < x>l P (ζ)−1xl. (14)

By adding the term
∑p−1
i=1 x

>
l+iP (ζ)−1xl+i on both sides

of (14), it follows that ∆V = V (xl+1) − V (xl) < 0, with
V (xl) defined in (9). This proves that the origin of (6) is
asymptotically stable.

3.2 Obtaining LMI Design Conditions

The condition in Theorem 1 is given in terms of the
parameter ζ. By exploiting the convexity property of
polytopic uncertainties, a procedure to obtain a set of
tractable LMI conditions is presented here. For motivation,
consider the following parameter-dependent inequality

Υ(ζ) =
∑
i∈Ip

ζiΥ
[i] ≺ 0. (15)

To solve the above inequality using a finite set of LMIs,
it is sufficient to evaluate the negative definiteness of the
matrices corresponding to the vertices:

Υ[(ip−1,...,i0)] ≺ 0 (16)

for all ip−1, . . . , i0 ∈ I[1,N ], which corresponds to solve Np

LMIs. However, in this case, increasing either the number
of polytope vertices N or the system period p implies
in exponential growth in the number of LMIs, possibly
leading to conservatism. On the other hand, inequality (15)
can be equivalently written as follows:

Υ(ζ) =
∑
i∈Ip

ζiΥ
[i] =

∑
j∈I+p

ζj
∑

k∈P(j)

Υ[k], (17)

where
I+p , {i ∈ Ip : ij ≤ ij−1, j ∈ I[p−1,1]}

is the set of “upper-triangle” indexes and P(i) ⊂ Ip is the
set of permutations among the entries of a given multi-
index i (see Sala and Ariño (2007) for details).

Based on the discussion above, the procedure to obtain
a finite set of LMI conditions is stated in the following
lemma.

Lemma 2. The parameter-dependent inequality (15) is
satisfied if the following set of LMIs hold:∑

k∈P(j)

Υ[k] ≺ 0,

for all j ∈ I+p .

Proof. The proof is direct from (17).

Remark 3. The condition in Lemma 2 can lead to less
conservative results than (16) because it does not require
all vertices to be negative definite, only appropriate ver-
tices combinations that ensure the negativity of (11). In
addition, the number of LMIs to ensure (11) is reduced

from Np to (N+p−1)!
p!(N−1)! , implying reduction of computational

burden.

For instance, a set of LMIs to solve Theorem 1 can be
obtained with Lemma 2 defining

Υ(ζ) =

(
r2
(
−H −H> + P (ζ)

)
•

A(ζ)H − αH + B(ζ)L −P (ζ)

)
.
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4. ILLUSTRATIVE EXAMPLE

In this section, a numerical example is presented to il-
lustrate the effectiveness of the proposed conditions. The
LMIs were implemented in MATLAB using YALMIP tool-
box (Löfberg, 2004) and Mosek solver (MOSEK, 2017).

Consider the following 3-periodic uncertain discrete-time
system from Farges et al. (2007):

A0 =

(
−3− δ 2
−3 3

)
, B0 =

(
1
β

)
A1 =

(
−1− δ 2

0.5 0

)
, B1 =

(
1

−3β + 2

10

)

A2 =

(
1− δ 2
2.5 3

)
, B2 =

(
β + 1

2
1

) (18)

where δ and β are time-invariant parameters satisfying
|δ| ≤ δ̄ and 0.2 ≤ β ≤ 0.8, respectively. The parameter
bounds are the same as considered by Ebihara et al. (2015).
This system can be easily put in the form of (1) using 4
polytope vertices, N = 4. For simplicity, the TIR (6) is
constructed assuming τ = 0. Their vertices are defined by:

A[(i2,i1,i0)] = A
[i2]
2 A

[i1]
1 A

[i0]
0

B[(i2,i1,i0)] =
(
A

[i2]
2 A

[i1]
1 B

[i0]
0 A

[i2]
2 B

[i1]
1 B

[i2]
2

)
,

for i0, i1, i2 ∈ I[1,2]. Recall that i = (i2, i1, i0).

Firstly, select the region D(0, 1) in Theorem 1 such that
the controller (5) ensure the origin of system (6) is asymp-
totically stable. LMI conditions are obtained employing
Lemma 2. In this case, the maximum uncertainty bound
δ̄ for feasibility of Theorem 1 is δ̄ = 0.46. On the other
hand, if a fixed quadratic matrix P was considered, it is
obtained δ̄ = 0.37. This shows the advantage of employing
a parameter-dependent Lyapunov function.

To further illustrate the application of Theorem 1, consider
D(0.2, 0.65), a similar region as considered in Mao and
Chu (2009). For this region, the maximum bound δ̄ for the
uncertainty such that the LMI conditions are feasible is
δ̄ = 0.26. The obtained control gains are the following:

K =

(
K0

K1

K2

)
=

(
1.8676 −1.5197
3.1888 −4.2712
4.5405 −4.1778

)
. (19)

On the other hand, for a fixed quadratic matrix P in
Theorem 1, the maximum uncertainty bound is δ̄ = 0.21.

To verify the obtained result, the closed-loop eigenvalues
for δ̄ = 0.26 obtained with several values of δ and
β generated using a uniform distribution is shown in
Figure 2. Clearly, the eigenvalues for all the generated
uncertainties are within the specified region D(0.2, 0.65).

The closed-loop state trajectories and control signal for
system (1) with matrices defined in (18) are shown in
Figure 3 for different uncertainties generated under a uni-
form distribution. The initial condition for all simulations
is x0 = [2, −2]>. The gray area represents the one stan-
dard deviation around the mean trajectory obtained from
200 simulations with different uncertainties. It illustrates
the effectiveness of the sampled state-feedback controller
designed using Theorem 1 on stabilizing the uncertain pe-
riodic system, while respecting the eigenvalues placement

Re(z)
-1 -0.5 0 0.5 1

Im
(z
)

-1

-0.5

0

0.5

1

Figure 2. Closed-loop eigenvalues distribution for
|δ| ≤ 0.26. The gray dashed circle represents the
region D(0.2, 0.65).

specifications. The number of performed simulations was
selected such that a statistically significant result could be
reported based on the sample standard deviation.

k

0 10 20 30 40 50

x
k
(1
)

-4

-2

0

2

4

k

0 10 20 30 40 50

x
k
(2
)

-10

-5

0

5

(a) States

k

0 10 20 30 40 50

u
k

-5

0

5

10

15

20

(b) Control signal

Figure 3. Closed-loop trajectories for different values of δ
and β within their designed bounds. The mean and
standard deviation for all trajectories are shown for
each time instant. The region is D(0.2, 0.65).

To highlight the interest in applying the eigenvalue as-
signment, a comparison is performed with a stabilization
strategy. For that, consider δ̄ = 0.26. After generating
200 values of δ and β within their bounds, the param-
eter θ corresponding to the eigenvalue with maximum
real part was selected. The parameter for D(0, 1) is θ =
[0.02, 0.01, 0.96, 0.01]> and the one for D(0.2, 0.65) is
θ = [0.04, 0.93, 0.01, 0.02]>. The closed-loop trajectories
for these parameters are shown in Figure 4. The initial
condition is x0 = [2, −2]>. It is clear that the SFC de-
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signed to allocate the eigenvalues in the region D(0.2, 0.65)
can lead to faster stabilization and less oscillation. This
shows that performance specifications such as decay rate
and damping ratio can be assigned with the proposed
eigenvalue assignment approach.

k

0 10 20 30 40 50
-10

-5

0

5

xk(1)

xk(2)

(a) D(0, 1)

k

0 10 20 30 40 50
-15

-10

-5

0

5

xk(1)

xk(2)

(b) D(0.2, 0.65)

Figure 4. Closed-loop trajectories for (a) stabilization and
(b) eigenvalue assignment approaches.

5. CONCLUDING REMARKS

This paper has addressed the problem of robust eigen-
value assignment via sampled state-feedback control for
linear discrete-time periodic systems subject to polytopic
uncertainties. A sufficient D(α, r)-stability condition has
been proposed for the uncertain time-invariant reformula-
tion obtained from the sampled state-feedback law applied
to the linear polytopic discrete-time periodic system. A
systematic procedure has been employed to derive LMI de-
sign conditions and the proposal effectiveness was demon-
strated with numerical simulations. In future works, we
aim to extend the proposed conditions to stabilize unsta-
ble periodic orbits of nonlinear discrete-time dynamical
systems with chaotic sets.
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