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Abstract

The Ziegler–Nichols step response method is based on the idea of tuning controllers based on simple features of the step re-

sponse. In this paper this idea is investigated from the point of view of robust loop shaping. The results are: insight into the

properties of PI and PID control and simple tuning rules that give robust performance for processes with essentially monotone step

responses.
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1. Introduction

In spite of all the advances in control over the past 50

years the PID controller is still the most common con-

troller, see [1]. Even if more sophisticated control laws

are used it is common practice to have an hierarchical

structure with PID control at the lowest level, see [2–5].

A survey of more than 11,000 controllers in the refining,
chemicals, and pulp and paper industries showed that

97% of regulatory controllers had the PID structure, see

[5]. Embedded systems are also a growing area of PID

control, see [6]. Because of the widespread use of PID

control it is highly desirable to have efficient manual and

automatic methods of tuning the controllers. A good

insight into PID tuning is also useful in developing more

schemes for automatic tuning and loop assessment.
Practically all books on process control have a

chapter on tuning of PID controllers, see e.g. [7–16]. A

large number of papers have also appeared, see e.g. [17–

29].

The Ziegler–Nichols rules for tuning PID controller

have been very influential [30]. The rules do, however,

have severe drawbacks, they use insufficient process

information and the design criterion gives closed loop
systems with poor robustness [1]. Ziegler and Nichols

presented two methods, a step response method and a

frequency response method. In this paper we will
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investigate the step response method. An in-depth

investigation gives insights as well as new tuning rules.

Ziegler and Nichols developed their tuning rules by

simulating a large number of different processes, and

correlating the controller parameters with features of the

step response. The key design criterion was quarter

amplitude damping. Process dynamics was character-

ized by two parameters obtained from the step response.
We will use the same general ideas but we will use robust

loop shaping [14,15,31] for control design. A nice fea-

ture of this design method is that it permits a clear trade-

off between robustness and performance. We will also

investigate the information about the process dynamics

that is required for good tuning. The main result is that

it is possible to find simple tuning rules for a wide class

of processes. The investigation also gives interesting
insights, for example it gives answers to the following

questions: What is a suitable classification of processes

where PID control is appropriate? When is derivative

action useful? What process information is required for

good tuning? When is it worth while to do more accu-

rate modeling?

In [32], robust loop shaping was used to tune PID

controllers. The design approach was to maximize
integral gain subject to a constraints on the maximum

sensitivity. The method, called MIGO (M-constrained

integral gain optimization), worked very well for PI

control. In [33] the method was used to find simple

tuning rules for PI control called AMIGO (approximate

MIGO). The same approach is used for PID control in

[34], where it was found that optimization of integral

gain may result in controllers with unnecessarily high
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phase lead even if the robustness constraint is satisfied.

This paper presents a new method with additional

constraints that works for a wide class of processes.

The paper is organized as follows. Section 2 sum-
marizes the objectives and the MIGO design method.

Section 3 presents a test batch consisting of 134 pro-

cesses, and the MIGO design method is applied to these

processes. In Section 4 it is attempted to correlate the

controller parameters to different features of the step

response. It is found that the relative time delay s, which
has the range 06 s6 1, is an essential parameter. Simple

tuning rules can be found for processes with s > 0:5 and
conservative tuning rules can be found for all s. For
processes with s < 0:5 there is a significant advantage to
have more accurate models than can be derived from a

step response. It is also shown that the benefits of

derivative action are strongly correlated to s. For delay
dominated processes, where s is close to one, derivative

action gives only marginal benefits. The benefits increase

with decreasing s, for s ¼ 0:5 derivative action permits a
doubling of integral gain and for s < 0:13 there are

processes where the improvements can be arbitrarily

large. For small values of s there are, however, other

considerations that have a major influence of the design.

The conservative tuning rules are close to the rules for a

process with first order dynamics with time delay, the

KLT process. In Section 5 we develop tuning rules for

such a process for a range of values of the robustness
parameter. Section 6 presents some examples that

illustrate the results.
f

2. Objectives and design method

There are many versions of a PID controller. In this

paper we consider a controller described by

uðtÞ ¼ kðbyspðtÞ � yfðtÞÞ þ ki

Z t

0

ðyspðsÞ � yfðsÞÞds

þ kd c
dyspðtÞ
dt

�
� dyfðtÞ

dt

�
ð1Þ

where u is the control variable, ysp the set point, y the

process output, and yf is the filtered process variable, i.e.
YfðsÞ ¼ GfðsÞY ðsÞ. The transfer function GfðsÞ is a first
order filter with time constant Tf , or a second order filter
if high frequency roll-off is desired.

GfðsÞ ¼
1

ð1þ sTfÞ2
ð2Þ

Parameters b and c are called set-point weights. They

have no influence on the response to disturbances but

they have a significant influence on the response to set-

point changes. Set-point weighting is a simple way to

obtain a structure with two degrees of freedom [35]. It
can be noted that the so-called PI–PD controller [18] is a

special case of (1) with parameters b ¼ c ¼ 0. See [36].

Neglecting the filter of the process output the feed-

back part of the controller has the transfer function

CðsÞ ¼ K 1

�
þ 1

sTi
þ sTd

�
ð3Þ

The advantage by feeding the filtered process variable

into the controller is that the filter dynamics can be

combined with in the process dynamics and the con-
troller can be designed designing an ideal controller for

the process PðsÞGfðsÞ.
A PID controller with set-point weighting and

derivative filter has six parameters K, Ti, Td, Tf , b and c.
A good tuning method should give all the parameters.

To have simple design methods it is interesting to

determine if some parameters can be fixed.

2.1. Requirements

Controller design should consider requirements on

responses to load disturbances, measurement noise, and

set point as well as robustness to model uncertainties.

Load disturbances are often the major consideration

in process control. See [10], but robustness and mea-

surement noise must also be considered. Requirements
on set-point response can be dealt with separately by

using a controller with two degrees of freedom. For PID

control this can partially be accomplished by set-point

weighting or by filtering, see [37]. The parameters K, Ti,
Td and Tf can thus be determined to deal with distur-

bances and robustness and the parameters b and c can
then be chosen to give the desired set-point response.

To obtain simple tuning rules it is desirable to have
simple measures of disturbance response and robust-

ness. Assuming that load disturbances enter at the

process input the transfer function from disturbances to

process output is

GydðsÞ ¼
P ðsÞGfðsÞ

1þ P ðsÞGfðsÞCðsÞ
where P ðsÞ is the process transfer function CðsÞ is the
controller transfer function (3) and GfðsÞ the filter

transfer function (2). Load disturbances typically have

low frequencies. For a controller with integral action we

have approximately GydðsÞ � s=ki. Integral gain ki is
therefore a good measure of load disturbance reduction.

Measurement noise creates changes in the control

variable. Since this causes wear of valves it is important

that the variations are not too large. Assuming that

measurement noise enters at the process output it fol-

lows that the transfer function from measurement noise

n to control variable u is

GunðsÞ ¼
CðsÞGfðsÞ

1þ P ðsÞCðsÞG ðsÞ
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Measurement noise typically has high frequencies. For

high frequencies the loop transfer function goes to zero

and we have approximately GunðsÞ � CðsÞGfðsÞ. The

variations of the control variable caused by measure-
ment noise can be influenced drastically by the choice of

the filter GfðsÞ. The design methods we use gives rational
methods for choosing the filter constant. Standard val-

ues can be used for moderate noise levels and the con-

troller parameters can be computed without considering

the filter. When measurement noise generates problems

heavier filtering can be used. The effect of the filter on

the tuning can easily be dealt with by designing con-
troller parameters for the process GfðsÞPðsÞ.

Many criteria for robustness can be expressed as

restrictions on the Nyquist curve of the loop transfer

function. In [32] it is shown that a reasonable constraint

is to require that the Nyquist curve is outside a circle

with center in cR and radius rR where

cR ¼ 2M2 � 2M þ 1

2MðM � 1Þ ; rR ¼ 2M � 1

2MðM � 1Þ
By choosing such a constraint we can capture robustness

by one parameter M only. The constraint guarantees

that the sensitivity function and the complementary

sensitivity function are less than M .

2.2. Design method

The design method used is to maximize integral gain

subject to the robustness constraint given above. The

problems related to the geometry of the robustness re-

gion discussed in [34] are avoided by restraining the

values of the derivative gain to the largest region that

oki=okP 0 in the robustness region. This design gives

the best reduction of load disturbances compatible with
the robustness constraints.

There are situations where the primary design

objective is not disturbance reduction. This is the case

for example in surge tanks. The proposed tuning is not

suitable in this case.
Fig. 1. The test batch.
3. Test batch and MIGO design

In this section, the test batch used in the derivation of

the tuning rules is first presented. The MIGO design
method presented in the previous section was applied to

all processes in the test batch. The controller parameters

obtained are presented as functions of relative time de-

lay s.

3.1. The test batch

PID control is not suitable for all processes. In [33] it

is suggested that the processes where PID is appropriate

can be characterized as having essentially monotone step
responses. One way to characterize such processes is to

introduce the monotonicity index

a ¼
R1
0

hðtÞdtR1
0

jhðtÞjdt
ð4Þ

where h is the impulse response of the system. Systems
with a ¼ 1 have monotone step responses and systems

with a > 0:8 are consider essentially monotone. The

tuning rules presented in this paper are derived using a

test batch of essentially monotone processes.

The 134 processes shown in Fig. 1 as Eq. (5) were

used to derive the tuning rules. The processes are rep-

resentative for many of the processes encountered in

process control. The test batch includes both delay
dominated, lag dominated, and integrating processes.

All processes have monotone step responses except P8
and P9. The parameters range for processes P8 and P9
were chosen so that the systems are essentially mono-

tone with aP 0:8. The relative time delay ranges from 0

to 1 for the process P1 but only from 0.14 to 1 for P2.
Process P6 is integrating, and therefore s ¼ 0. The rest of

the processes have values of s in the range 0 < s < 0:5.
3.2. MIGO design

Parameters of PID controllers for all the processes in

the test batch were computed using the MIGO design
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with the constraints described in the previous section.

The design parameter was chosen to M ¼ 1:4.
In the Ziegler–Nichols step response method, stable

processes were approximated by the simple KLT
model

GpðsÞ ¼
Kp

1þ sT
e�sL ð6Þ

where Kp is the static gain, T the time constant (also

called lag), and L the time delay. Processes with inte-

gration were approximated by the model

GpðsÞ ¼
Kv

s
e�sL ð7Þ

where Kv is the velocity gain and L the time delay. The

model (7) can be regarded as the limit of (6) as Kp and T
go to infinity in such a way that Kp=T ¼ Kv is constant.

The parameters in (6) and (7) can be obtained from a
simple step response experiment, see [33].

Fig. 2 illustrates the relations between the controller

parameters obtained from the MIGO design and the

process parameters for all stable processes in the test

batch. The controller gain is normalized by multiplying

it either with the static process gain Kp or with the

parameter a ¼ KpL=T ¼ KvL. The integral and deriva-

tive times are normalized by dividing them by T or by L.
The controller parameters in Fig. 2 are plotted versus

the relative dead time

s ¼ L ð8Þ

Lþ T

Fig. 2. Normalized PID controller parameters as a function of the normalized

and controllers for P2 with squares.
The fact that the ratio L=T is important has been noticed

before. Cohen and Coon [38] called L=T the self-regu-

lating index. In [39] the ratio is called the controllability

index. The ratio is also mentioned in [23]. The use of s
instead of L=T has the advantage that the parameter is

bounded to the region ½0; 1
.
The parameters for the integrating processes P6 are

only normalized with a and L, since Kp and T are infinite

for these processes.

The figure indicates that the variations of the nor-

malized controller parameters are several orders of

magnitude. We can thus conclude that it is not possible
to find good universal tuning rules that do not depend

on the relative time delay s. Ziegler and Nichols [30]

suggested the rules aK ¼ 1:2, Ti ¼ 2L, and Td ¼ 0:5L, but
Fig. 2 shows that these parameters are only suitable for

very few processes in the test batch.

The controller parameters for processes P1 are

marked with circles and those for P2 are marked by

squares in Fig. 2. For s < 0:5, the gain for P1 is typically
smaller than for the other processes, and the integral

time is larger. This is opposite to what happened for PI

control, see [33]. Process P2 has a gain that is larger and

an integral time that is shorter than for the other pro-

cesses. These differences are explained in the next sub-

section.

For PI control, it was possible to derive simple tuning

rules, where the controller parameters obtained from the
AMIGO rules differed less than 15% from those ob-

tained from the MIGO rules for most processes in the
time delay s. The controllers for the process P1 are marked with circles
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test batch, see [33]. Fig. 2 indicates that universal tuning

rules for PID control can be obtained only for sP 0:5.
For s < 0:5 there is a significant spread of the nor-

malized parameters which implies that it does not seem
possible to find universal tuning rules. This implies that

it is not possible to find universal tuning rules that in-

clude processes with integration. This was possible for

PI control. Notice that the gain and the integral time are

well defined for 0:3 < s < 0:5 but that there is a con-

siderable variation of derivative time in that interval.

Because of the large spread in parameter values for

s < 0:5 it is worth while to model the process more
accurately to obtain good tuning of PID controllers.

The process models (6) and (7) model stable processes

with three parameters and integrating processes with

two parameters. In practice, it is not possible to obtain

more process parameters from the simple step response

experiment. A step response experiment is thus not

sufficient to tune PID controllers with s < 0:5 accu-

rately.
However, it may be possible to find conservative

tuning rules for s < 0:5 that are based on the simple

models (6) or (7) by choosing controllers with parame-

ters that correspond to the lowest gains and the largest

integral times if Fig. 2. This is shown in the next section.

3.3. Large spread of control parameters for small s

A striking difference between Fig. 2 and the corre-
sponding figure for PI control, see [33], is the large

spread of the PID parameters for small values of s.
Before proceeding to develop tuning rules we will try to

understand this difference between PI and PID control.

The criterion used is to maximize integral gain ki. The
fundamental limitations are given by the true time delay

of the process L0. The integral gain is proportional to the
gain crossover frequency xgc of the closed loop system.
In [40] it is shown that the gain crossover frequency xgc

typically is limited to

xgcL0 < 0:5

When a process is approximated by the KLT model the
apparent time delay L is longer than the true time delay

L0, because lags are approximated by additional time

delays. This implies that the integral gain obtained for

the KLT model will be lower than for a design based on

the true model. The situation is particularly pronounced

for systems with small s.
Consider PI control of first order systems, i.e. pro-

cesses with the transfer functions

P ðsÞ ¼ Kp

1þ sT
or PðsÞ ¼ Kv

s

Since these systems do not have time delays there is no

dynamics limitation and arbitrarily high integration gain

can be obtained. Since these processes can be matched
perfectly by the models (6) and (7), the design rule re-

flects this property. The process parameters are L ¼ 0,

a ¼ 0, and s ¼ 0 and both the design method MIGO

and the approximate AMIGO rule given in [33] give
infinite integral gains.

Consider PID control of second order systems with

the transfer functions

P ðsÞ ¼ Kv

sð1þ sT1Þ
and P ðsÞ ¼ Kp

ð1þ sT1Þð1þ sT2Þ

Since the system do not have time delays it is possible to

have controllers with arbitrarily large integral gains. The

first transfer function has s ¼ 0. The second process has

values of s in the range 06 s < 0:13, where s ¼ 0:13
corresponds to T1 ¼ T2. When these transfer functions

are approximated with a KLT model one of the time
constants will be approximated with a time delay. Since

the approximating model has a time delay there will be

limitations in the integral gain.

We can thus conclude that for s < 0:13 there are

processes in the test batch that permit infinitely large

integral gains. This explains the widespread of controller

parameters for small s. The spread is infinitely large for

s < 0:13 and it decreases for larger s. For small s im-
proved modeling gives a significant benefit.

One way to avoid the difficulty is to use of a more

complicated model such as

P ðsÞ ¼ b1sþ b2s
s2 þ a1sþ a2

e�sL

It is, however, very difficult to estimate the parameters

of this model accurately from a simple step response

experiment. Design rules for models having five

parameters may also be cumbersome. Since the problem

occurs for small values of s it may be possible to
approximate the process with

P ðsÞ ¼ Kv

sð1þ sT Þ e
�sL

which only has three parameters. Instead of developing

tuning rules for more complicated models it may be

better to simply compute the controller parameters

based on the estimated model.

We illustrate the situation with an example.

Example 1 (Systems with same KLT parameters differ-
ent controllers). Fig. 3 shows step responses for systems

with the transfer functions

P1ðsÞ ¼
1

1þ 5:57s
e�0:54s; P2ðsÞ ¼

1

ð1þ sÞð1þ 5sÞ

If a KLT model is fitted to these systems we find that

both systems have the parameters K ¼ 1, L ¼ 0:54 and

T ¼ 5:57, which gives s ¼ 0:17. The step responses are

quite close. There is, however, a significant difference for

small t, because the dashed curve has zero response for
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Fig. 3. Step responses of two systems with different dynamics but the same parameters K, L and T . The dashed line represents a system with the

transfer function P1ðsÞ ¼ e�0:54s=ð1þ 5:57sÞ and the full line is the step response of the system P2ðsÞ ¼ 1=ðð1þ sÞð1þ 5sÞÞ.
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t < 0:54. This difference is very significant if it is at-
tempted to get closed-loop systems with a fast response.

Intuitively it seems reasonable that controllers with slow

response time designed for the processes will not differ

much but that controllers with fast response time may

differ substantially. It follows from [40] that the gain

crossover frequency for P1 is limited by the time delay to

about xgc < 1:0, corresponding to a response time of

about 2. With PI control the bandwidth of the closed
loop system for P2 is limited to x � 0:6. We can thus

conclude that with PI control the performances of the

closed loop systems are practically the same. Computing

controllers that maximize integral gain forM ¼ 1:4 gives
the following parameters for P1 and P2

K ¼ 2:97ð2:53Þ; Ti ¼ 3:11 ð4:46Þ;
ki ¼ 0:96 ð0:57Þ; xgc ¼ 0:58ð0:47Þ

where the values for P2 are given in parenthesis.

The situation is very different for PID control. For

the process P1 the controller parameters are K ¼ 4:9323,
ki ¼ 2:0550, Ti ¼ 2:4001 and Td ¼ 0:2166 and xgc ¼
0:9000. For the process P2 the integral gain will be

infinite.

Another way to understand the spread in parameter
values for small s is illustrated in Fig. 4 which gives the

product of the gain crossover frequency xgc and the

apparent time delay L as a function of s. The curve

shows that the product is 0.5 for s > 0:3, which is in
Fig. 4. The product xgcL as a function of relative time delay s. The controlle
squares.
good agreement with the rule of thumb given in [40]. For
smaller values of s the product may, however, be much
larger. There are also substantial variations. This indi-

cates that the value L overestimates the true time delay

which gives the fundamental limitations. It should also

be emphasized that the performance of delay dominated

processes is limited by the dynamics. For processes that

are lag dominated the performance is instead limited by

measurement noise and actuator limitations, see [40].
3.4. The benefits of derivative action

Since maximization of integral gain was chosen as

design criterion we can judge the benefits of derivative

action by the ratio of integral gain for PID and PI

control. Fig. 5 shows this ratio for the test batch, except

for a few processes with a high ratio at small values of s.
The Figure shows that the benefits of derivative ac-

tion are marginal for delay dominated processes but that

the benefits increase with decreasing s. For s ¼ 0:5 the
integral gain can be doubled and for values of s < 0:15
integral gain can be increased arbitrarily for some pro-

cesses.
3.5. The ratio Ti=Td

The ratio Ti=Td is of interest for several reasons. It

is a measure of the relative importance of derivative
rs for the process P1 are marked with circles and controllers for P2 with



R

Fig. 5. The ratio of integral gain with PID and PI control as a function of relative time delay s. The dashed line corresponds to the ratio

ki½PID
=ki½PI
 ¼ 2. The controllers for the process P1 are marked with circles and controllers for P2 with squares.
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and integral action. Many PID controllers are imple-

mented in series form, which requires that the ratio is

larger than 4. Many classical tuning rules therefore fix

the ratio to 4. Fig. 6 shows the ratio for the full test

batch. The figure shows that there is a significant

variation in the ratio Ti=Td particularly for small s.
The ratio is close to 2 for 0:5 < s < 0:9 and it in-

creases to infinity as s approaches 1 because the
derivative action is zero for processes with pure time

delay. It is a limitation to restrict the ratio to 4. The

fact that it may be advantageous to use smaller values

was pointed out in [41].
3.6. The average residence time

The parameter T63 which is the time when the step

response has reached 63%, a factor of ð1� 1=eÞ, of its
steady state value is a reasonable measure of the re-

sponse time for stable systems. It is easy to determine

the parameter by simulation, but not by analytical cal-

culations. For the KLT process we have Tar ¼ T63. The
average residence time Tar is in fact a good estimate of

T63 for systems with essentially monotone step response.
For all stable processes in the test batch we have

0:99 < T63=Tar < 1:08.
The average residence time is easy to compute ana-

lytically. Let GðsÞ be the Laplace transform of a stable

system and g the corresponding impulse response. The

average residence time is given by
Fig. 6. The ratio between Ti and Td as a function of relative time delay s. Th
with circles and process P2 with squares.
Tar ¼
1
0

tgðtÞdtR1
0

gðtÞdt
¼ �G0ð0Þ

Gð0Þ ð9Þ

see [37,42]. Consider the closed loop system obtained

when a process with transfer function PðsÞ is controlled
with a PID controller with set-point weighting, given by

(1). The closed loop transfer function from set point to

output is

GspðsÞ ¼
P ðsÞCffðsÞ

1þ PðsÞCðsÞ

where

CffðsÞ ¼ bk þ ki
s

Straight forward but tedious calculations give

Tar ¼ �
G0
spð0Þ

Gspð0Þ
¼ Ti 1

�
� bþ 1

kKp

�
ð10Þ

where Ti ¼ k=ki is the integration time of the controller
and Kp ¼ Pð0Þ is the static gain of the system. Fig. 7

shows the average residence times of the closed loop

system divided with the average response time of the

open loop system. Fig. 7 shows that for PID control the

closed loop system is faster than the open loop system

when s < 0:3 and slower for s > 0:3.
e dashed line corresponds to the ratio Ti=Td ¼ 4. Process P1 is marked



Fig. 7. The ratio of the average residence time of the closed loop system and the open loop system for PI control left and PID control right.
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4. Conservative tuning rules (AMIGO)

Fig. 2 shows that it is not possible to find optimal

tuning rules for PID controllers that are based on the
simple process models (6) or (7). It is, however, possible

to find conservative robust tuning rules with lower

performance. The rules are close to the MIGO design

for the process P1, i.e. the process that gives the lowest
controller gain and the longest integral time, see Fig. 2.

The suggested AMIGO tuning rules for PID con-

trollers are

K ¼ 1

Kp

0:2

�
þ 0:45

T
L

�

Ti ¼
0:4Lþ 0:8T
Lþ 0:1T

L

Td ¼
0:5LT

0:3Lþ T

ð11Þ

For integrating processes, Eq. (11) can be written as

K ¼ 0:45=Kv

Ti ¼ 8L

Td ¼ 0:5L

ð12Þ

Fig. 8 compares the tuning rule (11) with the controller
parameters given in Fig. 2. The tuning rule (11) de-

scribes the controller gain K well for process with

s > 0:3. For small s, the controller gain is well fitted to

processes P1, but the AMIGO rule underestimates the

gain for other processes.

The integral time Ti is well described by the tuning

rule (11) for s > 0:2. For small s, the integral time is well
fitted to processes P1, but the AMIGO rule overesti-
mates it for other processes.

The tuning rule (11) describes the derivative time Td
well for process with s > 0:5. In the range 0:3 < s < 0:5
the derivative time can be up to a factor of 2 larger than

the value given by the AMIGO rule. If the values of the

derivative time for the AMIGO rule is used in this range

the robustness is decreased, the value of M may be re-
duced by about 15%. For s < 0:3, the AMIGO tuning

rule gives a derivative time that sometimes is shorter and

sometimes longer than the one obtained by MIGO.

Despite this, it appears that AMIGO gives a conserva-
tive tuning for all processes in the test batch, mainly

because of the decreased controller gain and increased

integral time.

The tuning rule (11) has the same structure as the

Cohen–Coon method, see [38], but the parameters differ

significantly.

4.1. Robustness

Fig. 9 shows the Nyquist curves of the loop transfer
functions obtained when the processes in the test batch

(5) are controlled with the PID controllers tuned with

the conservative AMIGO rule (11). When using MIGO

all Nyquist curves are outside the M-circle in the figure.

With AMIGO there are some processes where the Ny-

quist curves are inside the circle. An investigation of the

individual cases shows that the derivative action is too

small, compare with the curves of Td=L versus s in Fig. 8.
The increase of M is at most about 15% with the

AMIGO rule. If this increase is not acceptable derivative

action can be increased or the gain can be decreased

with about 15%.

4.2. Set-point weighting

In traditional work on PID tuning separate tuning

rules were often developed for load disturbance and set-

point response, respectively, see [37]. With current

understanding of control design it is known that a
controller should be tuned for robustness and load dis-

turbance and that set-point response should be treated

by using a controller structure with two degrees of

freedom. A simple way to achieve this is to use set-point

weighting, see [37]. A PID controller with set-point

weighting is given by Eq. (1), where b and c are the set-
point weights. Set-point weight c is normally set to zero,
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Fig. 8. Normalized controller parameters as a function of normalized time delay s. The solid line corresponds to the tuning rule (11), and the dotted
lines indicate 15% parameter variations. The circles mark parameters obtained from the process P1, and the squares mark parameters obtained from
the process P2.
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except for some applications where the set-point changes
are smooth.

A first insight into the use of set-point weighting is

obtained from a root locus analysis. With set-point

weighting b ¼ 1, the controller introduces a zero at

s ¼ �1=Ti. If the process pole s ¼ �1=T is significantly

slower than the zero there will typically be an overshoot.

We can thus expect an overshoot due to the zero if

Ti � T . Figs. 2 and 8 show that Ti � T for small values
of s. With set-point weighting the controller zero is

shifted to s ¼ �1=ðbTiÞ.
The MIGO design method gives suitable values of b.

It is determined so that the resonance peak of the

transfer function between set point and process output

becomes close to one, see [34]. Fig. 10 shows the values

of the b-parameter for the test batch (5).

The correlation between b and s is not so good, but a
conservative and simple rule is to choose b as
b ¼ 0 for s6 0:5
1 for s > 0:5

�
ð13Þ

4.3. Measurement noise

Filtering of the measured signal is necessary to make

sure that high frequency measurement noise does not

cause excessive control action. A simple convenient ap-

proach is to design an ideal PID controller without fil-

tering and to add a filter afterwards. If the noise is not

excessive the time constant of the filter can be chosen as
Tf ¼ 0:05=xgc, where xgc is the gain crossover frequency.

This means that the filter reduces the phase margin by

0.1 rad. In Fig. 4 it was shown that for s > 0:2 we have
the estimate xgc � 0:5=L, which gives the filter-time

constant Tf � 0:1L.
For heavier filtering the controller parameters should

be changed. This can be done simply by using



Fig. 9. Nyquist curves of loop transfer functions obtained when PID

controllers tuned according to (11) are applied to the test batch (5).

The solid circle corresponds M ¼ 1:4, and the dashed to a circle where

M is increased by 15%.
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Skogestads half rule [26] and replacing L and T by

Lþ Tf=2 and T þ Tf=2 in the tuning formula (11).
The effect of filtering on the performance can also be

estimated. It follows from (11) that the integral gain is

given by
Fig. 10. Set-point weighting as a function of s for the test batch (5). The circle
parameters obtained from the process P2.

Fig. 11. Filter constants N that g
ki ¼
K
Ti

¼ ð0:2Lþ 0:45T ÞðLþ 0:1T Þ
KpL2ð0:4Lþ 0:8T Þ

Using the half rule and introducing N ¼ Td=Tf we find
that the relative change in integral gain due to filtering is

Dki ¼
o logki
oL

�
þ o logki

oT

�
Td
2N

¼ � 5T ð170TL2 þ 197LT 2 þ 36T 3 þ 26L3Þ
2Nð10Lþ T Þð4Lþ 9T ÞðLþ 2T Þð3Lþ 10T Þ

ð14Þ

Fig. 11 shows the values of N that give a 5% reduction in

ki for different values of s. The figure shows that it is

possible to use heavy filtering for delay dominated sys-

tems. The fact that it is possible to filter heavily without

degrading performance is discussed in [41]. Also recall

that derivative action is of little value for delay domi-
nated processes.
5. Tuning formulas for arbitrary sensitivities

So far we have developed a tuning formula for a

particular value of the design parameter M . It is desir-

able to have tuning formulas for other values of M . In

this section we will develop such a formula for the KLT
process (6). It follows from Section 4 that such a for-

mula will be close to the conservative tuning formula

given by Eq. (11). Compare also with Fig. 8.
s mark parameters obtained from the process P1, and the squares mark

ive a decrease of ki of 5%.
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Based on Eq. (11) it is natural to represent the con-

troller parameters by

K ¼ a1Lþ a2T
KpL

Ti ¼
a3Lþ a4T
Lþ a5T

L

Td ¼
a6LT

Lþ a7T

ð15Þ

To determine the parameters ai we will compute con-

troller parameters for the processes

P dðsÞ ¼ e�s; P bðsÞ ¼ 1

sþ 1
e�s; P lðsÞ ¼ 1

s
e�s

which correspond to delay dominated, balanced and lag

dominated dynamics. Let these systems have the con-

trollers

CdðsÞ ¼ Kd 1

�
þ 1

sT d
i

þ sT d
d

�

CbðsÞ ¼ Kb 1

�
þ 1

sT b
i

þ sT b
d

�

ClðsÞ ¼ K l 1

�
þ 1

sT l
i

þ sT l
d

�
ð16Þ

The formula for controller gain has two parameters a1
and a2. To determine these we use the controller

parameters computed for delay dominated (Kp ¼ 1; T ¼
0; L ¼ 1), and lag dominated (T 
 L;Kp=T ¼ 1; L ¼ 1)

processes. Inserting these values in Eq. (15) gives

a1 ¼ Kd

a2 ¼ K l
ð17Þ

The formula for the integral time has three parameters

a3, a4 and a5. To determine these we use the integral

times of the controllers for delay dominated (Kp ¼ 1,

T ¼ 0, L ¼ 1), balanced (Kp ¼ 1, T ¼ 1, L ¼ 1Þ and lag
dominated (T 
 L, Kp=T ¼ 1, L ¼ 1) processes. Insert-

ing the parameter values in Eq. (15) gives a linear

equation for the parameters which has the solution
Table 1

Parameters ai in the tuning formula (15) for different values of M

M a1 a2 a3

1.1 0.057 0.139 0.400

1.2 0.103 0.261 0.389

1.3 0.139 0.367 0.376

1.4 0.168 0.460 0.363

1.5 0.191 0.543 0.352

1.6 0.211 0.616 0.342

1.7 0.227 0.681 0.334

1.8 0.241 0.740 0.326

1.9 0.254 0.793 0.320

2.0 0.264 0.841 0.314
a3 ¼ T d
i ¼ 0:3638

a4 ¼
T l
i ðT b

i � T d
i Þ

T l
i � T b

i

¼ 0:8697

a5 ¼
T b
i � T d

i

T l
i � T b

i

¼ 0:1104

ð18Þ

The formula for the derivative time has two parameters

a6 and a7. To determine these parameters we use the
match the derivative times T d

d and T l
d for delay and lag

dominated processes. This gives

a6 ¼ T d
d

a7 ¼
T d
d

T l
d

ð19Þ

The derivative time for a pure delay process with T ¼ 0

is zero. For finite values of T the derivative gain is

limited by the high frequency gain of the loop transfer

function. We have for large s

P ðsÞCðsÞ ¼ kds2 þ ksþ ki
sð1þ sT Þ e�sL � kd

T
¼ KdT d

d

T

To satisfy the robustness constraint the loop gain must

be less than 1� 1=M , which implies that the largest

derivative time is

T d
d ¼ 1

M

�
� 1

�
T
Kd

¼ M � 1

KdM
T

Notice that T d
d goes to zero as T goes to zero.

Table 1 gives the parameters ai for different values of
M . Comparing these values with the values for the

tuning formula for conservative tuning, (11) we find that

they are very close.

Fig. 12 shows the controller parameters as a function

of relative time delay for different values of the tuning

parameter. Notice that the gain and integral time varies

significantly with M but that the variation in derivative

time are much smaller. It follows from Table 1 that the
variations in a6 and a7 are less than 9% and 3%,

respectively. It is thus possible to find values of deriva-

tive time that do not depend on the tuning parameter M .
a4 a5 a6 a7

0.923 0.012 1.59 4.59

0.930 0.040 1.62 4.44

0.900 0.074 1.66 4.39

0.871 0.111 1.70 4.37

0.844 0.146 1.74 4.35

0.820 0.179 1.78 4.34

0.799 0.209 1.81 4.33

0.781 0.238 1.84 4.32

0.764 0.264 1.87 4.31

0.751 0.288 1.89 4.30



Fig. 12. Controller parameters for the process P1ðsÞ as a function of relative time delay s for the tuning parameters M ¼ 1:1; 1:2; 1:3; . . . ; 2:0. The

curves for M ¼ 1:1 are dashed.

Fig. 13. The ratios T cl
ar=T

ol
ar and T cl

ar=L for PID control of the process P1 with different design parameters M ¼ 1:1, (dashed) 1:2; 1:3; . . . ; 2:0.
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5.1. The average residence time

The response time T63 is well approximated by the

average response time for systems with essentially mono-

tone step responses. The average residence time for a

closed loop system under PID control is given by Eq. (10).

Fig. 13 shows the ratio T cl
ar=T

ol
ar and T cl

ar=L for PID

control of the process.
6. Examples

This section presents a few examples that illustrate

the conservative AMIGO method and compares it with
the MIGO designs for PI and PID controllers. Three

examples are given, one lag-dominant process, one de-

lay-dominant process, and one process with balanced

lag and delay.
Example 2 (Lag dominated dynamics). Consider a pro-

cess with the transfer function

P ðsÞ ¼ 1

ð1þ sÞð1þ 0:1sÞð1þ 0:01sÞð1þ 0:001sÞ

Fitting the model (6) to the process we find that the

apparent time delay and time constants are L ¼ 0:073
and T ¼ 1:03, which gives s ¼ 0:066. The dynamics is



Fig. 14. Responses to a unit step change at time 0 in set point and a load step with amplitude 5 at time 3 for PID controllers designed by AMIGO

(full line) and MIGO for PID (dashed line) and PI (dash-dotted line) for a process with the transfer function GðsÞ ¼ 1=ðð1þ sÞð1þ
0:1sÞð1þ 0:01sÞð1þ 0:001sÞÞ.
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thus lag dominated. Since s is so small we can expect

significant differences between PID and PI control and

we can also expect that the conservative AMIGO

method is much inferior to the MIGO method.
The MIGO controller parameters are ki ¼ 496,

K ¼ 56:9, Ti ¼ 0:115, and Td ¼ 0:0605 for PID and

ki ¼ 5:4, K ¼ 3:56, Ti ¼ 0:660 for PI. The AMIGO

tuning rules, (11) and (13), give the controller parame-

ters ki ¼ 18:5, K ¼ 6:55, Ti ¼ 0:354, and Td ¼ 0:0357.
The set-point weight is b ¼ 0 in all cases.

Fig. 14 shows the responses of the system to changes

in set point and load disturbances. The figure shows that
AMIGO design gives reasonable responses, but that

both load disturbance and set-point response are very

much inferior compared with the MIGO design. This is

expected, since it is a lag-dominant process. The rela-

tions between the integral gains are

kiðMIGO � PIDÞ
kiðAMIGOÞ ¼ 497

18:5
� 27;

kiðMIGO � PIDÞ
kiðMIGO � PIÞ ¼ 497

5:4
� 92

The response time T63 and the average response time Tar
for the closed loop systems are 0.16 (0.12), 0.48 (0.41)

and 0.89 (0.84) for PID–AMIGO, PID–MIGO and PI

respectively. The values of Tar are given in brackets. The

average response time is a shorter because the response

has an overshoot. This is particularly noticeable for

PID–AMIGO.

Notice that the magnitudes of the control signals are
about the same at load disturbances, but that there is a

major difference in the response time. The differences in

the responses clearly illustrates the importance of

reacting quickly.

The example shows that derivative action can give

drastic improvements in performance for lag dominated

processes. It also demonstrates that the control perfor-
mance can be increased considerably by obtaining better

process models than (6).

Next we will consider a process where the lag and the
delay are balanced.

Example 3 (Balanced lag and delay). Consider a process
with the transfer function

GðsÞ ¼ 1

ðsþ 1Þ4

Fitting the model (6) to the process we find that the

apparent time delay and time constants are L ¼ 1:42 and
T ¼ 2:9. Hence L=T ¼ 0:5 and s ¼ 0:33. The MIGO

controller parameters become ki ¼ 0:54, K ¼ 1:19, Ti ¼
2:22, Td ¼ 1:20, and b ¼ 0. Since s is in the mid range we
can expect moderate differences between the conserva-

tive AMIGO design and the MIGO designs for PID

control. We can also expect that the load rejection for

the PID controller is at least twice as good as for PI

control.

The AMIGO tuning rules (11) give the controller

parameters ki ¼ 0:47, K ¼ 1:12, Ti ¼ 2:40, and
Td ¼ 0:71, and from (13) we get b ¼ 0. The values of the

gain and the integral time are close to those obtained

from the MIGO design. The MIGO design gives the

following parameters for PI control ki ¼ 0:18, K ¼ 0:43,
Ti ¼ 2:43.

Fig. 15 shows the responses of the system to changes

in set point and load disturbances. The figure shows that

the responses obtained by MIGO and AMIGO are quite
similar, which can be expected because of the similarity

of the controller parameters. The integral gains for the

PID controllers are also similar, kiðMIGOÞ ¼ 0:54 and

kiðAMIGOÞ ¼ 0:47.
The response time T63 and the average response time

Tar for the closed loop systems are 5.34 (4.84), 5.22 (4.08)
and 5.82 (5.62) for PID–AMIGO, PID–MIGO and PI



Fig. 15. Responses to a unit step change at time 0 in set point and a unit load step at time 30 for PID controllers designed by AMIGO (full line) and

MIGO for PID (dashed line) and PI (dash-dotted line) for a process with the transfer function GðsÞ ¼ 1=ð1þ sÞ4.
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respectively. The values of Tar are given in brackets. The
average response time is a little shorter because the re-

sponse has an overshoot.

Finally we will consider an example where the

dynamics is dominated by the time delay.
Example 4 (Delay dominated dynamics). Consider a

process with the transfer function

GðsÞ ¼ 1

ð1þ 0:05sÞ2
e�s

Approximating the process with the model (6) gives the

process parameters L ¼ 1:0, T ¼ 0:093 and s ¼ 0:93.
The large value of s shows that the process is delay

dominated. We can thus expect that there are small
differences between PI and PID control, and that MIGO

and AMIGO give similar performances.

The MIGO controller parameters become K ¼ 0:216,
Ti ¼ 0:444, Td ¼ 0:129, and b ¼ 1. The AMIGO tuning

rules (11) give the controller parameters K ¼ 0:242,
Fig. 16. Responses to step changes in set point and load for PID controllers

with the transfer function GðsÞ ¼ e�s=ð1þ 0:05sÞ2.
Ti ¼ 0:470, and Td ¼ 0:132, and from (13) we get
b ¼ 1.

Fig. 16 shows the responses of the system to changes

in set point and load disturbances. The responses of the

MIGO and the AMIGO method are similar. The inte-

gral gains become kiðMIGOÞ ¼ 0:49 and kiðAMIGOÞ ¼
0:51. The response time T63 and the average response

time Tar for the closed loop systems are 1.95 (2.05), 1.88

(1.94) and 2.34 (2.35) for PID–MIGO, PID–AMIGO
and PI respectively. The values of Tar are given in

brackets. The estimates of the response times are thus

quite good.

This is a process where the benefits of using PID

control are small compared to PI control. The MIGO

controller parameters for PI control become K ¼ 0:16
and Ti ¼ 0:37, which gives an integral gain of ki ¼ 0:43.
The responses are shown in Fig. 16.

The control signal in Fig. 16 has some irregularities.

They can be eliminated by filtering the measured signal

by a second order filter. The effective filter time constant

is chosen as Tf ¼ 1=20xgc ¼ 0:1L. The result is shown in

Fig. 17.
designed by AMIGO (full line) and MIGO (dashed line) for a process



Fig. 17. Responses to step changes in set point and load for PID controllers similar to Fig. 16 but the controller is provided with a filter as described

in Section 5.
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7. Conclusions

This paper has revisited tuning of PID controllers

based on step response experiments in the spirit of
Ziegler and Nichols. A large test batch of processes has

been used to develop simple tuning rules based on a few

features of the step response. The processes are

approximated by the KLT model representing first order

dynamics and a time delay.

All processes in the test batch are tuned using the

MIGO design method which maximizes the integral gain

ki subject to robustness constraints. This design method
is suitable for control problems where load disturbance

rejection is the major concern. The design method does

not take set-point changes or noise into account. These

aspects should be treated using set-point weighting, set-

point filtering, and measurement signal filtering.

Guidelines for this have been presented in the paper.

The results show that there are very good correlations

between the controller parameters and the process
parameters of the KLT model for s > 0:5, where s is the
relative time delay s ¼ L=ðLþ T Þ. For smaller values of
s it is possible to find conservative tuning rules, but in

these cases it is possible to find better controller

parameters based on improved modeling. The reason is

that the simple KLT model approximates high order

dynamics with a time delay. It is questionable if more

accurate models can be obtained based on normal step
response measurement.

The conservative AMIGO tuning rules for the design

parameter M ¼ 1:4 are given by Eq. (11). They are very

close to the MIGO parameters obtained for the true

KLT model. For other processes they may increase the

maximum sensitivity up to 15%. The formula works for

a full range of process dynamics including processes

with integration and pure time delay processes.
The analysis has provided lots of insight, for example

that derivative action only gives marginal improvements

for s close to one. For s ¼ 0:5 the integral gain can be
doubled by introducing derivative action. For smaller

values of s the differences can be very significant.

Several rules of thumb are also developed. For

example the gain crossover frequency satisfies the
inequality xgcLP 0:5, which corresponds to the funda-

mental limitations for a system with time delay L. The
inequality is very close to an equality for s > 0:5, buy
very far from equality for small s.

It is common practice to base tuning rules for PID

control on the KLT process (P1). The result of this paper
shows that this may be misleading. The results for PI

control show that designs based on P1ðsÞ give too high
gain for many of the other processes in the test batch. It

is better to base the designs on P2ðsÞ for PI control. For
PID control designs based on P1ðsÞ seem to work quite

well for s > 0:5. For smaller values of s designs based on
P1ðsÞ can, however, be extremely conservative.
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