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Abstract

The problem of robust energy-to-peak "ltering for linear systems with convex bounded uncertainties is investigated in this paper.
The main purpose is to design a full order stable linear "lter that minimizes the worst-case peak value of the "ltering error output
signal with respect to all bounded energy inputs, in such a way that the "ltering error system remains quadratically stable. Necessary
and su$cient conditions are formulated in terms of linear Matrix Inequalities * LMIs, for both continuous- and discrete-time
cases. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the Kalman "ltering theory has been introduced
(Kalman, 1960) much e!ort has been devoted to the
problem of estimating an output error signal (linear com-
bination of the states) through a "lter structure such that
a guaranteed performance criteria is minimized in an
estimation error sense. In this setting, the H

2
"ltering

design arises as an e$cient strategy whenever the noise
input is assumed to have a known power spectral density.
In the literature, the H

2
"ltering problem has been faced

using Riccati-based approaches (Shaked & de Souza,
1994; Xie & de Souza, 1995), and more recently by means
of linear matrix inequalities (LMIs) (Khargonekar,
Rotea & Baeyens, 1996; Palhares & Peres, 1998).

In the case where there exists insu$cient statistical
information about the noise input, two strategies can be
employed. The "rst one is the well-known H

=
"ltering

design, in which the input is supposed to be an energy

signal and the energy-to-energy gain is minimized, or
simply bounded by a prescribed value. Many papers have
dealt with H

=
"lter design (as well as with the mixed

H
2
/H

=
"ltering problem), even when uncertain para-

meters are taken into account. Basically, the solutions are
obtained through Riccati-like equation (Takaba
& Katayama, 1996; Park & Kailath, 1997; Xie & de
Souza, 1995), or LMIs (Khargonekar et al., 1996; Li
& Fu, 1997; Palhares & Peres, 1998; Geromel, Bernus-
sou, Garcia & de Oliveira, 1998; Geromel & de Oliveira,
1998; Palhares & Peres, 1999).

The second approach is the peak-to-peak "ltering de-
sign, that is, the problem of "nding a linear "lter which
minimizes the worst-case peak value of the "ltering
error for all bounded peak values of the input signals
(Nagpal, Abedor & Poolla, 1996; Vincent, Abedor, Nag-
pal & Khargonekar, 1996; Voulgaris, 1996). In other
words, the maximal peak-to-peak gain of the "ltering
error system is used as performance criterion (l

1
norm

for discrete-time, L
1

norm for continuous-time systems).
In the uncertain case, an algorithm for the guaranteed
l
1

norm computation has been proposed in Fialho and
Georgiou (1995) (see also the references therein).

On the other hand, the energy-to-peak gain "ltering
problem has received less attention. This kind of perfor-
mance criterion has been discussed in Wilson (1989),
where it is shown that the energy-to-peak gain can be
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computed from the controllability Grammian and the
state-space representation of the system. In control sys-
tem design, the problem of "nding a controller such that
the closed-loop gain from L

2
to L

=
(l

2
to l

=
) is below

a prespeci"ed level is called the generalized H
2

control
problem, since this optimization criterion reduces to the
usual H

2
norm when the controlled output is a scalar

(see Rotea (1993) and also Scherer (1995) for details). The
objective of the L

2
}L

=
(l

2
}l

=
) "lter design problem is

to minimize the peak value of the estimation error for all
possible bounded energy disturbances. In this sense, the
energy-to-peak "ltering can be viewed as a deterministic
formulation of the Kalman "lter (see Grigoriadis & Wat-
son, 1997). This strategy has been used for both full and
reduced order "lter design through LMIs (Grigoriadis
& Watson, 1997; Watson & Grigoriadis, 1997) and also
as a criterion for model reduction (Grigoriadis, 1997).
However, to the authors' knowledge, only precisely
known systems have been addressed.

In this paper, an LMI solution to the guaranteed
energy-to-peak "ltering problem is proposed for both
continuous-time and discrete-time systems. Using as
starting point the state-space energy-to-peak gain com-
putation from Wilson (1989) and standard output feed-
back control results of Scherer, Gahinet & Chilali (1997),
necessary (in the sense that the "ltering error system is
quadratically stable) and su$cient conditions for the
guaranteed L

2
}L

=
full order "ltering design are pro-

vided in terms of LMIs for continuous-time systems
with uncertainties in convex bounded domains. It is
important to stress that several algebraic manipulations
and appropriate change of variables are needed in order
to obtain a convex formulation for the robust "ltering
problem. A similar strategy is used to provide equivalent
results for discrete-time systems.

The contributions can be summarized as follows. The
paper presents an LMI formulation for linear "lter
design, which can be immediately extended to handle
the problem of robust "ltering for linear systems with
polytope-type uncertainties. In this context, the energy-
to-peak gain is introduced as optimization criterion,
allowing the guaranteed cost robust "lter design to be
performed through convex programming entirely based
on LMIs. Continuous-time as well as discrete-time un-
certain linear systems with polytopic uncertainty are
addressed; in both cases, the problems to be solved
are convex optimization problems.

The paper is organized as follows: in the next section
the robust "ltering problem with guaranteed energy-to-
peak performance is stated. In Section 3, the robust
L

2
}L

=
(continuous-time) and l

2
}l

=
(discrete-time)

guaranteed "ltering designs are addressed; the existence
and parametrization of a robust "lter is established
in terms of necessary and su$cient LMIs conditions.
Numerical examples and "nal remarks conclude the
paper.

1.1. Notation

The notation used in this paper is as follows: d(t)
indicates x5 (t) for continuous-time systems and x(t#1)
for discrete-time systems; ¸

2
denotes both L

2
(continu-

ous-time) and l
2

(discrete-time), as well as ¸
=

is used
for both L

=
(continuous-time) and l

=
(discrete-time)

spaces. The boldface characters I and 0 denote, respec-
tively, the identity and the null matrices of convenient
sizes.

As discussed in Wilson (1989), Ln
p
[0,R) denotes the

Lebesgue space of measurable functions f from [0,R) to
Rn which satisfy

DD f DDL
p,r
OG

(:=
0
DD f (t) DDp

r
dt)1@p(R for 14p(R,

sup
t

DD f (t) DD
r
(R for p"R,

(1)

where the usual vector r-norm on Rn, i.e., DD ) DD
r
is de"ned

as

DD f DD
r
OGA

n
+
i/0

D f
i
(t)DrB

1@r
for 14r(R,

max
i|*1,n+

D f
i
(t)D for r"R.

(2)

Now, considering a discrete-time setting, Zn denotes the
space of Rn-valued sequences de"ned on the time set
M0, 1, 2,2N; l

p
denotes the set of all sequences m in

Zn which satisfy

DDmDDl
p,r
OGA

=
+
t/0

DDm(t)DDp
rB

1@p
(R for 14p(R,

sup
t

DDm(t)DD
r
(R for p"R.

(3)

In Wilson (1989), explicit formulas for the induced
norm of the bounded linear operator G :Ln1

2,r
PLn2

=,r
for

r"2 and R can be found. In this paper, only the
Euclidean norm (r"2) is considered; to avoid cumber-
some notation, L

p
(l

p
) is used instead of L

p,2
(l

p,2
).

2. Preliminaries

Consider the linear time-invariant system given by

(S) G
dx(t)"Ax(t)#Bw(t), x(0)"x

0
y(t)"Cx(t)#Dw(t),

z(t)"¸x(t),

where x(t) : RPRn is the state vector, y(t) : RPRr is the
measurement output vector, w(t) :RPRm is the noise
signal vector (including process and measurement noises)
and z(t) :RPRp is the signal to be estimated. The initial
state condition x

0
is considered to be known and,

without loss of generality, assumed to be zero (see
Khargonekar et al., 1996).
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1This de"nition is a direct extension of the well-known concept of
quadratic stability with a prescribed c'0 disturbance attenuation in
the robust H

=
control theory (Xie, 1996; Peres et al, 1993).

The system matrices are assumed to be unknown (un-
certain) but belonging to a known convex compact set of
polytope type, i.e.,

(A,B,C,D,¸)3D,

where

DOG(A,B,C,D,¸)D(A,B,C, D,¸)

"

i
+
i/1

q
i
(A

i
,B

i
,C

i
, D

i
,¸

i
); q

i
50;

i
+
i/1

q
i
"1H (4)

and V( ) ) denotes the set of i, i"1,2,i vertices of the
above convex polytope. This kind of convex bounded
parameter uncertainty has been fairly investigated (see,
for instance, Peres, Geromel & Bernussou (1993), Pal-
hares, Takahashi & Peres (1997) and references therein).

The following assumption is made:

(A-i) The system (S) is quadratically stable.

This assumption guarantees the boundedness of the
estimation error, since the asymptotic stability of the
error dynamics depends also on the states of the
system (S).

The purpose of the robust "ltering problem is to "nd
an estimate z( (t) of the signal z(t) such that a guaranteed
performance criterion is minimized in an estimation error
sense. For that, the aim is to design an admissible "lter,
i.e., an asymptotically stable linear "lter, described by

(F)G
dx( (t)"A

&
x( (t)#B

&
y(t), x( (0)"0,

z( (t)"C
&
x( (t),

where x( (t) : RPRn& . Moreover, the order of the "lter is
assumed to be equal to the order of the system (n

&
"n).

A new augmented state vector can be de"ned

x8 (t)OC
x(t)

x( (t)D
such that the "ltering error dynamics is given by

(SF)G
dx8 (t)"AI x8 (t)#BI w(t), x8 (0)"0

z8 (t)"CI x8 (t),

where the "ltering error output signal is denoted by
z8 (t)Oz(t)!z( (t), with

AI "C
A 0

B
&
C A

&
D, BI "C

B

B
&
DD, CI "[¸ !C

&
]. (5)

The guaranteed cost "ltering design problem to be inves-
tigated in this paper is:

(P=
2
) The robust ¸

2
}¸

=
xltering problem: determine

a stable linear xlter (F) ensuring a prespecixed

energy-to-peak gain, i.e.,

sup
0Ew|L2

DDz8 DD
L=

DDwDD
L2

(c, ∀(A,B,C, D,¸)3D (6)

such that the xltering error system (SF) remains
quadratically stable with the ¸

2
}¸

=
gain limited

by c.

If the minimum value of c such that problem (P=
2
) is

solvable is achieved, the optimal (under the assumption
that system (S) is quadratically stable) guaranteed
¸
2
}¸

=
"lter is obtained.

3. L
2
}L

=
guaranteed 5ltering design

The continuos- and discrete-time state-space charac-
terizations of the energy-to-peak gain presented next can
be viewed as the starting point for the main results of this
section. First, consider (A,B,C, D,¸)3D arbitrary but
"xed.

Lemma 3.1. Let c'0 be given and assume that the xlter-
ing error system is stable. The ¸

2
}¸

=
gain of (SF ) is

limited by c, i.e.,

sup
0Ew|L2

DDz8 DD
L=

DDwDD
L2

(c (7)

if and only if there exists P"P@'0, P3R2nC2n such that

CI PCI @(c2I, (8)

#(P)(0, (9)

where #(P)OAI P#PAI @#BI BI @ for continuous-time sys-
tems or #(P)OAI PAI @!P#BI BI @ for discrete-time systems.

Proof. See Wilson (1989), Grigoriadis and Watson
(1997), Skelton, Iwasaki and Grigoriadis (1997). h

De5nition 3.1. The "ltering error system (SF) is said to
be quadratically stable1 with the ¸

2
}¸

=
gain limited by

c if and only if there exists P"P@'0, P3R2nC2n satisfy-
ing (8) and (9) for all (AI ,BI ,CI )3D.

The following theorem plays an important role in the
robust ¸

2
}¸

=
"ltering design:

Theorem 3.1. Consider assumption (A-i) and let oOc2'0
be given; (F) is an admissible xlter assuring (7) if and only

R.M. Palhares, P.L.D. Peres / Automatica 36 (2000) 851}858 853



C
A@S

11
#S

11
A#S

12
B
&
C#C@B@

&
S@
12

A#P
11

A@S
11

#P
11

C@B@
&
S@
12

#P
12

A@
&
S@
12

B@S
11

#D@B@
&
S@
12

A@#S
11

AP
11

#S
12

B
&
CP

11
#S

12
A

&
P@
12

S
11

B#S
12

B
&
D

AP
11

#P
11

A@ B

B@ !I D(0.

(22)

C
A@S

11
#S

11
A#ZC#C@Z@ A@P~1

11
#S

11
A#ZC#ZK P~1

11
P~1
11

A#A@S
11

#C@Z@#P~1
11

ZK @ A@P~1
11

#P~1
11

A

B@S
11

#D@Z@ B@P~1
11

S
11

B#ZD

P~1
11

B

!I D(0 (25)

if there exist R"R@'0, R3RnCn, X"X@'0,
X3RnCn, M3RnCn, N3RpCn and Z3RnCr satisfying

"(¸,R,X,N, o)'0, (10)

!(A,B,C,D, R,X, M,Z)'0, (11)

where

"(¸,R,X,N, o)OC
oI ¸ ¸!N

¸@ R X

¸@!N@ X X D (12)

and

!(A,B, C,D, R, X,M, Z)O

C
!A@R!RA!ZC!C@Z@ !A@X!RA!ZC!M !RB!ZD

!A@R!XA!C@Z@!M@ !A@X!XA !XB

!B@R!D@Z@ !B@X I D
(13)

for continuous-time systems or

!(A,B, C,D, R, X,M, Z)O

C
R X RA#ZC RA#ZC#M RB#ZD

X X XA XA XB

A@R#C@Z@ A@X R X 0

A@R#C@Z@#M@ A@X X X 0

B@R#D@Z@ B@X 0 0 I D
(14)

for discrete-time systems.

Proof (Continuous-time case). (Necessity) Considering
assumption (A-i), let oOc2'0 be given and assume

there exists a stable linear "lter (F) such that (7) is
guaranteed. Thus, from Lemma 3.1, there exists
P"P@'0 satisfying (8) and (9). Let P and its inverse,
denoted by S, be partitioned as

POC
P

11
P

12
P@

12
P

22
D, SOC

S
11

S
12

S@
12

S
22
D'0. (15)

From the identity PS"I it follows that

C
P
11

S
11

#P
12

S@
12

P
11

S
12

#P
12

S
22

P@
12

S
11

#P
22

S@
12

P@
12

S
12

#P
22

S
22
D"C

I 0

0 ID (16)

with

P
11

'0, S
11

'0 (17)

and the identity I!S
11

P
11

"S
12

P@
12

(or equivalently
I!P

11
S
11

"P
12

S@
12

) can be constructed such that
S
12

and P
12

are square and nonsingular matrices (see
Scherer et al., 1997; Chilali & Gahinet, 1996) and thus
I!S

11
P
11

is invertible. Therefore, de"ne the nonsingu-
lar matrices

JOC
S
11

I

S@
12

0D, JIOC
I P

11
0 P@

12
D, (18)

where PJ"JI holds and also

JK
1
"diag[J, I]3R(2n`m)C(2n`m),

JK
2
"diag[I,J]3R(p`2n)C(p`2n).

(19)

Now, from Schur's complement (see Albert, 1969), it
follows that the LMIs (8) and (9) are, respectively,
equivalent to

C
oI CI P

PCI @ P D'0 (20)

and

C
AI P#PAI @ BI

BI @ !ID(0. (21)

Let the LMI (21) be pre- and postmultiplied by
JK @
1

and JK
1
, respectively, such that

De"ne the change of variable,

ZOS
12

B
&

and ZK OS
12

A
&
P@
12

(23)

and construct the transformation

Q
1
Odiag[I,P~1

11
, I]. (24)

Now, pre- and postmultiplying (22) by Q
1
, with (23), one

gets
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2Note that the constraint [R
X

X
X
]'0 or, equivalently,

R!X"S
11

!P~1
11

'0 is embedded in the LMI (10).

and a new change of variables de"ned by

ROS
11

, XOP~1
11

, MOZK X (26)

yields the LMI (11).
Similar manipulations can be performed in the LMI

(20): pre- and postmultiplying (20) by JK @
2

and JK
2
, respec-

tively, taking into account the change of variable

ZI OC
&
P@
12

(27)

and pre- and postmultiplying by the transformation

Q
2
Odiag[I, I,P~1

11
] (28)

one gets

C
oI ¸ ¸!ZI P~1

11
¸@ S

11
P~1
11

¸@!P~1
11

ZI @ P~1
11

P~1
11

D'0. (29)

Using (26) and de"ning another change of variable given
by

NOZI X (30)

the LMI (10) follows immediatly.
(Su$ciency). Assume there exist feasible matrices R, X,

M, N and Z satisfying (10) and (11). Then, the su$cient
part of the proof follows in a straightforward way from
the change of variables (30) and (26) with R!X'0,
implying that I!S

11
P

11
is nonsingular2 and the ident-

ity I!S
11

P
11

"S
12

P@
12

guarantees that the matrices
P@
12

and S
12

are invertible such that J and JI de"ned in
(18) are nonsingular. Taking into account matrices
P@
12

and S
12

, (23) and (27) can be uniquely solved for the
"lter matrices A

&
, B

&
, C

&
and thus the equivalences be-

tween (25) and

C
J@AI JI #JI @AI @J J@BI

BI @J !ID(0 (31)

and between (29) and

C
oI CI JI
JI @CI JI @JD'0 (32)

are established.
Since J is invertible, inequalities (8) and (9) can be

obtained by Schur's complement after pre- and postmul-
tiplying (31) and (32), respectively, by diag[J~1, I] and
diag[I,J~1]. Hence, the "lter constructed guarantees the

bound DDz8 DDL
=
(JoDDwDDL

2
.

(Discrete-time Case). (Necessity) The LMI (11) is es-
tablished applying the Schur complement to (9), yielding

C
P AI P BI

PAI @ P 0

BI @ 0 ID'0. (33)

Further, de"ning

JK "diag[J,J, I]3R(4n`m)C(4n`m) (34)

with J de"ned in (18), pre- and postmultiplying (33) by JK @
and JK , respectively, and taking into account the change of
variables (23), it follows that

C
S
11

I S
11

A#ZC

I P
11

A

A@S
11

#C@Z@ A@ S
11

P
11

A@S
11

#P
11

C@Z@#ZK @ P
11

A@ I

B@S
11

#D@Z@ B@ 0

2 S
11

AP
11

#ZCP
11

#ZK S
11

B#ZD

2 AP
11

B

2 I 0

2 P
11

0

2 0 I D'0

.

(35)

Now, pre- and postmultiplying the LMI (35) by

diag[I,P~1
11

, I,P~1
11

, I]

and considering the change of variables (26), inequality
(11) is obtained.

(Suzciency). Follows in a straightforward way. h

Remark 3.1. It must be emphasized that !( ) ) and "( ) )
are a$ne with respect to all the matrices involved, allow-
ing the immediate extension of the results to deal with
uncertain systems in convex bounded domains, requiring
the investigation of the LMI at the vertices of the
uncertainty polytope only. Furthermore, standard
LMI programming tools can be used to test the exist-
ence of admissible "lters.

From the above results, the next theorem provides
a parametrization of admissible ¸

2
}¸

=
"lters.

Theorem 3.2. Any matrices R, X, M, N and Z satisfying
Theorem 3.1 yield admissible ¸

2
}¸

=
xlters (F) given by

A
&
"(X!R)~1M,

B
&
"(X!R)~1Z,

C
&
"N.

(36)
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Proof. From (23) and (27), it follows that
A

&
"S~1

12
ZK (P@

12
)~1, C

&
"ZI (P@

12
)~1, B

&
OS~1

12
Z and the

transfer matrix of the measurement output y(t) to the
estimation output z( (t) of the "lter (F), is given by

H
z( y

(f)"ZI (f(S
12

P@
12

)!ZK )~1Z, (37)

where f denotes both the continuous- and discrete-time
frequency domain variable. Applying (16), (37) yields

H
z( y

(f)"ZI (f(I!S
11

P
11

)!ZK )~1Z. (38)

Finally, with the change of variables de"ned in (26) and
(30), the transfer matrix of the "lter (F)

H
z( y

(f)"N(f(X!R)!M)~1Z (39)

is obtained. h

In order to extend the results of Theorem 3.1 to the
uncertain case, de"ne the following sets:

TOM(R,X,M,N, Z,o) satisfying Theorem 3.1

∀(A,B,C, D,¸)3DN, (40)

T
v
O M(R,X,M,N,Z,o) satisfying Theorem 3.1

∀(A
i
,B

i
, C

i
, D

i
,¸

i
)3V(D)N. (41)

From the a$nity of the above LMIs, it is clear that the
equivalence T,T

v
holds, implying that it su$ces to

verify the constraints only at the vertices of the polytope
of uncertain parameters. The next theorem characterizes
the robust ¸

2
}¸

=
"lter design for a prescribed positive

level c.

Theorem 3.3. Consider assumption (A-i) and let
o"c2'0 be given. The problem (P=

2
) is solvable if and

only if there exist R"R@'0, R3RnCn, X"X@'0,
X3RnCn, M3RnCn, N3RpCn and Z3RnCr such that

(R,X,M,N, Z,o)3T
v
. (42)

In the azrmative case, the admissible xlter (F) is given
by (36).

Proof. The proof follows in a straightforward way from
the proof of Theorem 3.1 and De"nition 3.1 together with
the equivalence T,T

v
. h

Therefore, the optimal ¸
2
}¸

=
guaranteed "ltering

cost is stated in the following corollary by means of an
LMI optimization procedure.

Corollary 3.1. The solution of

min
R,X,M,N,Z, o

o

s.t. (R,X,M,N,Z,o)3T
v

(43)

is such that Jo is the minimum ¸
2
}¸

=
guaranteed xltering

cost, i.e.,

sup
0Ew|L2

DDz8 DD
L=

DDwDD
L2

(Jo, ∀(A,B, C,D,¸)3D.

The matrices of the admissible xlter are given by (36).

Proof. The proof follows in a straightforward way. h

4. Examples

Example 1. Consider the following second-order reson-
ant system (borrowed from Grigoriadis and Watson
(1997)):

x5 (t)"C
0 11

!11 !2.2#aDx(t)#C
0 0

1#b 0DB(t),
y(t)"[0 1]x(t)#[0 1#b]w(t), (44)

z(t)"[1 0]x(t).

As pointed out in Grigoriadis and Watson (1997), for
a"0 and b"0, this system model corresponds to a vi-
brating system with natural frequency u

n
"11 rad/s and

damping ratio f"0.1. The position measurement y(t) is
corrupted by noise and the objective is to estimate a velo-
city signal z(t).

Assuming that the input disturbance is of bounded
energy type and that the aim is to minimize the output
peak value, the optimalL

2
}L

=
"ltering level is given by

cH"0.4654 with the "lter matrices

A
&
"C

!0.4506 10.9928

!10.9267 !1.9662D, B
&
"C

0.0056

0.2715D,
C

&
"[0.7956 !0.0165]. (45)

Considering other scenery, i.e., white noise input distur-
bances, the standard H

2
"ltering design (see, for

example, Shaked and de Souza (1994)) furnishes as opti-
mal cost JH"0.4654. As pointed out in Bernstein (1992)
the optimal H

2
"ltering cost is an upper bound to the

optimal L
2
}L

=
"ltering cost: cH4JH.

Now consider (44) as an uncertain system with
!14a41 (meaning that f3[!0.1455; !0.0545])
and 04b41 (i.e., the amplitude of the bounded energy
input can vary), yielding an uncertain systems of i"4
vertices. The optimal L

2
}L

=
guaranteed "ltering cost

obtained is cH"1.2034, with the robust "lter described
by

A
&
"C

!0.2673 10.9894

!10.9791 !1.2951D, B
&
"C

0.0078

0.6434D,
C

&
"[0.5625 !0.0068]. (46)
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Table 1
Computed L

2
}L

=
"ltering costs for the 4 vertices and a"b"0

(nominal system) with the robust "lter (46) connected to the uncertain
system (44)

a"!1 a"!1 a"1 a"1 a"b"0
b"0 b"1 b"0 b"1

c 0.4209 0.8419 0.6017 1.2034 0.4802

Table 2
Computed l

2
}l

=
"ltering costs at vertices i, i"1,2, 8 with the

robust "lter (48) and (49) connected to the uncertain system (47)

g"0.90 g"0.90 g"0.90 g"0.90
q"0.0079 q"0.0079 q"0.0794 q"0.0794
/"0 /"1 /"0 /"1

c 0.8080 0.8056 1.0993 0.8863

g"0.99 g"0.99 g"0.99 g"0.99
q"0.0079 q"0.0079 q"0.0794 q"0.0794
/"0 /"1 /"0 /"1

c 1.0096 0.9429 6.1795 5.0007

Table 1 shows the calculated L
2
}L

=
"ltering costs for

the four vertices and also a"b"0 (nominal system)
considering the robust "lter (46) connected to the uncer-
tain system (44) (the e!ectiveness of the computed
cH guaranteed bound is apparent).

Example 2. Consider the following discrete-time linear
system (also investigated in Rauch, Tung and Striebel
(1965)), with w(t)3l

2
:

x(t#1)"C
g 1 0.5 0.5

0 g 1 1

0 0 g 0

0 0 0 0.606Dx(t)#C
0

0

0

qDw(t),

y(t)"[1 / 0 0]x(t)#w(t), z(t)"[1 1 0 0]x(t).

(47)

Assume that some parameters are unknown but
bounded, i.e.,

0.904g40.99, 0.00794q40.0794, 04/41.

The optimal l
2
}l

=
guaranteed "ltering cost is given by

cH"23.9745 with the "lter matrices

A
&
"C

0.1181 1.2908 !60.1624 0.9150

!0.0403 0.8707 1.1952 1.6683

0 !0.0009 0.9644 0.0128

!0.0014 0.0063 1.3000 0.6042D,

B
&
"C

0.8605

0.0416

0

0.0014D, (48)

C
&
"[0.9687 !0.8277 !12.2220 !1.2444]. (49)

Table 2 presents the calculated l
2
}l

=
"ltering costs

for the eight vertices with the robust "lter (48) and (49)
connected to the uncertain system (47); once again,
cH characterizes a guaranteed "ltering cost.

5. Conclusions

The robust "ltering problem with guaranteed energy-
to-peak performance for continuous- and discrete-time
uncertain linear systems in convex bounded domains has
been addressed through an LMI approach. Necessary
and su$cient conditions are obtained for full order "lter-
ing, allowing the problem to be solved through convex
optimization procedures (global convergence, e$cient
algorithms).
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