’

modified PID control schemes have proved their usefulness in providing satisfactory
control, although they may not provide optimal control in many given situations.

Outline of the chapter. Section 10-1 has presented introductory material for the
chapter. Section 10-2 deals with tuning methods for the basic PID control, commonly

- known as Ziegler-Nichols tuning rules. Section 10-3 discusses modified PID control

schemes, such as PI-D control and I-PD control. Section 10-4 introduces two-degrees-
of-freedom PID control schemes. Section 10-5 introduces the concept of robust control
using a two-degrees-of-freedom control system as an example.

10-2 TUNING RULES FOR PID CONTROLLERS

Figure 10-1
PID control of a
plant.
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PID control of plants. Figure 10-1 shows a PID control of a plant. If a mathe-
matical model of the plant can be derived, then it is possible to apply various design -
techniques for determining parameters of the controller that will meet the transient and
steady-state specifications of the closed-loop system. However, if the plant is so com-
plicated that its mathematical model cannot be easily obtained, then analytical ap-
proach to the design of a PID controller is not possible. Then we must resort to
experimental approaches to the tuning of PID controllers.

The process of selecting the controller parameters to meet given performance spec-
ifications is known as controller tuning. Ziegler and Nichols suggested rules for tuning
PID controllers (meaning to set values K, T;, and 7,) based on experimental step re-
sponses or based on the value of K, that results in marginal stability when only the pro-
portional control action is used. Ziegler-Nichols rules, which are presented in the
following, are very convenient when mathematical models of plants are not known.
(These rules can, of course, be applied to the design of systems with known mathemat-
ical models.)

Ziegler-Nichols rules for tuning PID controllers. Ziegler and Nichols proposed
rules for determining values of the proportional gain K, integral time 7, and deriva-
tive time 7, based on the transient response characteristics of a given plant. Such de-
termination of the parameters of PID controllers or tuning of PID controllers can be
made by engineers on site by experiments on the plant. (Numerous tuning rules for PID
controllers have been proposed since the Ziegler—Nichols proposal. They are available
in the literature. Here, however, we introduce only the Ziegler—Nichols tuning rules.)

There are two methods called Ziegler—Nichols tuning rules. In both methods, they
aimed at obtaining 25% maximum overshoot in step response (see Figure 10-2).

First Method. In the first method, we obtain experimentally the response of the -
plant to a unit-step input, as shown in Figure 10-3. If the plant involves neither inte-

Plant

Y

A

1
| K (1 + —+T,
p( +T|‘-" dS)
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Figure 10-2
Unit-step response
curve showing 25%
maximum overshoot.

Figure 10-3

e 10-4
aped response

Unit-step response of a plant.

(1) |

25%

A ‘ t
B ——

- Plant —
u(t) [40)]

y

grator(s) nor dominant complex-conjugate poles, then such a unit-step response curve
may look like an S-shaped curve, as shown in Figure 10-4. (If the response does not ex-
hibit an S-shaped curve, this method does not apply.) Such step-response curves may be
generated experimentally or from a dynamic simulation of the plant.

The S-shaped curve may be characterized by two constants, delay time L and time
constant 7. The delay time and time constant are determined by drawing a tangent line
at the inflection point of the S-shaped curve and determining the intersections of the
tangent line with the time axis and line ¢(f) = K, as shown in Figure 10-4. The transfer
function C(s)/U(s) may then be approximated by a first-order system with a transport
lag as follows:

Cly) _ ket
Us) Ts+1
Ziegler and Nichols suggested to set the values of K, T;, and Ty according to the for-

mula shown in Table 10--1.
Notice that the PID controller tuned by the first method of Ziegler—Nichols rules gives

20)] Ar
Tangent line at
inflection point
K /
0 Tt
—7 L T ——]
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Table 10-1 Ziegler—Nichols Tuning Rule Based on Step Response of Plant (First

Method)
Typeof .
Controller K, T; . T,
P % ® 0
T L
PI 0.9 Z 0—3 0
T
PID 1.2 7 2L 0.5L

1
G.(s) = K,,(l + ~T,_s + Tds)

T 1
=12= + —_— .
12L(1 2Ls +05Ls)

12

+ -

(+3)
N

Thus, the PID controller has a pole at the origin and double zeros ats = —1/L.

=0.6T

Second method. In the second method, we first set 7; = « and Tz = 0. Using the
proportional control action only (see Figure 10-5), increase K, from 0 to a critical value
K where the output first exhibits sustained oscillations. (If the output does not exhibit
sustained oscillations for whatever value K, may take, then this method does not ap-
ply.) Thus, the critical gain K. and the corresponding period P, are experimentally de-
termined (see Figure 10-6). Ziegler and Nichols suggested that we set the values of the
parameters K, T;, and T, according to the formula shown in Table 10-2.

) u(t) 0
Figure 10-5 K, ! Plant —
Closed-loop system
with a proportional

controller.
c(t) y
'l<—Pcr——v.‘
Figure 10-6 0 : \ !
Sustained oscillation

with period Pe,.
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Table 10-2 Ziegler-Nichols Tuning Rule Based on Critical Gain KCr and Critical
Period P (Second Method)

Type of
Controller K, T; Ty
P 0.5K 0 0
PI 0.45K. —1-P 0
. <r 1 '2 cr
PID 0.6K 0.5P 0.125P

Notice that the PID controller tuned by the second method of Ziegler—Nichols rules
gives

G.s) = < + TL + Tds)

l

= 0.6KC,(1 + + 0.125 Pc,s)

1
0.5Ps
4\2
[+7)
S

Thus, the PID controller has a pole at the origin and double zeros at s = —4/P.

= 0.075K P,

Comments. Ziegler—Nichols tuning rules (and other tuning rules presented in the
literature) have been widely used to tune PID controllers in process control systems
where the plant dynamics are not precisely known. Over many years, such tuning rules
proved to be very useful. Ziegler-Nichols tuning rules can, of course, be applied to
plants whose dynamics are known. (If plant dynamics are known, many analytical and
graphical approaches to the design of PID controllers are available, in addition to
Ziegler—Nichols tuning rules.)

If the transfer function of the plant is known, a unit-step response may be calculated
or the critical gain K., and critical period P, may be calculated. Then, using those calcu-
lated values, it is possible to determine the parameters K, T;, and T, from Table 10-1 or
10-2. However, the real usefulness of Ziegler-Nichols tuning rules (and other tuning
rules) becomes apparent when the plant dynamics are not known so that no analytical
or graphical approaches to the design of controllers are available.

Generally, for plants with complicated dynamics but no integrators, Ziegler-Nichols
tuning rules can be applied. However, if the plant has an integrator, these rules may not
be applied in some cases. To illustrate such a case where Ziegler—Nichols rules do not
apply, consider the following case: Suppose that a unity-feedback control system has a
plant whose transfer function is ’
s+ +3)
s(s+ 1) +95)

Because of the presence of an integrator, the first method does not apply. Referring to

G(s) =
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EXAMPLE 10-1

Figure 10-7
PID-controlled
system,
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Figure 10-3, the step response of this plant will not have an $-shaped response curve;
rather, the response increases with time. Also, if the second method is attempted (see
Figure 10-5), the closed-loop system with a proportional controller will not exhibit sus-
tained oscillations whatever value the gain K, may take. This can be seen from the fol-
lowing analysis. Since the characteristic equation is
s+ 1D(s+5)+K,(s+2)(s+3)=0
or
s+ (6+ K,)5* + (5+5K,)s + 6K, =0

the Routh array becomes

s 1 5+ 5K,
52 6 + K, 6K,
, 30+ 29K, + 5K :
s 0
. 6+K,
s° 6K,

The coefficients in the first column are positive for all values of positive K. Thus, in
the present case the closed-loop system will not exhibit sustained oscillations and,
therefore, the critical gain value K does not exist. Hence, the second method does not
apply.

If the plant is such that Ziegler—Nichols rules can be applied, then the plant with a
PID controller tuned by Ziegler—Nichols rules will exhibit approximately 10% ~ 60%
maximum overshoot in step response. On the average (experimented on many differ-
ent plants), the maximum overshoot is approximately 25%. (This is quite understand-
able because the values suggested in Tables 10-1 and 10-2 are based on the average.)
In a given case, if the maximum overshoot is excessive, it is always possible (experi-
mentally or otherwise) to make fine tuning so that the closed-loop system will exhibit
satisfactory transient responses. In fact, Ziegler-Nichols tuning rules give an educated
guess for the parameter values and provide a starting point for fine tuning.

Consider the control system shown in Figure 10-7 in which a PID controller is used to control
the system. The PID controller has the transfer function
1
G.(s) = Kp(l + }’—s' + T,,s)

Although many analytical methods are available for the design of a PID controller for the pre-
sent system, let us apply a Ziegler-Nichols tuning rule for the determination of the values of pa-
rameters K,, T, and 7, Then obtain a unit-step response curve and check to see if the designed
system exhibits approximately 25% maximum overshoot. If the maximum overshoot is excessive
(40% or more), make a fine tuning and reduce the amount of the maximum overshoot to ap-
proximately 25%.

R(s) G 1 C(s)
£08 e v s >
PID
Controller

Chapter 10 / PID Controls and Introduction to Robust Control




Since the plant has an integrator, we use the second method of Ziegler—Nichols tuning rules.
By setting T; = « and T4 = 0, we obtain the closed-loop transfer function as follows:
Cls) _ - Ky
R(s) s(s+1)(s+35)+K,
The value of K, that makes the system marginally stable so that sustained oscillation occurs can
be obtained by use of Routh’s stability criterion. Since the characteristic equation for the closed-
loop system is

-

S +652+55+K,=0

the Routh array becomes as follows: -

5 1 5
s 6 K,
4 WK

6
s° K,

Examining the coefficients of the first column of the Routh table, we find that sustained oscilla-
tion will occur if K, = 30. Thus, the critical gain K is

K, =30
With gain K}, set equal to K ( = 30), the characteristic equation becomes
S+652+55+30=0

To find the frequency of the sustained oscillation, we substitute s = jw into this characteristic
equation as follows:

(joP® + 6(jw)* + 5(jw) +30 =0
or
65— &) +jo5 - 0)=0

from which we find the frequency of the sustained oscillation to be w? = § lc')r @ = V/5.Hence, the
period of sustained oscillation is

Referring to Table 10-2, we determine K, T;, and T} as follows:
K, = 06K, =18
T; = 0.5P, = 1.405
Ts = 0.125P, = 0.35124

The transfer function of the PID controller is thus

1
G.s) = Kp(l + 7,; + Tdé‘)

1
1.405s

_ 6.3223(s + 1.4235)%
s

= 18(1 + + 0.35124s)
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Figure 10-8

Block diagram of the
system with PID con-
troller designed by use
of Ziegler—Nichols
tuning rule (second
method).
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R(s) 63223 (s + 142357 | 1 Ce)
5 T sts+ D(s+5) g
PID Controller

The PID controller has a pole at the origin and double zero ats = — 1.4235. A block diagram of
the control system with the designed PID controller is shown in Figure 10-8.
Next, let us examine the unit-step response of the system. The closed-loop transfer function
C(s)/R(s) is given by
Cls) 6.322352 + 185 + 12.811
R(s) s*+ 65+ 11.32235% + 185 + 12.811

The unit-step response of this system can be obtained easily with MATLAB. See MATLAB Pro-
gram 10-1. The resulting unit-step response curve is shown in Figure 10-9. The maximum over-
shoot in the unit-step response is approximately 62%. The amount of maximum overshoot is
excessive. It can be reduced by fine tuning the controller parameters. Such fine tuning can be
made on the computer. We find that by keeping K, = 18 and by moving the double zero of the
PID controller tos = — 0.65, that is, using the PID controller

1 _ (s + 0.65) 101
ot o.7692s) = 13.846 - (10-1)

the maximum overshoot in the unit-step response can be reduced to approximately 18% (see
Figure 10-10). If the proportional gain K, is increased to 39.42, without changing the location of
the double zero (s = — 0.65), that is, using the PID controller

G.(s) = 18(1 +

1 (s + 0.65)2
3.077s s (10-2)
then the speed of response is increased, but the maximum overshoot is also increased to approximately
28%, as shown in Figure 10-11. Since the maximum overshoot in this case is fairly close to 25% and
the response is faster than the system with G.(s) given by Equation (10-1), we may consider G.(s) as
given by Equation (10-2) as acceptable. Then the tuned values of K, T, and T, become

K, =39.42, T; = 3.077, T, = 0.7692
It is interesting to observe that these values respectively are approximately twice the values sug-

gested by the second method of the Ziegler-Nichols tuning rule. The important thing to note here
is that the Ziegler-Nichols tuning rule has provided a starting point for fine tuning.

G.s) = 39.42(1 + + 0.7692.9) = 30.322

It is instructive to note that, for the case where the double zero is located at s = — 1.4235, in- F

creasing the value of K, increases the speed of response, but as far as the percentage maximum
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Unit-Step Response
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Unit-step response <
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shown in Figure ' ;
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meters K, = 39.42, 0 R
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Figure 10-12
Root-locus diagram
of system when
PID controller has
double zero at

s = —1.4235.

In Figure 10-13, notice that, in the case where the system has gain X = 30.322, the closed-loop
poles ats = —2.35 + j4.82 act as dominant poles. Two additional closed-loop poles are very near:
the double zero at s = — 0.65, with the result that these closed-loop poles and the double zero al-
most cancel each other. The dominant pair of closed-loop poles indeed determines the nature of
the response. On the other hand, when the system has K = 13.846, the closed-loop poles at
s = — 2.35 * j2.62 are not quite dominant because the two other closed-loop poles near the dou-
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Figure 10-13
Root-locus diagram
of system when
PID controller has
double zero at
5=~ 065
K = 13.846 corre-
sponds to G(s)
given by Equation
(10-1) and i
K = 30.322 corre-
| sponds to G(s)
| given by Equation
(10-2).

A Jjo
(s+0652 | 1
K5 1G9
U 1 R 1 1 3 T -
-10 -8 -6 2 o
K =13.846 i
L _ja
K =30.322 -
. _j6
K=60 [
- —8
ble zero at s = — 0.65 have considerable effect on the response. The maximum overshoot in the

step response in this case (18%) is much larger than the case where the system is of second-order
having only dominant closed-loop poles. (In the latter case the maximum overshoot in the step

response would be approximately 6%.)

10-3 MODIFICATIONS OF PID CONTROL SCHEMES

Consider the basic PID control system shown in Figure 10-14(a), where the system is
subjected to disturbances and noises. Figure 10-14(b) is a modified block diagram of the
same system. In the basic PID control system such as the one shown in Figure 10-14(b),
if the reference input is a step function, then, because of the presence of the derivative
term in the control action, the manipulated variable u(f) will involve an impulse func-
tion (delta function). In an actual PID controller, instead of the pure derivative term

T4s we employ
TdS
1+ deS
where the value of y is somewhere around 0.1. Therefore, when the reference input is a

step function, the manipulated variable u(#) will not involve an impulse function, but
will involve a sharp pulse function. Such a phenomenon is called set-point kick.
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Figure 10-9
Unit-step response
curve of PID-
controlled system
designed by use of
Ziegler-Nichols
tuning rule (second
method).

Figure 10-10
Unit-step response
of the system
shown in Figure
10-7 with PID con-
L troller having para-
- meters K, = 18,

- T:=3.077,and

' Ta = 0.7692.
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overshoot is concerned, varying gain K, has very little effect. The reason for this may be seen from
the root-locus analysis. Figure 10-12 shows the root-locus diagram for the system designed by
use of the second method of Ziegler-Nichols tuning rules. Since the dominant branches of root
loci are along the { = 0.3 lines for a considerable range of K, varying the value of K (from 6 to
30) will not change the damping ratio of the dominant closed-loop poles very much. However,
varying the location of the double zero has a significant effect on the maximum overshoot, be-
cause the damping ratio of the dominant closed-loop poles can be changed significantly. This can
also be seen from the root-locus analysis. Figure 10-13 shows the root-locus diagram for the sys-
tem where the PID controller has the double zero at s = — 0.65. Notice the change of the root-
locus configuration. This change in the configuration makes it possible to change the damping
ratio of the dominant closed-loop poles.
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