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Editor’s Note: As readers of th is  journal will recall, in 1976 the Control Systems  Sokiety named three distinguished 
control systems specialists as Consulting Editors. One of the charges to these men was to submit an invited paper on 
a topic of their choice for publication without the usual IDC review procedures. At the same time  Professor  A. G. J. 
MacFarlane, Professor of Control Engineering at Cambridge University, was invited by the  IDC to prepare an IEEE 
Press reprint book of important papers on frequency-domain methods in control and systems  engineering. The 
coincidence of these two decisions has led to the following paper. “The Development of Frequency-Response 
Methods in Automatic Control” is one  part of the IEEE Press book, Frequency-Response Methodr in Control 
Systems, edited by A. G. J. MacFarlane and sponsored by the Control Systems  Society. The book will appear  in 
mid-1979. The paper has been selected  by Consulting Editor Nathaniel Nichols and should be of substantial interest 
to TRANSACTIONS readers. It also conveys some of the spirit and  content of the book  which may be purchased from 
IEEE Press  when available. 

s. KAHNE 

C ONTRARY to popular belief, most good engineering 
theory arises from work on  an important practical 

problem; this was certainly the case with  Nyquist’s 
famous stability criterion [ 1691. His attack on the problem 
of feedback amplifier stability produced a tool of such 
flexibility and power that its use rapidly spread to the 
wider  field of automatic control. This fusion of the dy- 
namical interests of the control and communication en- 
gineer has been  immensely fruitful. In order to appreciate 
fully the far-reaching implications of Nyquist’s  1932 
paper, one must first consider the developments in auto- 
matic control and telecommunications which  led up to it. 

EARLY DEVELOPMENTS IN AUTOMATIC  CONTROL 

Although automatic control devices of various sorts had 
been  in  use  since the beginnings of technology [152], 
Watt’s  use of the flyball governor can be taken as the 
starting point for the development of automatic control as 
a science  [153],  [154]. The early Watt governors worked 
satisfactorily, no doubt largely due to the considerable 
amounts of friction present in their mechanism, and the 
device  was therefore widely adopted. In fact, it has been 
estimated that by  1868 there were  some  75 OOO Watt 
governors working in England alone [75].  However, 
during the middle of the 19th century, as engine designs 
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changed and manufacturing techniques improved, an in- 
creasing tendency for such systems to hunt became appar- 
ent;  that is, for the engine speed to vary  cyclically  with 
time. This phenomenon had also appeared in governed 
clockwork  drives  used to regulate the speed of astronomi- 
cal telescopes and  had been investigated by  Airy  (when he 
was Astronomer Royal) [1]-[3],  [75]. Auy had, not unna- 
turally, attacked this problem with the tools of his own 
trade: the theory of celestial mechanics. He carried out his 
investigations  with great skill and insight, and essentially 
got to the root of the mathematical problems  involved. 
Unfortunately, his  work was rather intricate and difficult 
to follow;  it therefore did not become widely known, and 
the subject remained shrouded in mystery to engineers 
grappling with the problem of fluctuating engine speeds. 
Th~s problem of the hunting of governed  engines became 
a very serious one (75 000 engines, large numbers of them 
hunting!) and so attracted  the attention of a number of 
outstandingly able engineers and physicists [ 1531,  [154], 
[76]. It was solved by classic investigations made by 
Maxwell [ 1501, who founded the theory of automatic 
control systems  with  his paper “On Governors,” and by 
the Russian engineer  Vyschnegradsky  [226],  [227],  who 
published his  results  in  terms of a design  rule, relating the 
engineering parameters of the system to its stability. 
Vyschnegradsky’s analysis showed that the engine design 
changes which had been taking place since  Watt’s  time- 
a decrease in friction due  to improved manufacturing 
techniques, a decreased moment of inertia arising from 
the use  of smaller  flywheels, and  an increased mass of 
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flyball weights to cope with larger steam valves-were all 
destabilizing, and their cumulative effect had inevitably 
led to the ubiquitous phenomenon of hunting speed. 
Maxwell’s fundamentally important contribution lay in 
recognizing that the behavior of. an automatic feedback 
control system in the vicinity of an equilibrium condition 
could be approximated by a linear differential equation, 
and hence that the stability of the control system could be 
discussed in terms of the location of the roots of an 
associated algebraic equation. 

Following the presentation of his  work on governors, 
Maxwell  posed the general problem of investigating the 
stability of a dynamical system in terms of the location of 
the roots of its characteristic equation. At that time 
Hermite’s  work on this problem (which had been pub- 
lished some years before) was not widely known [94]. A 
solution was put forward by Routh in his Adams Prize 
Essay of  1877 [74];  this  work  is of great interest in the 
context of the Nyquist stability criterion since hindsight 
shows that it contains the seeds of an appropriate use of 
complex variable mappings for the investigation of stabil- 
ity. In 1895 an alternative necessary and sufficient criter- 
ion for all the roots of an algebraic equation to have 
negative real parts was  given by Hurwitz in terms of a set 
of determinants [99]. Andronov [5] has given an interest- 
ing description of Vyschnegradsky‘s  work and its effect on 
the subsequent development of automatic control. 
Andronov also discusses the important investigations 
made by Stodola and his collaboration with  Hurwitz. Jury 
[lo61  describes the background to  Routh‘s  work and its 
subsequent development. 

Several important advances in automatic control tech- 
nology  were made in the latter half  of the 19th century. A 
key modification to the flyball governor was the introduc- 
tion of a simple means of setting the desired running 
speed of the engine being controlled by balancing the 
centrifugal force of the flyballs against a spring, and using 
the preset spring tension to set the running speed of the 
engine. This brought the idea of a variable set-point of 
operation into automatic control. Lincke  [133] proposed 
the use of hydraulic power amplifiers to reduce the load 
on the flyball mechanism,  whose primary function is that 
of speed measurement. This enabled an integral control 
action to be introduced into the governor system in a 
simple and efficient  way, and hence greatly reduced the 
steady-state error in governed engine speed. The idea of 
integral control action had previously  been  discussed  in 
various ways  by  Preuss [ 1861, Siemens  [208],  [209], and by 
Maxwell [ 1501 in his 1868 paper. In his  work on torpedos 
Whitehead  made  considerable use of feedback 
mechanisms for depth control; in some of these  devices a 
practical form of derivative feedback action was  present 
and used to increase the overall damping of the closed- 
loop system  [93],  [191],  [84],  [26]. Thus by the 1870’s the 
use  of proportional, integral, and derivative feedback ac- 
tion in closed-loop control systems  was well established. 
The use of feedback for the position control of massive 
objects was proposed by Farcot between 1868 and 1873 
for  naval  applications;  he  called  such devices 
servomechanisms [65]. 

When power-amplifying  devices  were introduced into 
automatic control systems, as  by Lincke, the individual 
functions of the various parts of the overall control system 
became more clearly apparent. It was appreciated that 
various forms of the control device had certain common 
features; MariC specifically drew attention to the common 
features of certain means of controlling speed, pressure, 
and temperature [149]. Lincke went  even further and 
commented on the similarities to  biological regulating 
systems. The growing practical importance of automatic 
control was marked by the  award of the Nobel Prize for 
Physics in 1912 to the Swedish inventor Dalen “for his 
invention of automatic regulators to be  used in conjunc- 
tion with  gas accumulators for lighting beacons and light 
buoys” [9 11. 

THE DEVELOPMENT OF THE FEEDBACK AMPLIFIER 
AND THE GENESIS OF FREQUENCY-RESPONSE 

TECHNIQUES 

The use of ordinary differential equations, together with 
algebraic tests to determine the location of the roots of the 
associated characteristic equations, remained virtually the 
sole analytical tools of the automatic control engineer 
until well into the present century. Just as these first 
developments arose out of struggles  with the practical 
problem of engine  governing, so the next theoretical 
advances came from the work on another important tech- 
nical problem: long-distance audio telephony. A revolu- 
tion in the technology of communication and information 
processing  began  with L. de Forest’s addition of an extra 
electrode to Fleming’s thermionic valve to create the 
triode amplifying  valve in 1906. This invention removed 
the chief obstacle to the development of long-distance 
telephony, namely the attenuation  in cable transmission. 
While the mechanical engineers concerned with the prob- 
lems of servomechanisms  were naturally using differential 
equations as their basic theoretical tool, electrical en- 
gineers and communications engineers had evolved their 
own distinctive approaches to dynamical phenomena. The 
development of ac electrical power  systems had led to an 
acute need for appropriate means of handling the 
“arithmetic” of ac network studies, and Steinmetz [212] 
developed the use of complex numbers for the representa- 
tion of sinusoidal voltages and currents. Schenkel  [206] 
discussed  the representation of impedance functions by 
simple  loci (straight lines and circles) in the complex 
plane. Such forms of impedance diagram were also con- 
sidered by Campbell [43] and Bloch [29]. Two distinctive 
approaches to dynamical systems now began to develop 
which  were associated with different ways of thinking 
about such systems and which, in view  of their historical 
evolution, can be conveniently called the “mechanical 
engineers’  viewpoint” and the “communication engineers’ 
viewpoint,”  respectively. A mechanical engineer using a 
differential equations approach modeled  his  system in 
terms of some  real or  abstract “mechanism” and wrote his 
system-describing equations down from a detailed study 
of the relevant  physical  mechanism. The communication 
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engineer’s  viewpoint,  however,  was quite different. It was 
natural for him to regard his various bits of apparatus in 
terms of “boxes” into which certain signals  were injected 
and  out of which  emerged appropriate responses. Thus it 
was a natural next step for a communications engineer, in 
considering his system’s behavior, to replace the actual 
boxes in which distinct pieces of physical apparatus were 
housed by abstract boxes  which represented their effect 
on the signals passing through them. A combination of 
this “operator” viewpoint with the electrical engineer’s 
flexible use of complex-variable representations of 
sinusoidal waveforms made the use  of Fourier analysis- 
based techniques for studying dynamical phenomena in 
communication systems virtually inevitable. Following the 
pioneering work  of Heaviside  [92] on operational methods 
for solving differential equations, integral transform 
methods and their application to practical problems were 
put on a secure foundation by the work of Bromwich  [37], 
Wagner [229], Carson [46],  [47], Campbell and Foster [MI, 
Doetsch [59], and others; thus by the late 1920’s and early 
1930’s the integral-transform approach to the analysis of 
dynamical phenomena in communication systems  was 
available for the study of feedback devices,  given someone 
with the initiative and skill to use  it. 

The role of positive feedback in the deliberate genera- 
tion of oscillations for high-frequency modulated-carrier 
radio telegraphy  emerged shortly after the development of 
the triode amplifying  valve; a patent  on the use  of induc- 
tive  feedback to produce a high-frequency alternating 
current using an amplifying valve  was granted to Strauss 
in Austria in 1912;  similar developments were credited to 
Meissner in Germany in 1913, to Franklin and Round in 
England, and  to Armstrong and Langmuir in the U.S.A. 
[191]. Armstrong, in 1914, developed the use of positive 
feedback in his “regenerative receiver”  [28]. The central 
role of the feedback concept in steam engine control 
systems had been considered by Barkhausen [9], and 
Barkhausen’s ideas were  discussed by Moller [ 1641 in  his 
treatment of feedback effects in electrical circuits. Further 
development of the idea of a feedback loop of dependence 
in an oscillator circuit led Barkhausen [ 101 to give a 
“formula for self-excitation”: 

KF( jw)  = 1 

where K is an amplifier gain factor and F ( j o )  is the 
frequency-dependent gain of an associated feedback loop 
in the  oscillator circuit. The Barkhausen  criterion which 
developed  from  this formula was  orginally intended for 
the determination of the self-excitation frequency of ac 
generators for  use in radio transmitters. Prior to the ap- 
pearance of Nyquist’s  1932 paper, however, the phenome- 
non of conditional stability was not understood and hence 
it  was  widely  believed that, for a given frequency-depen- 
dent gain function F(jw),  there was  only a single  value of 
the scalar gain parameter K which separated stable and 
unstable regions of behavior. Thus, particularly in the 
German literature, Barkhausen’s equation came to be 
used as the basis of a stability criterion for positive and 

negative feedback amplifiers [135],  [97]. An important 
early contribution to the development of frequency-re- 
sponse methods for the analysis of linear dynamical sys- 
tems was made in 1928  by Kupfmidler. In this paper [124] 
he  gave a comprehensive discussion of the relationships 
between frequency transmission characteristics and tran- 
sient response behavior. In another paper published in the 
same year, Kupfmuller [125] dealt with the problem of 
closed-loop stability. Here, however,  he did  not use a 
fully-developed frequency-domain approach. Kiipfmiiller 
represented the  system’s dynamical behavior in terms of 
an integral equation, and hence developed an approxi- 
mate criterion for closed-loop stability in terms of time-re- 
sponse quantities measured and calculated from the sys- 
tem’s transient response.  Kiipfmuller’s technique of ap- 
proximately determining closed-loop stability from such 
time-response measurements seems to have remained rela- 
tively unknown outside Germany. In his history of auto- 
matic control, Rorentrop [ 1911 refers to further work done 
in Germany in the 1930’s on frequency-response criteria 
for feedback system stability, and in particular he  refers to 
the development  by  Strecker of a frequency-domain sta- 
bility criterion of what we would  now  call Nyquist type. 
This work appears to have remained virtually unknown 
and was only described in the scientific literature availa- 
ble after the end of the Second World War [213]-[216]. In 
his book Strecker [215]  refers to having presented a 
frequency-response stability criterion at a colloquium at 
the Central Laboratory of Siemens and Halske in 1930, 
and to having presented his results to a wider audience at 
a seminar held by the Society of German Electrical En- 
gneers in 1938. Rorentrop [191]  says that the manuscript 
of this lecture is still available and that in it Strecker 
considered the case of open-loop unstable systems. 

The truly epoch-making event in the development of 
frequency-response methods was undoubtedly the ap- 
pearance of Nyquist’s  classic paper [169] on feedback 
amplifier stability, which arose directly from work on the 
problems of long-distance telephony. In 1915 the Bell 
System completed an experimental telephone link between 
New  York and San Francisco which  showed that reliable 
voice communication over transcontinental distances was 
a practicable proposition. This link used  heavy copper 
open-wire circuits (weighing  half a ton/mi) and was  in- 
ductively loaded to have a cut-off frequency of loo0 Hz. 
The attenuation over a 3000 mi distance was 60 dB  and, 
with a net gain of  42 dB provided by  six repeating 
amplifiers,  this  was reduced to a tolerable net attenuation 
figure of  18 dB overall. The use of carrier systems on 
open-wire circuits was soon well advanced and had re- 
sulted in a substantial economy in conductor costs with 
multiplex operation in a frequency range well above the 
audible. 

A change to cable operations, however,  posed a number 
of severe  technical  problems. In particular, because the 
conductors were  small,  the attenuation was  large and this 
required  the use  of many repeating amplifiers. Thus a 
crucial technical problem had to be overcome, that of 
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repeatedly passing  signals through amplifiers, each of scribed his amplifier in a paper which  makes interesting 
which contained unavoidable and significant nonlineari- references to the stability’ problem. In particular he men- 
ties,  while  keeping the  total distortion over transcontinen- tions the phenomenon of conditional stability in the 
tal distances within acceptable limits. It required an effec-  following  words:  “However, one noticeable feature  about 
tive amplifier linearity to within better than several parts the field of p/3 is that it implies that even though the phase 
in a thousand in order to maintain intelligibility of the shift is zero and the absolute value of p/3 exceeds unity, 
transmitted audio signals. Such an acute difficulty could self-oscillations or singing will not result. This may or may 
only  be  overcome by a major invention, and this was not be true. When the author first thought about this 
provided by H. Black of the Bell Telephone Laboratory matter he suspected that owing, to practical nonlinearity, 
when he put forward the idea of a feedback amplifier.  singing  would result whenever the gain around the closed 
Black’s important discovery  was that high gain in a non- loop equalled or exceeded the loss and simultaneously the 
linear and variable amplifying device could be traded  for phase shift was  zero,  i.e., p/3 = I p/3 I + j O  > 1. Results of 
a reduction in nonlinear distortion, and  that an accurate, experiments, however,  seemed to indicate something more 
stable, and highly linear overall gain could be achieved by was  involved and these matters were described to Mr. H. 
the suitable use of a precision linear passive component in Nyquist, who  developed a more general criterion for free- 
conjunction with a high-gain nonlinear amplifer. By  1932 dom from instability applicable to an amplifier having 
Black and his  colleagues could build feedback amplifers linear positive constants.” Nyquist himself has also briefly 
which performed remarkably well. They had, however, a described the events which led to his  writing the 1932 
tendency to “sing,” the telephone engineer’s  expressive paper [170]. 
term for instability in amplifers handling audio signals.  Nyquist’s open-loop gain frequency-response form of 
Some “sang” when the loop gain of the feedback amplifier solution of the feedback stability problem was of immense 
was increased (which  was not unexpected), but others practical value because it  was formulated in terms of a 
“sang”  when the loop gain was reduced (which  was quite quantity (gain)  which  was directly measurable on a piece 
unexpected). The situation was not unlike that associated of equipment. This direct link  with experimental measure- 
with the hunting governors of around 1868-an important ments was a completely  new and vitally important devel- 
practical device  was exhibiting mysterious  behavior. opment in applied dynamical work. The application of 
Moreover, it was behavior whose explanation was not Nyquist’s stability criterion did not depend on  the availa- 
easily  within the compass of existing theoretical tools,  bility of a system model in the form of a differential 
since a feedback amplifier might well  have of the order of equation or characteristic polynomial. Furthermore, the 
50 independent energy-storing elements w i t h  it (such as form of the Nyquist locus gave an immediate and vivid 
inductors, capacitors, etc.). Its description in terms of a set indication of how an unstable, or poorly damped, system’s 
of differential equations, as in the classical analyses of feedback performance could be improved by modifying 
mechanical automatic control systems,  was thus hardly its open-loop gain versus frequency behavior in an ap- 
feasible in view  of the rudimentary facilities available at propriate way. 
that time for the computer solution of such equations, It  Seem clear that when Nyquist set out to  write his 
Nyquist’s famous paper solved  this mystery; it opened up 1932 paper he  was aware that  the fundamental phenome- 
wholly  new  perspectives in the theory of feedback non which  he had to explain was that of conditional 
mechanisms and hence started a new era in automatic stability. The successful theoretical explanation of this 
control. Prior to 1932 the differential-equation-based ap- counter-intuitive effect is  given due prominence in  the 
proach had been the major tool of the control theorist; paper. It is  also clear that Nyquist was fully aware of the 
within the decade following  Nyquist’s paper these  tech- great generality and practical usefulness of his stability 
niques were almost completely superseded by methods criterion. He, therefore, attempted to prove its validity for 
based on complex-variable theory which  were the direct a wide class of systems, including those involving a pure 
offspring of his new approach. The background to his  time-delay effect, and he took the primary system descrip- 
invention and its subsequent development have been de- tion to be a directly-measurable frequency response char- 
scribed in a fascinating article by  Black  [28]. It is clear acteristic. 
from this that Black  used a stability argument of The importance of the feedback amplifier to the Bell 
frequency-response type, saying there that “ . . . conse- Laboratories’ development of long-distance telephony led 
quently, I knew that in order to avoid self-oscillation in a to a careful experimental study of feedback amplifier 
feedback amplifier it would  be sufficient that at no stability by Peterson et al. [178]. These experiments fully 
frequency from zero to infinity should p p  be real, positive, supported Nyquist’s theoretical predictions and thus com- 
and greater than unity.” The prototype Black feedback pletely vindicated his analysis. It is altogether too easy, 
amplifier was tested in December 1927 and development with  hindsight and our exposure to current knowledge, to 
of a carrier system for transcontinental cable telephony, underestimate the magnitude of Black’s invention and 
its first application, started in 1928. Field trials of a Nyquist’s theoretical achievement. Things looked very dif- 
system  using a 25-mi section of cable with 2 terminal and ferent in  their  time. The granting of a patent to Black for 
68 repeater amplifiers were  held at Morristown, NJ in his amplifier took more than nine years (the final patent, 
1930, and successfully completed in 193 1. Black  [27l  de-  No.  2,102,671,  was  issued on December  21,  1937). The 
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U.S. Patent Office cited technical papers claiming that the 
output could not be connected back to the input of an 
amplifier, while remaining stable, unless the loop gain 
were  less than one; and the British Patent Office, in 
Black’s words, treated the application “in the same 
manner as one for a perpetual-motion machine.” 

Nyquist’s  work had shown the great power of complex- 
variable theory for the analysis of feedback system  be- 
havior, and it  was inevitable that a tool of such promise 
would  be further developed for design  purposes. It was a 
natural inference from the developments presented in his 
paper that the  closeness of approach of the Nyquist locus 
to the critical point in the complex plane gave a measure 
of closed-loop damping. This was  investigated  by  Ludwig 
[ 1351 who  gave a neat formula for estimating the real part 
of a pair of complex conjugate roots associated with the 
dominant mode in the case  where the Nyquist locus 
passes near the critical point. Thus, it soon became clear 
that the key to making an unstable (or otherwise  unsatis- 
factory) feedback system stable (or better damped) lay in 
an appropriate modification of the amplitude and phase 
characteristics of the open-loop gain function for the 
feedback loop involved. Extensive and fruitless experi- 
mental studies were made, particularly by F. B. Anderson 
in the Bell Telephone Laboratories, in attempts to build 
feedback amplifiers having loops which combined a fast 
cutoff  in  gain  with a small associated phase shift. It 
therefore became important to analyze the  way in which 
the amplitude and phase frequency functions of a loop 
gain transfer function are related. In another of the classic 
papers which  lie at the foundation of feedback theory 
Bode [30] carried out such an analysis, extending previous 
work  by  Lee and Wiener  [128]. This paper, written in a 
beautifully clear and engaging manner, showed  how there 
is associated with any given amplitude/gain frequency 
function an appropriate minimum-phase frequency func- 
tion. Bode  was thus able to give rules for the optimum 
shaping of the  loop-gain frequency function for a feed- 
back  amplifier. He introduced logarithmic units of ampli- 
tude gain and logarithmic scales of frequency, and hence 
the logarithmic gain and linear phase versus logarithmic 
frequency diagrams which bear his name. The critical 
point in the gain plane was put  at its now standard and 
familiar location of (- 1 + j O ) ,  and the concepts of gain 
and phase margln  were introduced. Bode’s  classic  work 
appeared in an extended form in his  book Network  Analy- 
sis and Feedback Amplifer  Design [31]. 

Nyquist’s criterion is not easy to prove  rigorously for 
the class of systems  which  he  far-sightedly attempted to 
deal with in his classic paper and the need  for a rigorous 
approach to a simpler class of systems soon became 
apparent. For the case when the open-loop gain is an 
analytic rational function, Nyquist himself had given a 
simple  complex variable argument in an Appendix to  his 
1932 paper. This approach was soon realized  to  provide a 
simple route to a satisfactory proof for the restricted class 
of system functions which could be  specified as rational 
functions of a complex frequency variable. MacColl [ I401 

gave such a proof using the Principle of the Argument, 
and this  became the  standard form of exposition appear- 
ing in influential books by  Bode  [3 11, James et al. [loll, 
and many  others.  Such simplified presentations did scant 
justice to the far-reaching nature of Nyquist’s  classic 
paper, but they soon made the stability criterion a 
cornerstone of frequency-response methods based on 
complex function theory. 

The treatment given in Nyquist’s 1932 paper had 
specifically  excluded  systems having poles in the closed 
right-half  plane. A pure integration effect, however, often 
occurs in the open-loop transmission of servomechanisms 
incorporating an electric or hydraulic motor, and the 
appropriate extension to the Nyquist criterion to handle 
transfer function poles at  the origin of the complex 
frequency plane was described in various wartime reports 
such as MacColl’s [ 1391 and in a paper by Hall [86].  Using 
the complex-variable approach based on the Principle of 
the Argument  which had by then become the standard 
one, Frey [73] extended the Nyquist stability criterion to 
deal with the case  where the feedback system  may  be 
open-loop unstable, and this  simple  first  version of the 
Nyquist criterion finally assumed the form  which  became 
familiar in a multitude of textbooks. 

THE SPREAD OF THE FREQUENCY-RESPONSE 
APPROACH 

By the beginning of the twentieth century the basic 
concepts of automatic control and their analytical discus- 
sion in terms of ordinary differential equations and their 
related characteristic algebraic equations were  well estab- 
lished.  These techniques were consolidated in review 
papers by Hort [98] and Von  Mises  [228], and in  early 
textbooks on automatic control by  Tolle  [219] and Trinks 
[220]. The further development of automatic control de- 
vices  received great impetus from important studies 
camed out by Minorsky  [I611 on the automatic steering 
of ships, and by Hazen [90] on shaft-positioning 
servomechanisms.  Minorsky proposed the use  of a propor- 
tional-plus-derivative-plus-integral control action for the 
steering control. His  work  was of particular significance in 
being practically tested  in a famous series of trials on the 
automatic steering of the USS New  Mexico in 1922-23 
[162]. Both  Minorsky’s and Hazen’s  work  was explained 
in  terms of ordinary differential equations, and their 
success  with practical devices  led to the widespread use  of 
this approach to the analysis of automatic control sys- 
tems. 

In the chemical  process industries the introduction of 
feedback control tended at first to  develop in isolation 
from the developments in mechanical and electrical en- 
gineering.  One  very important difference in  the  process 
industries was (and still, to a large extent, is) that the 
time-scale of controlled-variable behavior was sufficiently 
slow on many  process plants to make manual feedback 
control action a feasible proposition. In the chemical 
industry the  first step along the road to automatic feed- 
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back control was the introduction of indicating instru- 
ments to monitor plant operation, followed  by the attach- 
ment of pen recorders to these indicators to secure a 
record of plant behavior. The natural development  was 
then to go one step further and use the movement of the 
pen on the recorder to effect feedback action on control 
valves in the plant through the use of pneumatic trans- 
ducers, amplifiers, and transmission lines. During the 
1930’s these pneumatic controllers were steadily devel- 
oped, and the idea of using an integral action term, long 
standard in mechanical governing, transferred to this field 
of control. Here,  however, it was called “reset action” 
since the behavior of the pneumatic controller with the 
integral control term  added was analogous to that which 
would  have  been obtained if the reference input had  been 
slowly adjusted (or reset) to the appropriate new  value 
required to cancel out a steady-state disturbance. In the 
late 1930’s and early 19Ws, derivative action (usually 
called pre-act in this context) was introduced for these 
pneumatic controllers to give the full “3-term” controller 
or  “PID” (Proportional, Integral, and Derivative)  con- 
troller. A theoretical  basis for applied process control was 
laid by papers by  Ivanoff  [lo01 on temperature control, 
and by Callander et al. [42] on the effect of time-lags in 
control systems.  Ziegler and Nichols [244] made an im- 
portant study which  led to formulas from  which propor- 
tional, reset (integral) and pre-act (derivative) controller 
settings could be  determined  from the experimentally 
measured  values of the lag and “reaction rate” of a 
process  which  was to be controlled. 

By the late 1930’s there were thus two separate but 
well-developed methods of attacking the analysis of 
feedback system  behavior. 

1) The “time-response approach” which  involved 
ordinary differential equations and their  associated char- 
acteristic algebraic equations, and which  was much used 
in  mechanical,  naval, aeronautical, and chemical  engineer- 
ing studies of automatic control systems; and 

2) the “frequency-response approach” which  involved 
Nyquist and Bode  plots, transfer functions, etc., and 
which  was  used for studies of feedback amplifiers. 

The frequency-response approach  had the appealing 
advantage of dealing with  pieces of apparatus in  terms of 
abstract “boxes” or “blocks” which  represented  their 
effect on the signals  passing through them. This proved to 
be  a  very  flexible and general way  of representing sys- 
tems, and it was found that when such “block” diagrams 
were drawn for different kinds of control systems  the 
ubiquitous loop of feedback dependence, which  is the 
hallmark of a feedback mechanism in a representation of 
this sort, sprang into  sudden  prominence.  The power and 
flexibility of the  tools  developed by Nyquist and Bode 
were  such that their spread to other fields  in  which  feed- 
back principles  were  used  was  inevitable.  Some  early  work 
on using the techniques of the feedback  amplifier  designer 
for the analysis of more general systems  was done by 
Taplin at MIT in 1937 [loll. A crucial step in the trans- 
ference of the telephone engineer’s  viewpoint to the analy- 

sis of other kinds of system  was taken by Harris, also of 
MIT, who made the fundamentally  important contribu- 
tion of introducing the use of transfer functions into the 
analysis of general feedback systems [87. Harris’s  idea 
enabled a  mechanical servomechanism  or a  chemical pro- 
cess control system to  be represented in block diagram 
terms, and thus analyzed using the powerful tools availa- 
ble to the feedback  amplifier  designer. 

In 1938 Mikhailov  gave  a frequency response criterion 
for systems described by a known nth order constant 
coefficient  linear differential equation and thus having an 
explicitly  known characteristic polynomial p(s)  [159]. It 
was stated in  terms of the locus of p( ju )  in a  complex 
p-plane and so bore a superficial resemblance to the 
Nyquist criterion. It is,  however, an essentially different 
thing in that it requires that the governing differential 
equation of the  system  being  investigated  must be known, 
whereas the essential virtue of the Nyquist criterion is that 
the Nyquist  locus  is something which can  be directly 
measured  for  a plant whose behavior in  terms of a dif- 
ferential equation description may well not be available. 
A criterion of this form was also formulated by  Cremer 
[51] and Leonhard [ 1311, independently of each other and 
of Mikhailov. In the German literature the criterion is 
accordingly known as the Cremer-Leonhard criterion; in 
the French literature it is usually  called the Leonhard 
criterion. In the  Russian technical literature the Nyquist 
stability criterion is often called the Mikhailov-Nyquist 
criterion. Work on generalizing the Nyquist criterion to 
deal with  neutrally stable and unstable open-loop systems 
was done by  Mikhailov [160] and Tsypkin [221]. 

The 1939-45 world  war created an urgent need for 
high-performance  servomechanisms and led to great 
advances in  ways of designing and building feedback 
control systems. From the point of  view  of the develop- 
ment of automatic control design  techniques, the chief 
result of the  immense  pooling of effort and experience 
involved  was to spread rapidly the  use of frequency-re- 
sponse ideas into the mechanical, aeronautical, naval and 
later the chemical  fields, and to produce a  unified and 
coherent theory for single-loop feedback systems.  Im- 
portant reports written by  Brown and Hall [loll were 
circulated among  defense  scientists and engineers and 
soon, accelerated by the end of the war,  a number of 
classic publications and textbooks became available which 
resulted in the  widespread  dissemination and  adoption of 
frequency-response  ideas. Henvald [95]  discussed the use 
of block  diagrams and operational calculus  for the study 
of the transient behavior of automatic control systems, 
including  the  use of compensating networks. Ferrel [69] 
laid particular stress on the  parallels  between  electro- 
mechanical control system  design and electrical  network 
design. He suggested the use  of the now-familiar  asymp- 
totic  Bode  diagrams. Graham [83] made notable use of 
these  diagrams and discussed dynamic errors, the effects 
of noise, and the use of tachometric feedback compensa- 
tion.  Brown and Hall [39]  gave  a  classic treatment of the 
analysis and design of servomechanisms and Harris [88] 
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gave a wide-ranging and thorough treatment of analysis 
and design  in the frequency domain. The work done at 
the MIT Radiation Lab was summarized in a notable 
book  by James et al. [ 1011; the first use of inverse Nyquist 
diagrams is  discussed in their book and credited to Marcy 
[ 1481. Gardner and Barnes  [77]  gave a widely  used treat- 
ment of the mathematical background to these  develop- 
ments. 

British contributions were summarized in papers by 
Whiteley [231],  [232]. The historical background to British 
work  by  Daniel, Tustin, Porter, Williams,  Whiteley, and 
others has been described by Porter [ 1831 and Westcott 
[230]. Several of the wartime and post-war historical de- 
velopments in Britain and America have  been  discussed 
by Bennett [24]. German work during and after the war 
has been  summarized  by Rorentrop [ 1911. Applications of 
the Nyquist criterion to feedback control loops were 
treated in the German literature in papers by Feiss [66]- 
[68] and  an important textbook was produced by  Olden- 
bourg and Sartorious [171]. Leonhard [130]  discussed 
frequency-response design techniques and extended the 
Mikhailov criterion approach [131]. Tsypkin [221],  [222] 
discussed the effect of a pure delay in the feedback loop. 
Among the many textbooks used  by  designers, the two- 
volume  work of Chestnut and Meyer  [49] had a notable 
impact. 

Since the rotating aerial of a radar system  only 
illuminates its target intermittently, many of the fire-con- 
trol systems  developed during the Second World War had 
to  be  designed to deal with data available in a pulsed or 
sampled form. The basis for an effective treatment of 
sampled-data automatic control systems  was  laid  by 
Hurewicz  whose  work is described in [loll. In particular, 
in  his contribution to this book, Hurewicz  developed an 
appropriate extension of the Nyquist stability criterion to 
sampled-data systems. The development of digital com- 
puting techniques soon led to further work on such dis- 
crete-time systems.  Digital control systems operating on 
continuous-time plants require analysis techniques which 
enable both discrete-time and continuous-time systems, 
and their interconnection through suitable interfaces, to 
be looked at from a unified standpoint. Linvill  [I341 
discussed  this problem from the transform point of view, 
including a consideration of the Nyquist approach to 
closed-loop stability. Frequency-response methods of 
analyzing sampled-data systems  were studied by Tsypkin 
[223]. A “z-transform” theory for systems described by 
difference equations emerged to match the “s-transform” 
theory for systems described by differential equations 
[ 1881 and was treated in textbooks by Ragazzini and 
Franklin [ 1881, Jury [ 1041, [ 1051, Freeman [72]. and others. 
The “equivalence”  between  continuous-time and 
discrete-time system  analysis methods has been  discussed 
by Steiglitz [211]. 

The unique feature of the Nyquist-Bode diagram ap- 
proach to  closed-loop  system stability and behavior is that 
it can make a direct use  of experimentally-measurable 

gain characteristics. Using such data one  can make in- 
ferential deductions about the behavior of the closed-loop 
system’s characteristic frequencies. Nevertheless, there are 
many situations in which one does have a direct knowl- 
edge of the form of the plant  transfer function and it then 
becomes a natural question to ask: what direct deductions 
can be made from  this of the  way in which the closed-loop 
characteristic frequencies vary with a gain parameter? 
This question was answered in 1948 by Evans who 
brought the complex-variable-based approach to linear 
feedback systems to its fully  developed state by the in- 
troduction of his root-locus method [62]-[64]. 

The effect of random disturbances on automatic control 
systems  was also studied during  the Second World War 
[loll.  In 1920 the autocorrelation function had been in- 
troduced by G. I. Taylor in his work on turbulent flow in 
fluids [217];  N.  Wiener  realized that this function was the 
link between the time and frequency-response descriptions 
of a stochastic process, and based his classic studies of 
random process analysis [233] and their relationships to 
communication and control theory [235] on  the gener- 
alized Fourier transform of this function. Wiener became 
deeply interested in the relationships between control and 
communication problems and in the similarities between 
such problems in engineering and physiology. In addition 
to his important wartime report on time-series analysis he 
wrote a seminal  book on cybernetics [234]. His books had 
the important effect of propagating feedback-control ideas 
in general, and frequency-response methods in particular, 
into the fields of stochastic system theory and physiology. 

The “harmonic balance” methods developed in studies 
of nonlinear mechanics by Krylov and Bogoliubov  [122] 
led to attempts to extend frequency-response methods to 
nonlinear feedback control problems. From these efforts 
emerged the describing function method which extended 
the use of Nyquist diagrams to the study of nonlinear 
feedback system stability. This was  developed indepen- 
dently in a number of countries: by Goldfarb [SO] in 
Russia, by Daniel and Tustin in England [225],  by Oppelt 
[173] in Germany, by Dutilh [60] in France, and by 
Kochenburger [ 1201 in the United States. Although at first 
resting on rather shaky theoretical foundations, this  tech- 
nique  proved of great use in many practical studies and its 
introduction marked an important consolidation in  the 
use of frequency-response methods. Investigations by  Bass 
[ 181 Sandberg [204],  Bergen and Franks [25], Kudrewicz 
[ 1231, and Mees [ 1561, [ 1571 have subsequently placed the 
method on a sounder basis. 

Aizerman  [4] greatly stimulated the study of nonlinear 
feedback  problems  by putting forward his famous conjec- 
ture on the stability of systems incorporating a “sector- 
bounded” nonlinearity. Thls led to work on what  is 
known  in  the Russian literature as the “problem of ab- 
solute stability.” Despite the fact that Pliss [ 1791 demon- 
strated by means of a counterexample that the Aizerman 
conjecture is not generally true, it  became  manifestly 
important to discover for what classes of system the 



conjecture did hold. Such a class of systems  was found by 
Popov [182] in a classic study which led to his famous 
stability criterion. Popov’s work led to a resurgence of 
interest in frequency-response treatments of nonlinear 
problems out of which emerged the various forms of 
“circle criteria” for stability [205],  [243],  [166]. Some im- 
portant early  work on the application of frequency-re- 
sponse methods to nonlinear systems  was done by Tsyp- 
kin  [224] and Naumov and Tsypkin [ 1671. 

THE DEVELOPMENT OF 0I”AL AND 
MULTIVARIABLE CONTROL 

By the early 1950’s frequency-response methods reigned 
virtually supreme over the applied control field; they  were 
the routinely-used tools for the analysis and design of 
feedback mechanisms and automatic control systems. A 
good impression of the classical frequency-response ap- 
proach at this period can be obtained from the collection 
of papers edited by Oldenburger [172].  Block diagrams, 
with their associated transfer functions, had become 
widely familiar to engineers handling many different 
kinds of linear dynamical models of physical  systems, and 
were being used with great flexibility and insight. In many 
ways frequency-response concepts had developed into a 
vital  medium of communication, giving a unified means 
of approaching and analysing a wide range of feedback 
phenomena from a common point of  view. The Nyquist 
diagram and Bode diagram, with their direct relationship 
to physically-measurable plant responses, had become an 
indispensable means of assessing closed-loop stability for 
a wide range of practical control systems, and the describ- 
ing function technique had emerged as a useful,  though 
somewhat heuristic, means of handling many common 
types of nonlinearity. Evans’ root-locus method had pro- 
vided a further powerful tool for the design of linear 
feedback systems of fairly high order, and the representa- 
tion of stochastic disturbances and their effects  was  well 
established in frequency-response terms. The position had 
changed completely from that of the late 1920’s, when the 
time-response methods were unchallenged. However, the 
pendulum of fashion was about to swing  back rapidly. 

The emergence of the stored-program digital computer 
as a reliable and widely available engineering  device  by 
the late 1950’s was a necessary prerequisite for the next 
developments in  automatic control systems analysis and 
design. It was  now reasonable to attempt much deeper 
and more comprehensive studies in automatic control 
theory, since the computing power and versatility of the 
big  scientific machines made the lengthy and intricate 
calculations involved a practicable proposition. At the 
same time, the development of small and reliable  special- 
purpose digital computers offered the possibility of imple- 
menting  more  ambitious  control  schemes via 
information-processing devices of unprecedented comput- 
ing speed and flexibility. It was a natural step, therefore, 

to consider the simultaneous control of a number of 
interacting variables, and to consider different types of 
controller objective, such as the minimization of fuel 
consumption, for which the now-classical  frequency-re- 
sponse theory was quite inappropriate. 

As with the previous major developments in automatic 
control theory, these  next advances arose out of an im- 
portant technical problem, in this  case the launching, 
maneuvering, guidance, and tracking of space vehicles. 
Both in the USA and the USSR, an enormous research 
and development effort was expended on  these problems, 
and from this came rapid progress. The  nature of these 
next developments in automatic control theory was pro- 
foundly influenced by two  things. 

1) The fact that the objects being controlled and 
tracked were  essentially ballistic in nature meant that 
accurate mechanical  models of the devices being con- 
trolled were normally available. Moreover, the systems 
involved could be fitted with measuring devices of great 
precision. 

2) Many of the performance criteria which the .final 
control schemes had to satisfy were of an  “e~onomic~’ 
nature. For example, a satellite position-control scheme 
might have to operate in such a way that a desired 
maneuver  was executed for the minimum expenditure of 
fuel. A natural result of these aspects of the related 
control problems  was  to refocus attention on  an  approach 
to control via  sets of ordinary differential equations. For 
dynamical systems having an overall performance specifi- 
cation given in terms of making some functional of the 
behavior (performance index) achieve an extremum value 
there was an obvious and strong analogy with the classical 
variational formulations of analytical mechanics  given  by 
Lagrange and Hamilton [127]. In the USSR, Pontryagin 
laid the foundations of what came to be called optimal 
control theory  by an elegant generalization of the Hamil- 
tonian approach to geometrical optics in the form of his 
famous maximum principle [35], [ 18 I]. 

An important aspect of this treatment of multivariable 
control problems  in  terms of sets of differential equations 
was the systematic use of sets of first-order equations. 
Moigno  [163] had shown that  any nth-order ordinary 
differential equation may  be reduced to an equivalent set 
of first-order equations by means of a set of simple 
substitutions, and Cauchy [48] had previously studied the 
conditions under which such a system of equations had a 
unique solution. Poincare saw  the deep significance of 
formulating general dynamical theories in  terms of sets of 
first-order differential equations, and introduced the now 
familiar idea of considering the relevant set of dynamical 
system variables in terms of the trajectory of a point in an 
n-dimensional space. He established this approach as a 
standard one by building the whole of  his famous treatise 
on celestial mechanics around it [ 1801. One of the first 
major applications of the PoincarC formulation of dy- 
namical theory  was  Lyapunov’s celebrated study of stabil- 
ity [ 1321.  PoincarC‘s approach to dynamics rapidly became 
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the  standard one for control engineers working on aero- 
space problems with  these  revitalized time-domain tech- 
niques,  which  collectively became known as the state- 
space approach. The concept of state now dominates the 
whole of applied dynamical theory. What is fundamental 
about dynamical systems  is that their present behavior is 
influenced by their past history; dynamical system be- 
havior cannot, therefore, be  specified  simply in terms of 
“instantaneous” relationships between a set of input  and a 
set of output variables. An extra set of variables is  re- 
quired whose purpose is to take into account the past 
history of the system; these variables are the state vari- 
ables of the system. The use of state-space treatments of 
dynamical and feedback systems  immediately  led to a 
deeper study of the scientific and mathematical problems 
of automatic  control  than  had ever before been 
attempted, and their introduction can be said to mark the 
emergence of control studies as a mature scientific disci- 
pline.  Even  the  most cursory study of the literature of the 
subject will  show what a profound change occurred be- 
tween the mid  1950’s and the late 1960’s. 

Pontryagin’s  maximum principle proved invaluable in 
dealing with situations where there were constraints on 
system inputs reflecting limitations of resources, and gave 
a dramatic demonstration of the power and potential of 
this new differential-equation-based approach. Bellman’s 
work on dynamic programming was  also concerned with 
the problem of dynamic optimization under constraint 
[19]-[22].  Bellman made clear the great usefulness of the 
concept of state for the formulation and solution of many 
problems in decision and control. It was inevitable that 
the linear multivariable feedback control problem would 
now be thoroughly examined from this point of view, and 
Kalman gave a definitive treatment of the linear optimal 
control problem with a quadratic form of performance 
index [108], [ 11 11. This work had one particular feature 
which  distinguished  it from most  previous studies of the 
feedback design  problem-it  gave a synthesis procedure 
by means of which the feedback system  design  was ob- 
tained directly from the problem specification [ 1151. This, 
at first  sight at  any rate, eliminated the trial and error 
procedures normally associated with  feedback  system  de- 
sign.  Previous attempts had been made to treat feedback 
system  design  within an analytical framework [168] but 
never before had the multivariable problem been so 
treated. Although  it can be argued that such a synthesis 
procedure simply shifts the burden of design  decision on 
to the choice of performance index, there is no doubt that 
the emergence of this elegant and powerful  synthesis 
solution to a multivariable feedback problem marked a 
new  high point in the development of feedback system 
design procedures. 

The rapidly growing importance of state-space methods 
led to an investigation of the relationships between state- 
space models and transfer function representations by 
Gilbert [79] and Kalman [ 1 131, and algorithms were  devel- 
oped for obtaining minimal-order state-space dynamical 
models  from  given transfer function matrices. Such 

studies led to the introduction of the  fundamental struc- 
tural concepts of controllability and observability [109], 
[79]. Certain classical dynamical ideas such as those 
associated with the characteristic modes of vibration of a 
linear dynamical system  were  now  seen to be useful in the 
state-space formulation and their relevance to control 
ideas and problems was examined. Rosenbrock put for- 
ward the idea of modal control [ 1921 in which the action 
of a feedback controller was envisaged in t e r n  of a shift 
of characteristic (modal) frequency. This important and 
physically appealing concept eventually led to a huge 
literature on the problem of “pole-shifting” and its use for 
design purposes [82],  [61],  [238],  [96],  [210],  [53],  [54], [MI.  
Wonham [238] proved that a sufficient condition for all 
the closed-loop characteristic frequencies of a controllable 
system  to be arbitrarily allocatable under feedback (within 
mild constraints imposed by physical considerations) is 
that all the states of the system are accessible. This key 
result further underlined and reinforced the importance of 
the concept of state. 

The use of these  revitalized  time-response methods had 
a profound effect on control work, and made crucially 
important contributions to solving the guidance problems 
of the space program. In the research literature of auto- 
matic control frequency-response methods went into a 
steep decline.  Even  worse, from the frequency-response 
protagonist’s point of  view,  was to follow. Filtering the- 
ory, at one time a seemingly impregnable bastion of 
frequency-response ideas, was also undergoing the state- 
space-method revolution. Kalman  and Bucy had realized 
that the problem of signal  recovery from corrupted 
measurements  which,  following  Wiener’s  work, had been 
almost invariably attacked along a frequency-response 
route, was  also amenable to the multivariable time-re- 
sponse approach [ l  lo], [41].  Because of the ease with 
which  it handled the nonstationary case, their work  led to 
an immediate advance in filtering technique. From the 
point of  view  of the development of general feedback 
theory, however, it had an especial significance,  since  it 
clearly demonstrated the basic  role of feedback in filtering 
theory. The form of multivariable filter  which  emerged 
from their studies,  the Kalman-Bucy filter, essentially 
consisted of a dynamical model of the message-generating 
signal  process  with multivariable feedback connected 
around it. This work  showed that a deep and exact duality 
existed  between the problems of multivariable feedback 
control and multivariable feedback filtering [ 1091. 

It was  now a natural next step to put together the 
optimal control treatment of a deterministic linear plant, 
whose performance is  specified  in  terms of a quadratic 
cost function, with the Kalman-Bucy  filtering method of 
extracting state estimates from observations corrupted by 
Gaussian noise  processes. Thus emerged  the standard 
treatment of the “LQG” (linear-quadratic-Gaussian) opti- 
mal control problem [7]  which became the linch-pin of the 
state-space treatment of multivariable control, and which 
was treated in many standard textbooks [6],  [129], [ a ] ,  
[116],  [201]. The key ideas of the LQG problem and its 
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background, and  an excellent  survey of the relevant litera- 
ture  up  to 1970, are given  in  [245]  which  was devoted  to 
this  topic. 

THE DEVELOPMENT OF A  FREQUENCY-RESPONSE 
APPROACH TO MULTIVARIABLE PROBLEMS 

Optimal  feedback control and optimal feedback filter- 
ing theory had  such  a great success  when applied to 
aerospace problems that this naturally led to attempts to 
apply these techniques to  a wide range of earth-bound 
industrial processes. It soon became clear that they  were 
less than immediately applicable in many  such cases, 
principally because the plant models available were not 
sufficiently accurate, and the performance indices  re- 
quired to stipulate the desired controlled plant behavior 
were  much  less obvious in form  than in the aerospace 
context. Moreover, the controller which  resulted from a 
direct application of optimal control and optimal filtering 
synthesis  techniques was in general a complicated one; in 
fact, if it incorporated a full  Kalman-Bucy  filter, it would 
have a dynamical complexity equal to  that of the plant it 
was  controlling, since the filter essentially  consisted of a 
plant model  with feedback  around it. What was  needed 
for  many  process control problems  was a relatively  simple 
controller which  would stabilize a plant, for which  only a 
very approximate  model might be available, about  an 
operating point and which  would  have some integral 
action in order to mitigate the effect of low-frequency 
disturbances. The sophisticated optimal control methods 
proved  difficult to use by industrial engineers brought  up 
on frequency-response ideas who essentially  needed to use 
a mixture of physical  insight and straightforward tech- 
niques, such  as the use of integral and derivative action, to 
solve  their  problems. For these  reasons an interest in 
frequency-response  methods  slowly  began to revive. It 
was obvious that a huge gap in techniques  existed  between 
the  classical  single-loop  frequency-response  methods, 
which  were  still  in  use for many industrial applications, 
and the  elegant and powerful multivariable time-response 
methods developed for aerospace applications. 

An important first step towards closing the yawning  gap 
between an optimal control approach and the  classical 
frequency-response approach was taken by Kalman [ 1121 
who studied the frequency-domain characterization of 
optimality. A systematic attack on the whole problem of 
developing a frequency-response analysis and design  the- 
ory for multivariable feedback systems  was  begun  in a 
pioneering paper by Rosenbrock [ 1931  which ushered  in a 
decade of increasing interest in a rejuvenated  frequency- 
response approach. Prior to this new point-of-departure, 
some  fairly straightforward work had been done  on the 
multivariable control problem.  Boksenbom and  Hood [34] 
put forward the idea of a noninteracting controller. Their 
procedure consisted  simply of choosing a cascaded com- 
pensator of such type that the overall transfer function 
matrix of the compensated system had a diagonal form. If 
such a  compensator  could  be  found then the controller 
design could be finished off using standard single-loop 

design  techniques. The required compensating matrix usu- 
ally arising from  such  a  procedure is necessarily a com- 
plicated one, and  the most succinct objection to this 
approach is simply that it is not necessary to go to  such 
drastic lengths  merely to  reduce interaction. A natural 
further step in this initial approach to multivariable con- 
trol was to see what  could  be  achieved by  way of standard 
matrix calculations using rational matrices; papers study- 
ing the problem in this way  were produced by Golomb 
and  Usdin [81], Raymond [190], Kavanagh [117]-[119], 
and Freeman [70],  [71]. Rosenbrock, however, opened  up 
a completely new line of development by  seeking to 
reduce a multivariable problem  to  one  amenable  to classi- 
cal  techniques in a more sophisticated way. In his  inverse 
Nyquist  array design method [194] the aim was to reduce 
interaction to an amount which  would then enable single- 
loop techniques to be employed, rather than to eliminate 
it completely. The  Rosenbrock  approach was based  upon 
a careful use of a specific criterion of partial interaction, 
the diagonal dominance concept. The success of his in- 
verse Nyquist  array  method led other investigators to 
develop  ways of reducing the multivariable design prob- 
lem to an eventual  succession of single-loop  problems 
[151]. 

In the noninteracting, or partially noninteracting, ap- 
proach  to multivariable control the motivation was the 
eventual deployment of classical  single-loop  frequency-re- 
sponse techniques during the final stages  of a design 
study. An alternative approach, however,  is to investigate 
the transfer-function matrix representation as  a single 
object in its own  right and to ask: how can the  key basic 
concepts of the  classical  single-loop approach  be suitably 
extended?  What are the relevant generalizations to the 
multivariable  case of the specific concepts of pole,  zero, 
Nyquist diagram, and root-locus diagram  and, further, 
what  essentially  new frequency-domain ideas can be de- 
veloped in the multivariable context? It soon  emerged that 
there was no single line of attack suitable for finding the 
answer to such  very deep  and far-reaching questions. The 
various  aspects of the main  research  lines  which  devel- 
oped  can be  conveniently labeled as the  algebraic,  geo- 
metric, and complex-variable approaches. 

The algebraic approach developed  from further studies 
of the relationships  between state-space and frequency-re- 
sponse representations and of the problem of generalizing 
the concepts of pole and zero to the  multivariable  case. In 
his study of the minimal realization problem, Kalman 
[ 1 131 had made  use of McMillan’s canonical form [ 1551 
for a rational transfer-function matrix. The so-called 
Smith-McMillan form was  used  by Rosenbrock in  his 
treatment of multivariable zeros [195],  [196],  [198]. 
Rosenbrock  gave a particularly comprehensive treatment 
of the multivariable zero problem as a part of his  im- 
portant and pioneering  work on  an algebraic  theory of 
linear  dynamical  systems. In this  work he  made a sys- 
tematic  use of a particular polynomial matrix representa- 
tion  which  he  called the system matrix [ 1951. These studies 
by Kalman  and  Rosenbrock showed  the great power and 
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relevance of algebraic theories for fundamental studies of 
the linear multivariable control problem, and they  were 
soon followed by a strong and sustained research effort on 
the algebraic approach. Surveys of  work on algebraic 
systems theory have been given  by Barnett [12] and Sain 
[203]. Kalman’s  work has shown the importance of using 
module theory in the algebraic approach to dynamical 
systems; from the mathematical point of view  this leads to 
a particularly “clean” treatment [ 1 141, [ 1 161. 

The central role of a system’s state in discussing its 
feedback control had been established by its part  in 
optimal control theory and by Wonham’s  pole-shifting 
theorem. Kalman and Bucy had shown  how to estimate 
unknown states from noise-corrupted system outputs. It 
was thus natural to seek  ways of using  system  model 
information to recover inaccessible system states from the 
uncorrupted outputs of deterministic dynamical systems, 
and Luenberger [ 1361-[138] introduced the use of ob- 
servers for this purpose. The idea had been emerging of 
separating a feedback problem into the two steps of  1) 
working out what to  do if a system’s state was completely 
accessible, and 2) devising a means of estimating the 
system’s  inaccessible states from the information con- 
tained in  its  accessible outputs. In the stochastic linear 
optimization problem a certainty-equivalence principle 
had been established [102],  [239],  [236], [ 131 which had 
shown that the stochastic optimal control problem could 
indeed be  solved in this  way. A similar sort of “separation 
principle” was established for the problem of pole-shifting 
using an observer: the same closed-loop poles are ob- 
tained using an observer (constructed with  perfect plant 
model information) as would have been obtained if all the 
system’s states had been available for feedback purposes 
[52]. These results and ideas led naturally to a deeper 
study of the problems of dynamic compensation [36], 
[237]  which further closed the gap between the classical 
frequency-response methods and those of what  was (un- 
fortunately) becoming known as “modem” control theory. 

A linear vector space approach to control problems 
obviously  has geometrical as well as algebraic aspects. 
Wonham and Morse  [240] carried out a definitive and 
far-ranging study of the geometrical treatment of multi- 
variable  control  problems, which culminated in 
Wonham’s elegant and  important book on this  topic  [241]. 
This definitive  text opened up a whole  new prospect for 
control studies. In this  work the dynamical significance of 
certain classes of subspaces of the state space plays a key 
role, and investigations of such topics as decoupling is 
camed out in a crisp and intuitively appealing way. Inde- 
pendent studies of a geometrical approach were carried 
out by  Basile and Marro [ 141-[  171. It seems clear that the 
geometrical theory has a key  role  to  play  in bringing 
together state-space and frequency-response approaches 
to the multivariable case  [147]. 

Yet another line of approach to the multivariable feed- 
back problem arises from the observation that the classi- 
cal Nyquist-Bode-Evans formulation of the single-loop 
case is based on complex-variable theory. Surely,  it  was 

thought, complex-variable ideas must have a role to play 
in the multivariable context, particularly when the alge- 
braic studies had shown how to extend to the multivari- 
able case such basic complex-variable concepts as poles 
and zeros. An early attempt  to extend Nyquist diagram 
ideas to the multivariable problem was made by Bohn 
[32],  [33]. In a series of papers MacFarlane  and his col- 
laborators demonstrated that algebraic functions could be 
used to deploy complex variable theory in the multivari- 
able feedback context [141]-[146]. It was shown that the 
poles and zeros associated with transfer-function matrices 
by algebraic means, via the Smith-McMillan form for a 
matrix of rational transfer functions, were related to the 
poles and zeros of an appropriate function of a complex 
variable. This line of investigation in turn led to a gener- 
alization of the classical Nyquist stability criterion to the 
multivariable case [141]. Following earlier heuristic treat- 
ments of this generalization, complex-variable proofs were 
provided  by Barman and Katzenelson [ 1 I]  and MacFar- 
lane and Postlethwaite [142]. The generalization of the 
Nyquist stability criterion to the multivariable situation 
was soon followed by complementary generalizations of 
the root locus technique [121], [ 1421,  [143],  [185],  [145]. 

Together with  these counter-revolutionary develop- 
ments of the classical frequency-response approaches 
came an increasing interest in the existence of links be- 
tween state-space models and methods and the various 
algebraic, geometric, and complex-variable techniques 
and results. It was discovered that deep and important 
links existed  between the poles, zeros, and root-locus 
asymptotes of the complex-variable characterizations and 
the basic operators of a state-space description [145]. 
These findings emphasized the deep significance for con- 
trol studies of the algebraic and geometric approaches 
which  were  being so rapidly developed. 

Since  much of the motivation for work on frequency-re- 
sponse methods arose from the need to develop robust 
design methods for plants described in terms of models 
derived from sketchy experimental data, a number of 
different design approaches in the frequency domain be- 
gan to emerge. Many of these techniques were  conceived 
in terms of interactive graphical working,  where the de- 
signer interacts with a computer-driven display [198]. As 
such,  they  placed great stress on the insight and intuition 
which could be deployed by an experienced designer; this 
was in great contrast to the specification-and-synthesis 
approach which had been the hallmark of the optimal 
control solution. 

Many of these approaches naturally sought to capitalize 
on the experience and insight existing for single-loop 
frequency-response designs. The most straightfonvard 
way to do this  is to somehow reduce a multivariable 
design problem to a set of separate single-loop  design 
problems. In Rosenbrock’s inverse Nyquist array method 
[ 1941, [ 1981, [ 1651 this  was done by  using a compensator to 
first make the  system diagonally-dominant. A careful use 
of this  specific form of criterion of partial noninteraction 
enabled the stability and performance of the closed-loop 
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system to be inferred from  its diagonal transmittances 
alone, and hence  enabled a multivariable design to be 
completed using  single-loop techniques. Mayne’s  sequen- 
tial return difference method [151] took a different line of 
approach  to the deployment of single-loop  techniques. It 
was built around a  series of formulas for the transmit- 
tance seen  between an input and  output of a feedback 
system,  having one particular feedback  loop  opened, when 
all the other feedback loop gains were made large.  Provid- 
ing that one could find a suitable place to start, this 
enabled the designer to  proceed  to design one loop at a 
time, and give  it  a suitably high value of loop gain before 
proceeding  to the next one. 

Other investigators  were  less concerned with the direct 
deployment of single-loop techniques and looked for ways 
of using the generalized Nyquist and root-locus  results as 
the basis of design methods.  MacFarlane  and Kouvarita- 
kis [144] developed  a  design approach based on a 
manipulation of the frequency-dependent eigenvalues and 
eigenvectors of a transfer function matrix. This line of 
attack was later extended  to  handle the general case of a 
plant having  a differing number of inputs and outputs by 
incorporating a state-space-based root-locus approach as 
an integral part of the overall procedure [145]. 

The interest and importance of the multivariable  con- 
trol problem generated a wide range of other investiga- 
tions.  Owens [174]-[176] studied ways of expanding trans- 
fer function matrices as sums of dyads and developed  a 
design approach on this  basis.  Wolovich  developed  multi- 
variable frequency-response approaches  to  compensation, 
decoupling, and pole placement [237]. Sain investigated 
design methods  based  on transfer-function matrix factori- 
zation and polynomial matrix manipulation [202],  [78], 
[177].  Bengtsson  used  geometrical ideas in the spirit of 
Wonham’s  work to devise  a  multivariable  design ap- 
proach [23]. Davison made extensive  investigations of the 
multivariable control problem and developed an approach 
which, although state-space based,  was  in  the same en- 
gineering  spirit as the more frequency-biased work.  His 
studies emphasized the importance of robustness to 
parameter variation [55]-[58]. Youla and Bongiorno ex- 
tended the analytical feedback design technique devel- 
oped by  Newton  [168] to the multivariable case [242]. 

As the broad outlines of the frequency-response  theory 
of linear multivariable control systems  began to emerge, 
interest rose  in  the appropriate extensions of nonlinear 
criteria such as the describing function and circle criter- 
ion, and work to this end was started by  several  workers 
[2241, [ W ,  11971,  [501, 181, [ W ,   [ W .  

MULTIDIMENSIONAL FILTERING 

The need  to enhance the quality of pictures transmitted 
back to earth from exploring  satellites and space probes 
resulted in  work on the “multidimensional” filtering of 
video  signals, that is on their simultaneous processing  in 
more than one spatial dimension. This further generaliza- 
tion of the  problem of dynamic filtering  led to a study of 

the stability of multidimensional feedback filters, and this 
in turn led to  an appropriate extension of frequency- 
domain techniques, including that of determining closed- 
loop stability via Nyquist-type criteria. Jury [lo71 has 
given  a  very  comprehensive  survey of work in this area. 

EPILOGUE 

From our present vantage point we can  attempt to put 
frequency-response methods  into perspective. Nyquist 
started a  completely  new line of development in auto- 
matic control when he  analyzed the problem of closed- 
loop stability from the signal-transmission viewpoint 
rather than the mechanistic viewpoint. In so doing  he 
showed the engineers  designing and developing feedback 
devices and automatic control systems  how to use the 
powerful  tools  which can  be forged from the theory of 
functions of a  complex variable. His famous stability 
criterion had an immediate and lasting success  because it 
related to quantities which could be directly measured 
and because it was  expressed in terms of variables which 
could be immediately understood and interpreted in terms 
of appropriate actions to be taken to improve  a feedback 
system’s performance. The frequency-response concepts, 
and the immensely popular and useful  design techniques 
based upon them,  satisfied  a criterion of great importance 
in engineering  work-they enabled engineers to quickly 
and fluently communicate to each other the essential 
features of a feedback control situation. Complex-variable 
methods are of such power and potential that their con- 
tinued use and  development is surely not in doubt. Even 
at the height of the “state-space revolution” the classical 
Nyquist-Bode-Evans techniques were the workhorses of 
many  designers for their  single-loop  work. 

The real significance of the introduction of state-space 
methods is that it marked the beginning of a  new,  more 
general,  more  rigorous, deeper, and more far-reaching 
approach to automatic control. We are now  beginning to 
see that automatic control is a  vast subject, still  in the 
early stages of development, and requiring  a great breadth 
of approach in setting up adequate theoretical founda- 
tions. Its scope  is such that no single approach, via the 
“time domain” or the “frequency  domain” alone, is going 
to be  sufficient for the development of adequate analysis 
and design  techniques. What it is  hoped will emerge 
clearly from the contents of this book is that Nyquist’s 
ideas, and the frequency-response approach developed 
from  them, are alive at the frontiers of current research, 
and that they  will continue to play an indispensable role 
in  whatever grand theoretical edifice  emerges in time. 
Nyquist  made truly outstanding contributions to engineer- 
ing. He carried on a great tradition in the applied sciences 
going  back to Fourier whose epochal work  first appeared 
in 1811  [45], and in doing so transformed the arts of 
telegraph  transmission and feedback systems  development 
into exact  sciences. May his spirit live on in the work 
collected  here, and in the future developments of feed- 
back and control. 
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