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INSTRUMENTATION AND CONTROL 
 

TUTORIAL 11 – CONTROL ACTION 
 
 
This tutorial is of interest to any student studying control systems and in particular the EC 
module D227 – Control System Engineering.  
 
 
On completion of this tutorial, you should be able to do the following. 
 

 
• Explain the term control action. 
 
• Explain proportional control action. 
 
• Explain integral control action. 
 
• Explain differential control action. 
 
• Explain 3 term or P.I.D. control action. 
 
• Discuss the Zeigler - Nichols methods of adjusting a 3T controller. 
 
• Explain the use of Lead and Lag Phase Compensation methods. 
 
 
 

 
 
If you are not familiar with instrumentation used in control engineering, you should 
complete the tutorials on Instrumentation Systems. 
 
In order to complete the theoretical part of this tutorial, you must be familiar with basic 
mechanical and electrical science. 
 
You must also be familiar with the use of transfer functions and the Laplace Transform 
(see maths tutorials). 



1. INTRODUCTION
 
The diagram shows a circuit of a typical control system. The purpose of this tutorial is to study the 
controller. The controller processes the error and is vital in producing the desired response from the 
system. One of the most common controllers for analogue systems is called the 3 term or P.I.D. 
controller. The symbol x is used in this tutorial to indicate a signal. 
 

xi = input signal   xo = output signal    xe = error signal 

 
Figure 1 

2. THREE TERM CONTROL 
 
3 term control is widely used to enable a system to respond with respect to time in the best possible way. 
The system must respond to the error xe such that the error is reduced to zero as quickly as possible with 
no oscillation. The three terms used by the controller are Proportional, Integral and Differential, 
abbreviated to P.I.D. control. Let's consider each in turn. 
 
2.1 PROPORTIONAL CONTROL 
 
The output is directly proportional to the input so G1 = kp. The constant kp is the gain and this controls the 
basic response speed of the system. 

 
Figure 2 

 
Increasing the gain may produce overshoot and hunting as shown above when a sudden (step) change is 
made to the input. This is especially true if the system is oscillatory in nature due to second order terms 
such as inertia or inductance and there is insufficient damping. A system will not always settle at the 
correct level when a step input is applied. For example the response to a system with an open loop 

transfer function ( )( )5s1s
k
++

and unity feedback to a unit step is shown below. The system settles at a 

level less than unity. Increasing the gain k brings the response closer to unity but introduces a damped 
oscillation. This is where integral control action is needed. 

 
Figure 3 
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2.2 INTEGRAL CONTROL 
 
This is very useful in avoiding offset error. Some systems will respond to a step input by settling at a 
different level to the step value. This might be due to the way the system is designed or due to a 
disturbance added to the output. 

  
Figure 4 

 
With integral action, the output Q will grow with time until the system responds and reduces the error to 
zero. 

 
Figure 5 

 
The equation for integral control is usually rearranged as follows. 

sT
xk

Q(s)              dtx
T
k

  dtxkQ(t)
i

ep
e

i

p
ei === ∫∫  

ki is the integral constant of proportionality. It is usual to replace this with 
i

p
i T

k
k =  

kp is the proportional constant and Ti the integral time constant. The reason for arranging the equation 
into this form will become apparent later. 
 
2.3 DIFFERENTIAL 
 
The output of the controller is directly proportional to rate of change of the error. 

 
Figure 6 

 
In the case of a step change, the rate of change is greatest at the start of the change and so the system will 
respond quickest in the early stages. As the error reduces, the rate of change of error also reduces and the 
system is slowed down in anticipation of arriving at the correct level. This form of control enables 
quicker response without overshoot. 
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The equation is usually rearranged as follows. 

edp
e

dp
e

d  xs )T(kQ(s) form Laplacein or  
dt

dx)T(k
dt

dxkQ(t) ===  

kd = kp Td    kp is the proportional constant and Td the differential time constant. 
 
Most system controllers will have adjustments which enable the constants kp, Ti and Td to be set in order 
to optimise the system response. In modern equipment, the facility exists for the system to optimise these 
constants automatically. Generally they are set to produce the fastest response time possible with no 
overshoot. 
 
2.4 THREE TERMS TOGETHER 

 
Figure 7 

The output of a P.I.D. controller is 
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 WORKED EXAMPLE No.1 
 
 The input and output of a P.I.D. controller is related by the equation 

dt
dx

0.2 dtx2 0.5xQ(t) e
ee ∫ ++=  

 Find the value of the proportional gain, the integral time constant and the differential time constant. 
 
 SOLUTION 

 By comparison with the equation 
dt

dx
Tk dtx

T
k

 xkQ(t) e
dpe

i

p
ep ∫ ++= it is apparent that: 

 kp = 0.5 and kp /Ti = 2 hence Ti = 0.5/2 = 0.25   = kp Td = 0.2 hence Td = 0.2/0.5 = 0.4 
 
 
 
 
 SELF ASSESSMENT EXERCISE No.1 
 
 The input and output of a PID controller is related by the equation 

dt
dx

4 dtx0.5 2xQ(t) e
ee ∫ ++=  

 Find the value of the proportional gain, the integral time constant and the differential time constant. 
 (2, 4 and 2) 
 

© D.J.DUNN 4 



3. ZEIGLER – NICHOLS METHOD OF TUNING
 
In order to optimise the performance of a system, the controller parameters need to be set. Much has been 
written about this. The late Zeigler and Nichols produced a practical guide for setting up three term 
controllers for plant systems dating back to the 1940’s. The following is still useful for that purpose. 
 
CLOSED LOOP METHOD 
In this method only proportional gain is used and this adjusted until small continuous oscillation are 
obtained. The system is then at the limit of instability. The gain G and periodic time Tp are noted. The 
three term controller is then set so that: 
 
kp = 0.6 G Ti = Tp/2 Td = Tp /8 
 
This will produce a response to a step change in the 
form of a decaying oscillation with a damping ratio of 
0.21 and the amplitude of the second cycle will be ¼ of 
the initial amplitude as shown. This is accepted as a 
reasonable setting for most process plant systems.  
 
The resultant open loop response should be the same as 
in the following and the controller constants will be the 
same as below. 
           Figure 7 
 
OPEN LOOP METHOD 
With the feedback disconnected introduce a step change 
and measure the response. A typical plant process 
produces an open loop response as shown. 
 
τ is the time delay which often occurs in plant systems 
due to the lag in the processes. T is the time constant, H1 
is the input step and H2 the resultant step in the steady 
state. The steady state gain is  H1/ H2
 
The settings for the controller are then adjusted as follows.    Figure 8 
kp = 1.2 T H1/(H2 τ) Ti = 2 τ  Td = 0.5 τ 
 
 
 SELF ASSESSMENT EXERCISE No.2 
 
 1. A plant process is controlled by a PID controller. In a closed loop test using only proportional 

gain, the limit of stability was found to occur with a gain 4.5. Calculate the proportional, integral and 
differential constants required so that a ¼ decay is obtained in response to a step change. 

 
 (kp =2.7, Ti = 40 s and Td = 5 s) 
 
 
 2. The three term controller in a plant process is to be adjusted for optimal performance using the 

Zeigler Nichols open loop method. The proportional gain was set to give a steady state step change 
equal to the input change. The time delay was 24 seconds and the time constant was 50 seconds. 
Calculate the proportional, integral and differential constants required. 

 
 (kp =2.5, Ti = 48 s and Td = 12 s) 
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4. PHASE COMPENSATION
 
This is an alternative approach to using P. I. D. control and is also called Dynamic Compensation. The 
transfer function is denoted D(s) in the following work. The idea is to change the open loop characteristic 
to meet the design requirements regarding steady state error, phase margin and gain margin. A 
proportional gain Kp is also used. Consider a basic unit feedback system as shown. Dynamic 
compensation can take many forms but the most common are lead and lag. 

 
Figure 9 

The dynamic compensation has transfer functions of the form 
ps
zsD(s)

+
+

= or 
1sτ
1sτD(s)

2

1

+
+

= .  

Because of the way this was produced by analogue electronics, many text books present the transfer 
function differently but modern electronic controllers would have no problem using this form because it is 
generated by computer software. 
 
The numerator (top line) produces lead and the denominator (bottom line) produces lag. Clearly it 
depends on the values of τ1 and τ2 as to which will dominate. 
 
If τ1>τ2 then the lead dominates. 
If τ2>τ1 then the lag dominates. 
 
Although it is unlikely that either of them is used on their own, it is worth considering them separately. 
 
LEAD COMPENSATION        
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This is the same as differential plus proportional. The affect of introducing this is 
to lower the rise time and decrease the overshoot. 
 

zsD(s) +=  or 1τsD(s) += . ( ) 1ωτ jjD +=ω  
The phasor on an Argand diagram is shown.  The gain and phase angle are: 
            Figure 10 
G(db) = ( )1τωlog 101τω20log 2222 +=+   
 
φ = tan-1(ωτ)    
            
LAG COMPENSATION  
 
The affect of introducing this is to improve the steady state accuracy 
and so it is similar to integral action. 

ps
1D(s)
+

= or 
1τs

1D(s)
+

= .  ( )
1ωτ j

1jD
+

=ω  

The phasor on an Argand diagram is shown.  The gain and phase 
angle are:  
G(db) = ( )1τωlog 101τω20log- 2222 +−=+  
  
φ = -tan-1(ωτ)           Figure 11  
         



COMBINED 

For a combination of lead and lag (which is normal) 
ps
zsD(s)

+
+

= or 
1sτ
1sτD(s)

2

1

+
+

= . 

Basically the lag factor is useful for attenuating the signal at high frequencies and the lead factor increases 
the phase margin. The idea is to find values of τ1 and τ2 that give the required phase angle and phase gain 
at the required frequency. We could analyse this by looking at the position of the poles and zeros but in 
this tutorial we confine the work to Bode plots. The gain and phase angles are given by the following 
formulae. 
 
( ) ( ) ( )1τωlog 101τωlog 10dbG 2

2
22

1
2 +−+=  

  
φ = tan(ωτ1) - tan-1(ωτ2) 
      
The plot Bode plot below shows the gain and phase angle when lead dominates (τ1> τ2). The gain 
increases above the breakpoint and the phase angle becomes more positive (stable) near the breakpoint 
frequency. 
 

 
Figure 12 

 
The plot Bode plot below shows the gain and phase angle when lag dominates (τ2>τ1). The gain is 
attenuated above the breakpoint and the phase angle becomes more negative (less stable) near the 
breakpoint frequency. 

 

 
Figure 13 
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WORKED EXAMPLE No. 2  
 
(Note this could also be a question about derivative control action) 

The open loop transfer function for a position control system is ( )s1s
1G(s)
+

= . This is used with unit feed 

back, proportional gain and a phase lead compensator. A unit ramp input of 1 m/s is applied. Determine 
the proportional constant Kp to produce a steady state error of 40 mm and the compensator constant τ to 
produce a phase margin of 30o. 

 
Figure 14 

SOLUTION 

The overall open loop transfer function is 
( )
( )1ss

τs1K
G p

+

+
=  

The steady state error (from earlier tutorials) is 0swhen 
G(s)1
(s)sθ(t)x i

e →
+

=  

For a ramp or velocity input θi = ct and θi (s) = c/s2 

{ }
0swhen 

G(s)1s
sc(t)x 2e →
+

=  ( )
( )

0swhen 

1ss
τs1K

1s

c(t)x
p

e →

⎭
⎬
⎫

⎩
⎨
⎧

+

+
+

=  

( )
( )

0swhen 

1s
τs1K

s

c(t)x
p

e →

⎭
⎬
⎫

⎩
⎨
⎧

+

+
+

=  ( )
( )
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e K

c
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01K

0

c(t)x =

⎭
⎬
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⎩
⎨
⎧

+

+
+

=  

For a unit ramp c = 1 m/s  
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hence xe = 0.04 m = 1(m/s)/Kp   Kp = 1/0.02 = 25 s-1

 
Now we need to find the phase margin without 
compensation and the frequency at which it occurs. 

To do this we need a Bode plot for ( )1
5
+ss

2Gol = . 

The formulae to be used (from earlier tutorials) are: 
D(db) = 20 log(25) – 10log(ω2T2+1) - 20 log(ω)  
φ = -tan-1(ωT) – 90o (Note T = 1) 
 
These can be done using straight line approximations 
or by a full plot. 
 
The cross over frequency is 5 rad/s and the phase 
angle is -169o giving a phase margin of 11o. This 
means that we need a further 19o adding by the 
compensator at 5 rad/s. 
 
The phase lag produced by the compensator is given 
by φ = tan-1(ωτ)      
            Figure 15 



tan(19o)= ωτ = 5 τ   τ = 0.344/5 = 0.069  
 

Now we need the Bode plot for ( )
( )1ss

τs152G
+
+

= and 

the formulae are: 
D(db) = 20 log(25) – 10log(ω2T2+1) - 20 log(ω) + 
10log(ω2τ2+1) 
φ = -tan-1(ωT) – 90o + tan-1(ωτ)           (Note T = 1) 
 
The result is shown and it appears that we have 
met the criterion of 150o at 5 rad/s. 
 
 
 
 
     Figure 16 
 
 
 
We need a word of warning here however. We were lucky with the figures, but adding phase lead 
compensation increases the cross over frequency. In this case the increase was very small. If at this stage 
it is found that the cross over frequency has increased significantly we might not achieve the phase 
margin expected and have to repeat the process with a higher frequency. This is easy with a computer 
package but laborious with a calculator. The best idea is to make an educated guess. 
 
 
 
SELF ASSESSMENT EXERCISE No.3 
 
Repeat the last example but for a phase margin requirement of 60o.  (τ = 0.192) 
 
 
 
WORKED EXAMPLE No. 4 

The open loop transfer function of a system is ( )( )( )0.25s1s214s1
K

G(s) . Determine the best lead 

and lag compensation to produce a phase margin of at least 30

p

+++
=

o and a steady state error of 1/40 in 
response to a unit step. 
 
SOLUTION 

We are going to add a lead and lag term of the form ( )
( )sτ1

sτ1D(s)
2

1

+
+

=  

The overall open loop transfer function is 
( )

( )( )( )( )10.25s12s14ssτ1
sτ1K

G
2

1p

++++

+
=  

The steady state error (from earlier tutorials) is 0swhen 
G(s)1
(s)sθ(t)x i

e →
+

=  

For a unit step input θi = 1/s  0swhen 
G(s)1
1(t)xe →

+
=

( )
( )( )( )( )

0swhen 

10.25s12s14ssτ1
sτ1K

1

1
G(s)1
1(t)x

2

1p
e →

++++

+
+

=
+

=  
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( )
( )( )( )( )

pp
e K

1 

1111
1K

1
40
1(t)x ===  

Hence Kp = 40 
 
The bode plot is shown for the open loop transfer function 

( )( )( )10.25s12s14s
K

G p

+++
=  

 
The cross over frequency is 2 rad/s and the phase angle at 
this frequency is -187o giving a phase margin of  -7o which 
means the system is unstable. 
 
It is relatively easy to find appropriate values of τ1 and τ2 
with a computer package but very difficult to do it without. 
              Figure 18 
 
We require a phase margin of 30o so we need a phase angle of 150o at the cross over frequency. The 
frequency at which φ =150o is close to 0.9  rad/s and the gain is 14 db. We need to attenuate the gain by 
14 db at 0.9 rad/s but this would also make the phase angle more negative. We need to make an educated 
guess that allowing another 5o will be more than enough so we readjust and look at φ = 145o. This shows 
we need to attenuate 15 db at 0.85 rad/s. 
 
The change in gain is ( ) ( )   1τωlog 101τωlog 10)(dbD 2222

c 21 +−+=  

The change in phase angle is ( ) ( )   ωτatanωτtana 21 −=cφ  
Putting ω =  0.85 rad/s we need to do a lot of guessing and correcting to eventually find that when τ1 = 21 
and τ2 = 118 : 
φc=-2.6o and Dc(db) = -15 db so we will achieve a 
phase margin of about 33 o at the cross over 
frequency. We now need to plot 

 
( )

( )( )( )( )10.25s12s14ss1811
s121K

G p

++++

+
= and 

this shows that we have achieved our objective. 
The blue curve shows the uncompensated result 
and the red curve the result after applying 
compensation. The phase margin is about 35o. 
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If the cross over point must be at some other 
frequency then more work would need to be done. 

 

 

        Figure 19 
 

 
 

 
 
 

 



 
 
SELF ASSESSMENT EXERCISE No.3 
 
 

The open loop transfer of a system is ( )( )0.25s1s21
40G(s)
++

=  

 
Determine the dynamic compensation required to produce a phase gain of 45o with a cross over frequency 
between 4 and 6 rad/s. 
 

Answer ( )
( )15s1

8s1D(s)
+
+

=  
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