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Abstract— This paper investigates the robust synchronization of coupled chaotic systems based on robustH∞ control techniques
and its application in an information transmission experiment. From recent results of the literature, a design methodology has been
proposed to deals with the synchronization of a class of Lur’e discrete time systems. Practical experiments are presented in order
to emphasize the design methodology effectiveness and to validate its implementation.

Keywords— chaotic systems, synchronization,H∞ control, linear matrix inequalities (LMIs).

Resumo— Este trabalho investiga a sincronização robusta de sistemas caóticos acoplados com base em técnicas de controle
robustoH∞ e a sua aplicação em um mecanismo experimental de transmissão de informação. A partir de resultados recentes
da literatura, uma metodologia de projeto foi proposta paratratar da sincronização de uma classe de sistemas de Lur’e a tempo
discreto. Experimentos práticos são apresentados para enfatizar a efetividade da metodologia de projeto proposta e validar a sua
implementação.

Keywords— sistemas caóticos, sincronização, controleH∞, desigualdades matriciais lineares (LMIs).

1 Introdução

Motivados pelos resultados apresentados por Louis
Pecora e Thomas Carroll em seu artigo seminal,
(Pecora and Carroll, 1990), que mostrava a viabilidade
de se sincronizar circuitos osciladores com comporta-
mento dinâmico caótico, diversos trabalhos foram de-
senvolvidos ao longo dos últimos anos contemplando
o tema de sincronização de sistemas caóticos.

Entende-se por sistemas caóticos uma classe de
sistemas não-lineares que apresentam extrema sen-
sibilidade à sua condição de inicialização. Nestes
sistemas, o comportamento dinâmico é de difícil
predição a partir do ponto inicial e a sincronização
ocorre a medida que, por exemplo, dois sistemas caóti-
cos são forçados a seguirem a mesma trajetória no es-
paço de estados.

A sincronização de sistemas caóticos encontra
aplicação em diversas áreas da física, da biologia e da
engenharia. Certamente, em um primeiro momento da
história, as aplicações voltadas à mecanismos de co-
municação foram as que mais motivaram os estudos
em sincronização de sistemas caóticos.

Diversas técnicas para sincronização de sis-
temas caóticos foram propostas na literatura (veja em
(Pecora et al., 1997) um apanhado de algumas destas
técnicas e suas aplicações). Atualmente destacam-
se trabalhos relacionados à sincronização de sistemas
caóticos desenvolvidos com base na aplicação de téc-
nicas da Teoria de Controle Robusto (Millerioux and
Daafouz, 2003), (Jiang and Zheng, 2004), (Ji et al.,
2006).

Neste trabalho uma metodologia de projeto sis-
temática será desenvolvida para tratar do problema de
sincronização de uma classe de sistemas Lur’e a tempo
discreto. Esta metodologia de projeto inspira-se na
concatenação das principais idéias apresentadas na li-
teratura (Millerioux and Daafouz, 2001), (Mendes and
Billings, 2002) e (Aguirre et al., 2005) e consiste, basi-
camente, em etapas que envolvem identificação e esti-
mação paramétrica de sistemas, discretização, formu-
lação de um problema de reconstrução de estados e,
por fim, a aplicação de técnicas de controle robusto
H∞ em formulações por desigualdades matriciais li-
neares – LMIs.

Com o objetivo de ilustrar a efetividade da
metodologia de projeto proposta, resultados expe-
rimentais serão apresentados neste trabalho, con-
siderando o problema de transmissão de informação.
Os experimentos foram realizados em uma plataforma
laboratorial baseada no circuito oscilador de Chua
(Matsumoto, 1984). A comunicação será realizada
com base no princípio de transmissão de informação
apresentado em (Tôrres and Aguirre, 2004), através da
sincronização de circuitos osciladores de Chua acopla-
dos. O teste de transmissão de informação servirá
como um índice de verificação de qualidade do sincro-
nismo robusto obtido pela abordagem proposta neste
trabalho.

A seção 2 apresenta uma proposta de metodolo-
gia de projeto para sincronização de sistemas caóticos
e uma abordagem para sincronização robusta de uma
classe de sistemas Lur’e a tempo discreto. A seção 3
desenvolve uma aplicação experimental de transmis-
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são de informação para evidenciar a efetividade da
metodologia de projeto apresentada. A seção 4 apre-
senta a conclusão do trabalho.

2 Desenvolvimento

2.1 Metodologia de Projeto

A metodologia de projeto para solucionar o pro-
blema de sincronização caótica consiste em três pas-
sos. Primeiramente, os parâmetros que caracterizam
os modelos dos sistemas caóticos deverão ser estima-
dos. Em seguida, caso seja necessário, deve-se obter
um modelo discreto que represente de forma fiel o
modelo contínuo no tempo. Por fim, deve-se aplicar
a abordagem desenvolvida neste trabalho para a sin-
cronização robusta de sistemas caóticos.

Para a estimação dos parâmetros dos modelos
sugere-se a aplicação das abordagens apresentadas em
(Aguirre et al., 2005) ou (Sitz et al., 2004), onde
os parâmetros dos sistemas são estimados, recursiva-
mente, através de um algoritmo baseado no filtro de
Kalman uncented – UKF. Estas abordagens de esti-
mação provaram ser bastante eficientes, mesmo para
os casos de identificação de sistemas não-lineares a
partir de massas de dados corrompidas com ruído.

Em (Mendes and Billings, 2002) é apresen-
tado um método para discretização de sistemas não-
lineares. Este método de discretização é eficiente
ao garantir no sistema discretizado a preservação dos
pontos fixos originais do sistema contínuo e a recons-
trução da sua dinâmica, mesmo para uma ampla faixa
de valores de tempo de integração.

2.2 Esquema de Sincronização Mestre-Escravo

Considere um esquema de sincronização constituído
de sistemas não-lineares a tempo discreto com tran-
sições de estados e saídas descritas por:

Mestre

{
xm

k+1 = A(ρk)xm
k +B(ρk)

ym
k = Cxm

k

(1)

Escravo

{
xe

k+1 = A(ρk)xe
k +B(ρk)+uk

ye
k = Cxe

k

(2)

ondexm,e
k ∈ R

n exm,e
k+1 ∈ R

n denotam os vetores de es-
tado nos instantes de tempo discretok ek+1, respecti-
vamente1. ym,e

k ∈ R
m denotam os vetores de saída me-

dida.uk ∈R
n denota o vetor de controle de sincroniza-

ção. A(ρk) ∈ R
n×n representa a matriz dinâmica do

sistema,B(ρk) ∈ R
n é um termo afim,C ∈ R

m×n é
a matriz de saída eρk ∈ R

p o vetor de parâmetros,
função do tempo.

O sincronismo é uma condição obtida quando sis-
temas dinâmicos descrevem, simultaneamente, uma
trajetória comum no espaço de estados.

1Os subscritos ‘m’ e ‘e’ denotam os sistemasmestree escravo,
respectivamente.

Definindo o erro de sincronização como a dife-
rença entre os estados dos sistemas mestre e escravo,
εk = Xm

k −Xe
k , e assumindo uma lei de controleuk =

L(ρk)(ym
k − ye

k), ondeL(ρk) ∈ R
n×m representa uma

matriz de ganhos de sincronização, pode-se investi-
gar a sincronização entre os sistemas mestre e escravo
através do sistema de erro de sincronização usando a
definição do erro de sincronismo:

εk+1 = (A(ρk)−L(ρk)C)εk (3)

A sincronização global entre os sistemas mestre e
escravo é assegurada para qualquer estado inicialxe

0,
se a condição de convergência

lim
k→∞

‖ εk ‖= 0, ∀ε0 ∈ R
n (4)

pode ser verificada, sendo que‖ · ‖ representa a norma
Euclidiana.

A dificuldade em se estabelecer condições gerais
para a solução do problema de sincronização global
de sistemas caóticos tem conduzido as investigações
neste tema a tratarem sistemas de estrutura particu-
lar. Um sistema muito investigado na literatura para
este propósito é o sistema Lur’e. Diversas abordagens
como (Bowong et al., 2004), (Liao and Chen, 2003),
(Suykens et al., 1999) e (Suykens et al., 1997) foram
apresentadas para tratar da sua sincronização.

Nesta perspectiva, este trabalho contemplará in-
vestigações a cerca da sincronização de uma classe de
sistemas Lur’e a tempo discreto que poderá ser repre-
sentada através de descrições locais no espaço de esta-
dos. Esta descrição é adequada à aplicação de técnicas
difundidas na Teoria de Controle Robusto. Considera-
se que os sistemas não-lineares poderão ser represen-
tados em uma configuração linear por partes, onde o
espaço de estados será particionado emN regiõesRi

de modo que
SN

i=1Ri ⊆R
n. A cada instante de tempok

o vetor de estadosxk visitará uma regiãoRi , que estará
associada a um único conjunto de matrizes constantes
Ai , Bi e Li .

2.3 Sincronização RobustaH∞

Considere um cenário onde o sistema mestre possa
sofrer a interferência de sinais exógenoswk ∈ R

q em
sua dinâmica e na saída medida:

Mestre

{
xm

k+1 = Aix
m
k +Bi +Eiwk

ym
k = Cixm

k +Diwk

(5)

ondeEi ∈ R
n×q e Di ∈ R

m×q representam matrizes de
ponderação.

Neste contexto ruidoso, a sincronização entre os
sistemas mestre e escravo pode ter o seu desempenho
degradado. Em um pior caso, a sincronização poderá
ser inviabilizada em função da presença destes sinais
exógenos.
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A determinação de uma lei de controleuk que
garanta a sincronização entre os sistemas mestre e es-
cravo e que seja robusta (insensível) a interferências
ruidosas torna-se fundamental.

O teorema apresentado na seqüencia tratará do
problema de sincronização de sistemas caóticos em
um contexto ruidoso. Este teorema está fundamentado
no conceito de estabilização robustaH∞ do sistema de
erro (3) reescrito como:

Erro

{
εk+1 = (Ai −LiC)εk +(Ei −LiDi)wk

zk = C̃εk + D̃wk

(6)

sendo quezk ∈ R
r denota um vetor de ponderação do

erro de sincronização ẽC ∈ R
r×n e D̃ ∈ R

r×q repre-
sentam matrizes de ponderação.

O índice de desempenho robusto norma-H∞ pode
ser determinado através do limitante superiorγ do
ganho induzidoℓ2 definido como:

sup
‖w‖2 6=0

‖ z‖2

‖ w ‖2
< γ (7)

onde‖ · ‖2 corresponde à normaℓ2.
Este ganho corresponde à razão entre a energia de

um sinal de ponderação ‘z’ associado à informação do
erro de sincronização e à energia do sinal de distúrbios
exógenos ‘w’.

O problema de sincronização caótica pode ser for-
mulado como um problema de estabilização robusta
do sistema de erro de sincronização (6).

O teorema que se segue fornece condições sufi-
cientes para que as matrizes de ganho de sincronização
Li possam ser obtidas.

Teorema 1 Considere o sistema de erro (6). Se exis-
tirem matrizes simétricas Si ≻ 0, Sj ≻ 0, matrizes V e
Fi e um escalarγ > 0 que solucionem o problema de
otimização:






minimizar γ
s.a :

[
Sj −VT −V VAi −FiCi VEi −FiDi

AT
i VT −CT

i FT
i −Si +C̃TC̃ C̃TD̃

ET
i VT −DT

i FT
i D̃TC̃ −γ2I + D̃T D̃

]

≺ 0

∀(i, j) ∈ {1· · ·N}

então o ganho de sincronização é dado por Li =
V−1Fi . Além disso, o nível de atenuação de distúr-
biosH∞ da entrada wk para a saída de ponderação
do erro de sincronização zk, corresponde ao valorγ.

Demonstração: Reescreva o sistema de erro (6)
como:

{
εk+1 = Ãiεk + B̃iwk

zk = C̃εk + D̃wk

(8)

sendoÃi ≡ (Ai −LiCi), B̃i ≡ (Ei −LiDi).
Considere a função de Lyapunov dependente de

parâmetro:

V(εk, p) = εT
k Spεk (9)

comSp ≻ 0.
A estabilidade e o desempenhoH∞ do sistema de

erro (6) podem ser alcançados se o sinal da função
quadrática:

V(εk+1, j)−V(εk, i)+zT
k zk− γ2wT

k wk < 0 (10)

pode ser verificado para todo(i, j) ∈ {1· · ·N}, εk ∈
R

n, wk ∈ R
m não-nulo e um dado nívelγ de atenuação

de distúrbiosH∞.

Aplicando (8) e (9) em (10) segue:

(Ãiεk + B̃iwk)
TSj(Ãiεk + B̃iwk)− εT

k Siεk

+zT
k zk− γ2wT

k wk < 0, (11)

que pode ser representado na notação matricial:

[
εk

wk

]T

Λ
[

εk

wk

]

< 0 (12)

Λ =

[
ÃT

i Sj Ãi −Si +C̃TC̃ ÃT
i Sj B̃i +C̃TD̃

B̃T
i Sj Ãi + D̃TC̃ B̃T

i Sj B̃i − γ2I + D̃TD̃

]

Aplicando o Complemento de Schur em (12)
obtém-se:





−Sj Sj Ãi Sj B̃i

ÃT
i Sj −Si +C̃TC̃ C̃T D̃

B̃T
i Sj D̃TC̃ −γ2I + D̃TD̃



 ≺ 0 (13)

Definindo uma variável de relaxaçãoV ∈R
n×n tal

queV =VT = Sj (veja (de Oliveira and Skelton, 2002)
para detalhes), e multiplicando (13) à esquerda e
à direita pela transformação de similaridadediag {
VS−1

j , I , I } , segue:





Sj −VT −V VAi −VLiCi VEi −VLiDi

AT
i VT −CT

i LT
i VT −Si +C̃TC̃ C̃T D̃

ET
i VT −DT

i LT
i VT D̃TC̃ −γ2I + D̃T D̃



 ≺ 0

Por fim, procedendo com a mudança de variáveis
linearizante: VLi  Fi ; obtém-se as restrições
matriciais do problema de otimização. 2

Nota 1: Considerando que o problema de otimiza-
ção pode ser reescrito como um problema convexo
descrito por desigualdades matriciais lineares – LMIs
(considere minimizar uma variávelδ ≡ γ2 e, posteri-
ormente, fazerγ =

√
δ), o menor nívelγ de atenuação

de distúrbiosH∞ pode ser obtido.
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3 Aplicação

Nesta seção serão apresentados resultados experimen-
tais obtidos com a aplicação da abordagem desen-
volvida neste trabalho para tratar da sincronização ro-
bustaH∞ de sistemas caóticos.

O problema de transmissão de informação será in-
vestigado com base na metodologia de projeto pro-
posta e no princípio de transmissão de informação
via controle - ITVC - apresentado em (Tôrres and
Aguirre, 2004).

Uma plataforma laboratorial denominada
PCChua será considerada para a implementação dos
experimentos de transmissão de informação. Para os
detalhes construtivos e operacionais da plataforma
PCChua veja (Tôrres and Aguirre, 2005).

3.1 Transmissão de Informação

Considere o mecanismo de transmissão de informação
exibido na figura 1, composto de dois circuitos os-
ciladores caóticos de Chua (Matsumoto, 1984) em um
acoplamento unidirecional.

+

+ -

++ +

+
-

C1C1 C2C2

RR

L
L

id(t)id(t)

i(t)

η(t)

u1(t)

u2(t)

u3(t)

ym(t) ye(t)

Transmissor ReceptorControlador

Figura 1: Sistema de comunicação unidirecional.

Neste mecanismo de transmissão, a informação
a ser transmitidai(t) é injetada no circuito oscilador
caótico de Chua nomeado ‘transmissor’, perturbando
aditivamente o seu campo vetorial. Matematicamente,
esta perturbação corresponde a uma modificação nas
equações diferenciais que governam a dinâmica do
sistema oscilador. Um sinal escalarym(t) é tomado
como sinal a ser transmitido, servindo tanto para o
propósito de transportar a informação, quanto para
servir de referência para a sincronização do circuito
de recepção. Este sinal poderá ser corrompido pela
influência de ruídosη(t) no canal de transmissão.

O sistema transmissor pode ser representado
matematicamente pelo seguinte conjunto de equações
diferenciais que governam sua dinâmica:







C1
dvC1

(t)
dt =

vC2
(t)−vC1

(t)
R − id(vC1(t))+ i(t)

C2
dvC2

(t)
dt =

vC1
(t)−vC2

(t)
R + iL(t)

LdiL(t)
dt = −vC2(t)− rLiL(t)

id(vC1) = m0vC1 +
(m1−m0)(|vC1

+Bp|−|vC1
−Bp|)

2

ym(t) = vC1(t)+ η(t)
(14)

no qualC1, C2, L, R, rL, m0, m1 e Bp são os parâme-
tros do circuito;i(t) é o sinal escalar de informação;

ym(t) é o sinal escalar correspondente a série tempo-
ral a ser transmitida eη(t) é o sinal de ruído que pode
corromper o sinal transmitido.

O circuito nomeado ‘receptor’ compreende um
circuito oscilador caótico de Chua completamente
acessível para o controle através dos sinaisu(t) do
controlador.

Análogo ao transmissor, o sistema receptor tem
sua dinâmica governada pelo seguinte conjunto de
equações diferenciais:







C∗
1

dvC∗1
(t)

dt =
vC∗2

(t)−vC∗1
(t)

R∗ − id(vC∗
1
(t))+u1(t)

C∗
2

dvC∗2
(t)

dt =
vC∗1

(t)−vC∗2
(t)

R∗ + i∗L(t)+u2(t)

L∗ di∗L(t)
dt = −vC∗

2
(t)− r∗Li∗L(t)+u3(t)

id(vC∗
1
) = m∗

0vC∗
1
+

(m∗
1−m∗

0)(|vC∗1
+B∗

p|−|vC∗1
−B∗

p|)
2

ye(t) = vC∗
1
(t)

(15)
sendo queC∗

1, C∗
2, L∗, R∗, rL∗, m∗

0, m∗
1 eB∗

p compreen-
dem os parâmetros do circuito receptor;u1(t), u2(t),
u3(t) são sinais escalares de controle eye(t) é o sinal
de saída medida do circuito receptor.

O princípio ITVC estabelece que qualquer con-
trolador que garanta uma sincronização idêntica, ou
quase-idêntica, entre os circuitos osciladores transmis-
sor e receptor, pode ser visto como um circuito de de-
modulação para o sinal de informação que foi inje-
tado na dinâmica do sistema transmissor. Desta forma,
se o controlador garantir a sincronização dos sistemas
transmissor e receptor, então o sinal de controleu1(t)
corresponderá ao sinal de informaçãoi(t) demodulado
através da ação de controle.

3.2 Aplicação da Metodologia de Projeto

O primeiro passo da metodologia de projeto consiste
na identificação dos parâmetros que caracterizam o
sistema de comunicação mostrado na figura 1. Apli-
cando a abordagem apresentada em (Aguirre et al.,
2005), onde os parâmetros do sistemas são estimados
recursivamente através de um algoritmo baseado no
Filtro de Kalman Uncented – UKF, obteve-se os valo-
res listados na tabela 1 para os parâmetros do circuito
oscilador de Chua da plataforma PCChua.

Parâmetros Valores Parâmetros Valores

R 1673Ω rL 0Ω
C1 30.14µF m0 −0.365mS
C2 185.66µF m1 −0.801mS
L 52.28H Bp 1.74V

Tabela 1: Parâmetros estimados para o circuito os-
cilador da plataforma PCChua

O segundo passo da metodologia consiste na dis-
cretização dos sistemas transmissor (14) e receptor
(15) e na representação do sistema de comunicação
Fig. 1 como um esquema de sincronização robusta
mestre-escravo.
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Aplicando o método de discretização apresentado
em (Mendes and Billings, 2002) chega-se a uma re-
presentação linear por partes. Esta representação des-
creve localmente a dinâmica dos circuitos osciladores
de Chua através de três modelos lineares:

Transmissor







xm
k+1 = Aix

m
k +Bi + Eiwk

︸ ︷︷ ︸

ι(k)
ym

k = Cixm
k +Diwk

Receptor

{
xe

k+1 = Aix
e
k +Bi +uk

ye
k = Cixe

k
(16)

onde as matrizes que caracterizam a dinâmica dos
modelos locais assumem o formato:

A1 =





1−T/(RC1)−Tm0/C1 T/(RC1) 0
T/(RC2) 1−T/(RC2) T/C2

0 −T/L 1−TrL/L





A2 =





1−T/(RC1)−Tm1/C1 T/(RC1) 0
T/(RC2) 1−T/(RC2) T/C2

0 −T/L 1−TrL/L





A3 =





1−T/(RC1)−Tm0/C1 T/(RC1) 0
T/(RC2) 1−T/(RC2) T/C2

0 −T/L 1−TrL/L





B1 =





+TBp(m1−m0)
C1
0
0



 ,B2 =





0
0
0



 ,B3 =





−TBp(m1−m0)
C1
0
0





Ei =





0.001
0
0



 ,Ci =





1
0
0





T

, Di = 0.0001

C̃i =





1 0 0
0 1 0
0 0 1



 , D̃i =





0
0
0





(17)

Da aplicação do Teorema 1 ao sistema de sin-
cronização mestre-escravo discretizado, considerando
os valores dos parâmetros apresentados na tabela 1,
tempo de amostragemT = 10 ms, e um único ganho
de sincronização para todo o espaço de estados (Li =
G, ∀i ∈ {1,2,3}), obtém-se:

G =
[
99.45×10−3 2.93×10−3 51.50×10−9]T

(18)

que garante um nível de atenuação de distúrbiosH∞
γ = 9.70×10−4.

Nota 2: Ao considerar Li = G, ∀i ∈ {1,2,3} na reso-
lução do Teorema 1, a implementação da abordagem
torna-se mais simples, dispensando a necessidade de
transmissão do índice ‘i’, relativo ao modelo local,
para o sistema receptor.

Os vetores de pesoEi e Di foram definidos com
base na amplitude do sinal de informaçãoi(t) e na
amplitude do sinal de ruídoη(t) que corrompe o sinal
transmitidoym(t). Observa-se que o termoι(k) = Eiwk

assume a posição do sinal de informação discretizado,
ou seja,ι(k) ≡ T

C1 i(kT). Assim, no presente con-
texto de comunicação, o índice de desempenho ro-
busto norma-H∞ aparece como um mecanismo capaz
de garantir uma maior proteção da informação e asse-
gurar sua melhor reconstrução. Isto é possível, uma
vez que a estabilização robustaH∞ do sistema de erro
de sincronização (6) tende a minimizar o efeito do
sinal de entrada exógenawk sobre o sinal de pon-
deração do erro de sincronizaçãoεk. Conseqüente-
mente, o sinal de informaçãoi(t) tem sua influência
minimizada sobre o sinal transmitidoym(t) para sin-
cronização do sistema receptor.

A matriz de ponderaçãõC e o vetor de ponderação
D̃ foram convenientemente definidos de forma a se es-
tabelecer as direções e intensidades na composição do
sinal de ponderação do erro de sincronizaçãozk.

Para a implementação do mecanismo de comuni-
cação na plataforma PCChua, o ganho de sincroniza-
ção (18) deverá ser transformado de forma a incluir o
efeito dos seguradores de ordem zero dos atuadores e
para que se tenha sinais de compensação compatíveis
com o sistema (15). Desta forma, os ganhos de sin-
cronização do PCChua serão:

GPCchua=





2.99×10−3

0.54×10−3

2.69×10−3



 ≡





C1G1/T
C2G2/T
LG3/T



 (19)

3.3 Resultados Práticos

Considerando um sinal de informaçãoi(t) resultante
da adição de um sinal senoidal, um sinal quadrado
e um sinal dente de serra, todos com amplitude de
0.12 mV e freqüências de 0.4 Hz, 1.0 Hz e 1.5 Hz, res-
pectivamente, procedeu-se um experimento de trans-
missão de informação na plataforma PCChua.

A figura 2 exibe o sinal transmitido pelo circuito
oscilador mestre (transmissor) para a sincronização
com o circuito oscilador escravo (receptor). O sinal
de informaçãoi(t) foi injetado entre os instantes de
tempo de 30 a 90 segundos. O sinal de erro de sin-
cronizaçãoym(t)−ye(t) e o sinal de controleu1(t) são
exibidos nas figuras Fig. 3 e Fig. 4, respectivamente.
O sinal de controle foi ativado entre os instantes de
tempo de 15 a 105 segundos. A recuperação de infor-
mação pelo princípio ITVC é evidenciada na figura 5
que mostra, em sobreposição, os sinais de informação
e de controle para uma janela de tempo de 75 a 95
segundos.

4 Conclusões

Este trabalho centrou-se na investigação do problema
de sincronização de sistemas caóticos com base em
técnicas da Teoria Controle Robusto.

Uma metodologia de projeto sistemática foi pro-
posta para tratar da sincronização de uma classe de
sistemas de Lur’e a tempo discreto que pode assumir
uma representação linear por partes.
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Para tratar da sincronização robustaH∞ de sis-
temas caóticos, uma abordagem em formulação por
desigualdades matriciais lineares - LMIs foi desen-
volvida.

Resultados experimentais foram apresentados
evidenciando a efetividade da metodologia de projeto
proposta.
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Figura 2: Sinal transmitido
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Figura 3: Sinal de erro:ym(t)−ye(t)
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Figura 4: Sinal de controle: componenteu1(t)
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(a) Sinal de informaçãoi(t) - preto; Sinal de controleu1(t) - azul
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Figura 5: Informação recuperada sem filtragem (a) e
com filtragem (b)(Filtro Butterworth: ordem 2,fc = 10 Hz)
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