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Abstract 
A strategy for dynamic system failure detection and di- 
agnosis is proposed in this paper, based on sliding mode 
observers, employed for residual generation with dis- 
crimination among the error subspaces, and a fuzzy neu- 
ral network, used for pattern classification. A control 
reconfiguration scheme is proposed, employing both the 
fault dianosis information and the robust observer gen- 
erated data. The resulting structure has been evaluated 
in a simulated D.C. electric drive. 

1 Introduction 

The field of failure detection and diagnosis has been de- 
veloped in the last two decades, when the technology 
evolved from the old “hardware redundancy” schemes 
to several fonns of “analytical redundancy” schemes 
[6,2]. Presently, the research effort is being directed to 
the generation of more accurate methods that should be 
able to perform: the early detection of incipient faults; 
the detection of small faults; the diagnosis of faults in 
the actuator, process components or sensors; the detec- 
tion of faults in closed loops 153. 

In this paper, an approach is proposed for fault detec- 
tion, diagnostics and conwl reconfiguration in dynamic 
systems: the fault detection mechanism is composed of 
an observer bank for unknown parameters andlor inputs, 
employing sliding mode unknown input observers, and 
a pattern classification system, employing a fuzzy neu- 
ral network with a learning mechanism. This combina- 
tion leads to a reliable fault diagnosis system and, ad- 
ditionally, gives rise to a simple control reconfiguration 
scheme that is directly derived from the diagnosis com- 
ponents. 

The general strategy employed here can be divided in 
three blocks: 

Unknown Input Observer Bank: This block is com- 
posed of several observers that are designed as 
“unknown input observers” with disturbance rejec- 

tion directions pointed to different subspaces of the 
state space. Each observer of this bank will be af- 
fected in a different way, therefore, when a fault 

Fuzzy Neural Network The fuzzy neural network re- 
ceives the information coming from the observer 
bank and from the system, and can be trainedk 
order to identify the patterns that are associated to 
each kind of fault. 

Control Reconfiguration Decisor: Once a fault is de- 
tected, this information can be used in order to 
make a control reconfiguration. The information 
for the reconfigurated control still comes from the 
observer bank. 

occurs. 

Each such block is detailed in the next sections. 

2 Sliding Mode Unknown Input 
Observers 

For residual generation, robust state observers based on 
sliding mode theory are employed 173. The sliding mode 
observers (SMO) can be designed to be robust to some 
set of failures (zero estimation error) and sensitive to 
other set (non-zero error). The comparison among the 
outputs coming from the m different observers allows 
the detection of system failures. This section presents a 
formulation of state observer for discrete-time uncertain 
dynamic systems, presented in 171. 

The basic system model is the following discrete-time 
nonlinear model [7l: 

+Dv(k) 

in whichz E P , y  E Rn,v E Rq, IC E N. In this sys- 
tem, z is the state vector that will be estimated by the 
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observer, U is the control input vector (supposed to be 
known), w is a vector of unknown inputs (disturbances) 
and is an available measurement vector. The system 
dynamics is composed by a "nominal" part F and by 
a "disturbed" part AF. Function F(.,-,.) and matrix 
C are supposed to be known. Matrix D and function 
AF (., ., -) are supposed to be unknown. The plant given 
by equation (1) is supposed to be stable and observable 
through the measurement matrix C for all possible op- 
erating conditions. 

Consider now a matrix H with the properties: 

Omitting the vector indices corresponding to instant k 
and considering: 

(PZ  = H(C'H)-L  

ip1 = I - ip2C' 
(6) 

the following expression is obtained for the observer: 

i ( k  + 1) = @ I F ( f , U ,  k) + @zy'(k + 1) + L [Ci - y] 
(7) 

This equation describes an observer that is able to com- 
pletely decouple the disturbances in the range space of 
matrix H ,  with an assignable error dynamics. The de- 
signer must choose the matrices H ,  L and (C'H)-L, 
in order to achieve a suitable trade-off between the error 
dynamics and the disturbance rejection 171. 

p ( C H )  = p ( H )  = T  

p (C)  = m 2 r 
(') 

In the above, p (-) stands for the rank of the argument. 
The observer design is based on the choice of such ma- 
trix. The range space of that matrix is the subspace of 3 Pattern Classification with a 

tainties and/or signal inputs) are rejected by the robust 
observer. This means that, if 

the state space in which disturbances (parameuic uncer- Fuzzy System 

Figure 1 shows the block diagram of the FDI approach 

then the observer can estimate the state vector with an 
estimation error that asymptotically goes to zero, and 
that stays equal to zero even in the case of any distur- 
bance in the range space of H. In the above, E ( - )  
means the range space of the argument, and 5 ( e )  means 
the image space of the argument function. If condi- 
tion (3) does not hold, there will be an estimation error. 
The difference between the estimates given by an ob- 
server that is robust under disturbances in some direc- 
tion and an observer that is not robust under the same 
disturbances will lead to residuals, that will allow the 
detection of failures associated to such disturbances. 

In order to build the unknown input observer, define the 
following partition of the output vector: 

in which the partition y' of the output vector contains 
the measurements that will be employed for the distur- 
bance decoupling. 

In order to make usage of all degrees of freedom that are 
available in the emf  dynamics selection, the observer 
can be written as [7]: 

proposed in this work. The vectors U (inputs), y (plant 
outputs), y* (reference outputs) and r (residuals calcu- 
lated from the observed variables in the different ob- 
servers) are employed as the input data to a pattern clas- 
sification system, based on a fuzzy neural network 111. 
The FDI problem is formulated as a pattern classifica- 
tion. from that data. 

The pattern classification problem is approached with 
a learning technique. The And/or newfuzzy topology 
proposed in [ 13 is employed. The advantages of this net- 
work are: automatic topology definition; knowledge ex- 
traction directly from the database; learning capability; 
competitive learning without need of derivatives; flexi- 
bility in the choice of the 8- and t-norms; fixed pro- 
cessing time and reduced training time for increments 
in the network dimension; and possibility of rule ex- 
traction directly from the network topology. 

Differently from other works published in the litera- 
ture, the proposed neurofuzzy network makes the fail- 
ure detection from both the residuals information and 
the system operating point information. This allows an 
increased accuracy in the failure detection procedure. 

The output block in the diagram of figure 1 is a table 
which associates each possible pattem to an expression 
like: "there is a failure in actuator i", or there is a fail- 
ure that is either in actuator j or in sensor k ". 

5(k f 1) = [I - H(C'H)-LC'] F(5 (k ) ,U(k ) ,k )+  

+H(C'H)-Ly'(k + 1) + L [C%(k> - y(k)] 4 Control Reconfiguration Decisor 
(5)  

means any left inverse of the argument in which 
matrix. 

In a situation in which a system failure has been de- 
tected, the supervisory system must take some decision 
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Figure 1. Failure detection and isolation sys- 
tem structure. Note that vector f is employed 
on28 in the network leaming proceduw. 

concerning the come of action after the fault detection. 
The control reconfiguration will range from a simple 
change in the observer / controller structure that allows 
the system continued normal operation, to a sequence of 
actions that are intended to take the system out of oper- 
ation safely. The choice of an specific course of action 
will depend on the nature of the system and of the fault. 

Independently of the specific situation, there are some 
abstract actions that can be taken, allowing the system 
continued control (to its maximum possible extent) after 
the fault. These actions can be grouped in three sets: 

1. restoration of the state variable signal availability 

2. restoration of the control signal reliability 

3. restoration of system model validity 

The actions are strongly related to the sensor failures, 
the actuator failures, and the system component failures 
respectively, although the correspondence is not "one- 
to-one". Action (1) can be directly addressed by a suit- 
able employment of some unknown input observer out- 
put. . 

5 ACaseStudy 

In this section, the proposed methodology is applied in a 
DC drive system. The same steps presented here should 
be followed in the development of a FDI system for any 
dynamic system to which the methodology is suitable. 

The D.C. drive system is composed of two controlled 
static converters, a D.C. motor and a mechanic load (see 
figure 2). The considered failures are in the converters, 
in the motor and in the current and speed sensors. 

Figure 2. DC drive system. 

The system discrete-time model is: 

+ [  2 0 " I [ $ ' ] + [  0 "fd e ] T L  (8) 

[ j ] = [ "  0 0 1  "I[]] 
lbo observers will be designed. One of them, SM013, 
is intended to be robust to disturbances in the space di- 
rections m and 223, and the other one, SMOa3, to dis- 
turbances in the space clirections z2 and xg. Both ob- 
servers, therefore, will reject the load disturbances, that 
are injected in direction ZS. Some failure in z1 direc- 
tion, as a short-circuit in the power source, for instance, 
would not cause an estimation error in observer SM013. 
but would do that in observer SMO23. 

The observer equations are: 

~ ~ 0 1 3 :  

[ $ & [ o  1 0 0  1 o ] [ y  
0 0 1  

ar'W = [ art v i  1 
(9) 
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+ [! q [ $ ] + [ ; :] [ $: ] -Ly'(k) 
0 0  0 1  

5 

70. 

a 

[$$I=[ 0 1 0 0  1 0 1  [ y 
0 0 1  

Y'@) = [ Y? Y t  I 
( 10) 

The residuals rl and r2 that will be coordinates of the 
pattern classification procedure are defined a$: 

. . . . . . . . .  

In order to study the dynamical properties of the resid- 
uals after the occurrence of system failures, some simu- 
lations of short-circuits and power source turn-off both 
in the field and in the armature circuits were per- 
formed. The reference speed and load torque were 
randomly generated. In figure 3 the fault occurs at 
the time 2.5 s. The observer poles were located 
in [ a1/2 a3 a5/2 ] for observer SMO" and in 
[ a1 a3/2 a5/2 ] for observer SM023.  The choice 
of the eigenvalues determines the residuals dynamics. 
A situation of normal operation followed by an m a -  
ture power source turn-off is shown in figure 3. Note 
that, after the failure occurrence. the residuals r1 and r2 
are null, even under the condition of load toque distur- 
bances. Immediately before the failure Occurrence the 
residual 9-2 varies and r1 stays null, as was expected, 
since the failure is in direction z1. This fact repeats for 
the short-circuit in the mature, a failure that is in di- 
rection 21 too. When the failures are in ditection x2 
(this is the case of short-circuit or turn-off in the field 
power source) the residual that varies is rl, and r2 stays 
null. 

The sliding mode observers presented here do not re- 
ject measurement disturbances. Therefore, if they exist 
they influence the residuals. This can be seen (figure 4 
for a failure in the in the field current sensor (that mea- 
sures variable n). In this case, as output 12 is not being 
used in observer SMO13, the observed values for it are 
correct. As the measured values are null, residual rl is 
affected. 

These resulLs show that the residuals can be employed 
for efficient failure detection. However, the residu- 
als values are not enough for the failure classification. 
Comparing the figures, one can note that the residuals 

................. :b 1 
* ,, . I .  ... , . . . . .  * 

. . . . . . . . . . . . . . . .  

........... -, 

Ftgure 3. Simulation of normal opemtion fol- 
lowed by an annature power source tum-08. 
The sequence of events is: t = 0- startup; 
t = 1.2s- load variation; t = 1.9s- speed 
reference variation; t = 2.5s- power sup- 
ply turn-08. The variables in the gmphs are: 
[top,leftl annature reference current (dashed) 
and armature current (line); [top,rightj mtor 
reference speed (dot-dash), rotor speed (dash) 
and field current (line); [midle,left] residue 
r1; [midle,right] residue r2; /bottom,lefi] load 
torque; fiottom,right] failure index. Ezcept 
the last variable, all the other ones are ex- 
pressed an P.u.. 

O t  

OO 51 ll.1 

Figure 4 .  DC drive failure simulation: failure 
in the field c u m n t  sensor. Top: residue rl.  
Bottom: residue 7 2 .  
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I Fault Index I Failure description 1 
1 Normal operation 

I 3 I Arm. power sourceshort-circuit I 

6 
7 
8 

I 4 I Field power source tum-off 
5 I Field wwer source short-circuit 

Armature current sensor failure 
Field current sensor failure 

Speed sensor failure 

Figure 5. DC drive system structure with re- 
mjigumted controi. 

Table 1 .  DC drive system failures employed in 
the FDI system simulation. 

faulty sensor by the observed value which is robust 
to that failure. This means that the output y' that is 
employed in the controller is replaced by its estimated 

correct detection and diagnosis 98.1 % value. 

The field and armature currents and the speed are con- 
trolled variables of the DC servo-system. Therefore, 
sensor failures can cause significant errors between the 

Table 2. Results of the FDI system in the DC 
drive system for 1000 faults simulation. 

reference and the real values. In order to illustrate, fig- 
ure 6 (top) shows the speed and speed reference behav- 
ior for a normal operation (with the motor in twice the 
nominal speed), followed by a failure in the field current 
sensor in t = 2.5s. As the field Current is measured as 
null (less than the reference), the control acts in order 
to reduce the error, increasing the field voltage. This 

behavior for power source tum-off or short-circuit is al- 
most the same. However, the simulation data shows that 
it is possible to make the failure classification employ- 
ing the values of the current and speed meaSurementS in 
addition to the residuals. 

leads to an increment in the field current (figure 5, bot- 
tom) and in the field flux. This flux increment causes a 
sped reduction. The speed will stabilize in a value that 
is different from its reference, with significant error. 

For this system, a fuzzy classification engine, imple- 
with the A d o r  newfuzzy network was em- 

ployed, with the following parameters: 

Inputs: [ p1 (k) r2 (k) pl (k) p2 (k) vs (k) 3 The procedure proposed here is: once the sensor fault is 
detected, the measured value is replaced by the observed 

0 Number of fuzzy partitions for each input: 3 vdue that is correct. In this case, the output of SMO'~  

0 Number of outputs: 8 (classes, failure index, table 
1) 

In order to test the failure detection system, a set of 2000 
failure simulations was created, with randomly gener- 
ated index. The first lo00 simulations were employed 
for the neural network learning procedure, and the last 
lo00 one.. were used as a validation set. The simula- 
tions were performed with load disturbance, speed ref- 
erence, time of occurrence and value randomly gener- 
ated. The result is presented in table 2. 

is robust to this fault, preserving the correct value of 
the variable. Figure 7 shows the same simulation, em- 
ploying this reconfiguration scheme. In this case, the 
field current sensor failure was detected after 0.1 sec- 
onds. Note that after the observed value is introduced in 
the convol loop, replacing the wrong measured value, 
the system returns to a null speed error. Due to the large 
mechanical time constant, the speed is disturbed to a 
small amount during the 0.1 s before the failure detec- 
tion. 

6 Conclusion 
5.1 Control Reconfiguration for Sensor 

Failure The failure detection structure presented here, based on 
sliding mode observers, is more robust to plant param- 
eter variations and model uncertainties than the known 
structures. based on classical observers. This robust be- 
havior seems to be similar to the behavior of other FDI 

In this item, an application of the failure detection strat- 
egy in control reconfiguration is presented (figure 5). 
The basic idea is to replace the measured value in the 
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strategies [3, 41 that are based on unknown input ob- 
servers too. 
An advantage of the sliding mode approach, proposed 
here, is the simplicity of the observer design which, 
in the case of the DC drive, could be performed alge- 
braically. The application of this failure detection strat- 
egy as a tool for control system reconfiguration in the 
caqe of sensor failure ha5 been shown to be a viable al- 
ternative. In addition to this, the employment of the pat- 
tern recognition system for residuals processing allows 
the automatic generation of the decision logic. Note that 
this task is not trivial [2]. 

The decision logic obtained from the pattern recognition 
system leads to a more robust FDI system than the meth- 
ods based on residual threshold detection. This superi- 
ority comes from the additional information that is em- 
ployed in the first case: the plant operating point (which 
is associated to the plant inputs and outputs). 

2.5 I 

I 

1 0'2 0'3 0 4  0'5 0'8 0'7 0 8  0 9  ! 
1 [*I 

or 0 1  0 2  0 3  0 4  016 01 0'7 0.8 0'9 ! 
I [SI 

Figure 6. Simulation of a failure in the field 
current sensor for the system without r e m -  
figuration. Top: reference rotor speed (dash) 
and rotor speed (line). Bottom: reference field 
current (dash), field current (dot-dash) and 
measured field current (line). All variables are 
ezpressed in p-U. 

Figure 7. Simulation of a failure in the field 
current sensor for the system with reconfig- 
umtion. Top: refewnce rotor speed (dash) 
and rotor speed (line). Bottom: reference field 
current (dash), field cumnt (dot-dash) and 
measured field current (he) .  All variables are 
eapressed in p. U. 
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