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Abstract 

An extension of the discrete-time sliding modes observer, 
developed by [l] for discrete-time systems subject to un- 
certain disturbances and varying or unknown parameters 
is presented in this paper. This extension allows the ob- 
servation of systems with ‘‘non-matchingn non-linearities. 
Such observer is employed to estimate the flux and torque 
of the induction motor. Two formulations are presented: 
the first for rotor resistance disturbance rejection, the other 
for stator resistance disturbance rejection. These formula- 
tions allow the observer design even in the case of total lack 
of knowledge on some motor parameters. There is no need 
of a priori information on variation bounds, nominal values 
or statistics on the unknown parameter. 

Keywords: discrete observers, discrete-time sliding modes, 
induction motor. 

1. Introduction 

The most recent methods for induction motor drives 
design are based on the availability of some variables 
that are not easily measurable, as the rotor flux. This 
difficulty has been usually solved through a real time 
motor dynamics simulation scheme [2] or, alterna- 
tively, through a conventional Luenberger states ob- 
server scheme [3]. These solutions, however, may lead 
to significant mismatches in the flux estimation, due to 
the unavoidable variation or uncertainty in some model 
parameters, which vary with machine saturation level 
and temperature. In view of this, recent works have 
proposed the usage of parameter adaptation schemes, 
such as the Kalman extended filter [4]. This proce- 
dure, however, increases the observer computational 
complexity, so rendering difficult its real time employ- 
ment. 

In this work the induction motor is treated as a discrete- 
time non-linear dynamic system subject to  parameter 
uncertainties. The discrete-time sliding modes observer 
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proposed in [l] is here extended, in order to account for 
the “mismatched” non-linearities in the motor. Mo- 
tor flux and torque observers with the property of dis- 
turbances rejection are developed. The disturbances 
rejection is accomplished in arbitrary subspaces of di- 
mension less then or equal to the number of available 
measurements. Two structures are presented in detail: 
the first one suited to  the rejection of rotor resistance 
disturbances, and the second one designed to  reject sta- 
tor resistance disturbances. Simulation results are pre- 
sented for the first structure. The resulting observer 
is, in any case, computationally simple, with the struc- 
ture of a linear compensator with variable parameters 
depending on voltage, current and velocity measure- 
ments. 

b g  Modes Observer iscrete-Time 
Non-Linear Sy 

An observer for non-linear discrete-time systems sub- 
ject to unknown disturbances has been developed in [l]. 
Such observer, however, has its applications limited to 
the cases in which the nonlinearity is “matched”, mean- 
ing that it is lumped in some subspaces of the state 
space. An extension of that observer is developed in 
this section, in order to account for the case of “non- 
matching” nonlinearities. The observer here developed 
still needs, however, the “matching condition” in the 
disturbances to be canceled. Start from the non-linear 
discrete-time system: 

x ( k + l ) =  F ( z ( k ) , u ( k ) , k ) - t  

+A.F (~(k), u(k), k) + Dv(k) (1) 

Y(k) = C 4 k )  

In this system, z E Wn represents the state vector, u E 
IWP is the control inputs vector, v E 8 9  is an unknown 
disturbances vector, and y E Wm is the measurement 
vector, and k E M. The system dynamics is composed 
of a “nominal” part F and of a “disturbed” part AF. 
The function F ( - ,  ., .) and the matrix C are supposed to 
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be known, and the function AF(- ,  -, .) and the matrix 
D are supposed to be unknown, although obeying to 
the following perturbation “matching” condition: 

R ( H )  = R(D) U R(AF) (2) 

R(.) representing the range space of the matrix argu- 
ment or the image space of the function argument, de- 
pending on the context. Matrix H in (2) is supposed 
to be known, and must satisfy, jointly with C: 

p ( C H )  = p ( H )  = r 
(3) 

p(C)  = m 2 r 

where p(.) stands for the rank of the argument matrix. 
The nominal plant (system (1)’ excluded the perturba- 
tions) must also be stable and observable through the 
measurement matrix C in the whole operation range. 
With condition (2), one may write: 

V(2, k, U ,  v)3w : 
(4) 

H w ( k )  = AF(c(k ) ,  ~ ( k ) ,  k) + Dv(k) 

This allows rewriting equation (1) as: 

r ( k  + 1) = F (z(k), U(,), k) + Hw(k)  (5) 

The discrete time sliding modes observer is built by 
adding to (5) a disturbances cancellation term: 

i(k + 1) = F (3(k), ~ ( k ) ,  k) + Hw(k)  + H z ( k )  

Consider the following output vector partition: 

The term z(k) is deduced from the constraint: 

c l q k  + 1) - Yl(k + 1) = L1 [Cl&(k) - Yl(k)l 

4(k + 1) = [I - H(C1H)-LC1] F (2, U@), k) + 
+fww)-L [Y(k + 1) + L1 (Cl$@) - Yl(k))l 

which, once substituted into (6), leads to: 

where 
matrix. 

stands for any left inverse of the argument 

Constraint (8) is equivalent to a system order reduc- 
tion, the state vector being constrained to belong to a 
(proper) surface in the state space. The subvector y1 of 
the output vector contains the measurements employed 
in the disturbances decoupling. The parameter matrix 
L1 may be used to assign a dynamics to the reaching 
motion of the state error vector e(&)  = 2(k) - z ( k )  
in relation to the surface CIe(k)  = 0. This surface is 

called “sliding surface’’, and the observer is said to be in 
“sliding modes’’ in this surface, by analogy with control 
systems in sliding modes [5, 61. Finally, in order to es- 
tablish some freedom in the error dynamics assignment, 
a proportional term is added to equation (9),  similarly 
to the classical Luen0erger observer [I:  

f(k + 1) = [I - H(C1H)-LC1] F ( i ( k ) ,  U&), k) 

+H(C1H)-Ly(k + 1) + L [CS(k) - Y(k)] 

+H(CIH)-LL1 [Clqk) - Yl(k)l 
(10) 

@2 = H ( C l H ) - L  a1 = I -  @2C1 (11) 

Define: 

so leading to the expression for the observer: 

4(k + 1) = @1F(2, U,  k) + @2y(k + 1)+ 

+@zL1 [Clk - Yl]  + L [ce - Y] 
(12) 

The index corresponding to the vectors at  instant k 
were omitted in equation (12). This simplified nota- 
tion will be employed throughout whenever it does not 
generate ambiguity. This equation corresponds to an 
observer which completely rejects the disturbances as 
described by (4), with an assignable error dynamics. 
The error convergence analysis for the general case will 
not be presented here. In the specific case here treated, 
the dynamic function F may be written as: 

F(n,  U ,  k) = A(z)r (13) 

Consider this, and take A = A(2).  The following ob- 
server equation is proposed: 

2(k + 1) = [o,A + @2LlCl+ LC] i + Or&+ 

+@2Y(k + 1) - @2LIYl - LY 
(14) 

(15) 

Take the following expression for A: 

A ( k )  = A(k)  + A(k) 

The equation for states estimation error becomes: 

e(,) = f(k) - z(k) 

q ( k )  = (%A f @2Li(k)Ci + L(k)C) (16) 

e(k + 1) = *(k)e(k) - A(k)z(k)  

Still in the specific case of the induction motor, the 
term A may be written as: 

A@) = f (Ze(k))’  (17) 
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with 2 a constant matrix and f a constant vector. The 
error expression becomes: 

3?rom equation (16) one may infer that a proper choice 
of matrix L at each step may arbitrarily place the eigen- 
values of matrix Q = G1A + LC,*under the condition 
that the system matrices pair (@1A, C )  fulfills the usual 
linear systems observability criteria. This is the case 
for ipduction motors, in general‘. Note that matrices 
(GlA,  C) are known at each step. 

The matrix corresponding to the term ( f . z ’ ( k ) . Z ) ,  how- 
ever, has the parameters f and 2 known and the vari- 
able z(k) only approximately known. This might de- 
fine a “bounded uncertainty” domain for matrix Q ( k ) ,  
which would suggest the usage of a robust design 
method. Practical considerations reveal, however, that 
this unknown term may be, most of the cases, regarded 
to be “dominated” by the known parcel. Then, a sim- 
plifying assumption will be here adopted, considering 
the error dynamic matrix to be equal to Q ( k ) ,  in the 
remainder of this work. 

The designer might select the matrices H ,  L ,  L1 and 
(CH)-L  such that a compromise is attained between 
the error dynamics and possibly existing non-matching 
disturbances attenuation (see [l]). 

3. Induction Motor Discrete-Ti 

The arbitrary reference discrete-time model proposed in 
[4] will be employed in this work. Taking the stator and 
rotor flux linkages as the state variables, the following 
equations are obtained: 

where ~ ~ ( k . 1  = [ Aqs(k)  ; \ds (k)  ]’, Ar(k )  = 
[ &(k) &(k) 1’ are respectively the stator and ro- 
tor flux linkages, and K ( k )  = [ vq3(k)  vds (k )  1‘ is 
the stator voltage vector. The constants in the equa- 
tion are: 

R,: stator resistance; 
&: rotor resistance; 

’To be more precise, there is a loss in observability for oper- 
ating points near zero velocity. Outside this region, the system 
is fully observable. 

Ls3: stator inductance; 
L,.,.: rotor inductance; 
M :  stator-rotor mutual inductance. 

1 
U L s s  

a = -  

and the matrix terms are: 

I coswh -sinwh 
sinwh coswh P I =  [ 

1 
1 

cos(w - W,)h - sin(w - wp)h 
sin(w - w,)h cos(w - wp)h 

coswh -(I - sinwh) 

P2= [ 
‘’ = [ 1 -sinwh coswh 

1 
w-w,  

X Q2 = - 

cos(w - w,)h - [l - sin(w - w,)h] 
cos(w - w,)h [ 1 - sin(w - w,)h 

in which h is the sampling period, w is the reference 
frame angular velocity and wr is the machine rotor ve- 
locity. The mechanic equations are: 

w,(k + 1) = ehpwr(k)- 

The variables Tem and TL are respectively the electro- 
magnetic torque and the load torque, and the constant 
p is given by p = -pp/Jm, with p the machine num- 
ber of poles, Jm the system inertia and p the friction 
constant. Define the following variables: 

sin w h K1 = sinwh Ks = - 
W 

sin(w - w,)h 
w -U, 

K3 = sin(w - w,)h K7 = 

1 - cos(w - wr)h K4 = COS(W -wr )h  Ks = w -wwr 
(22) 

and the constants: 
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Define the state vector as: 

The system dynamics is given by: 

with system matrices given by: 

’ = [ - K , j  K5 K5 K6 0 O O 0 0 ” I ‘  

D = [ O  0 0 0 931’ 

4. State Observer Design for Unknown Rotor 
Resistance 

Take the model given in (23) and (21). The rejection of 
rotor resistance disturbances requires at least two mea- 
surements, since such parameter influences a subspace 
of dimension two, containing the state variables z3(Aqr) 
and z 4 ( X d r ) .  Matrix H in observer equation must be 
chosen as: 

It is easy to take measurements of the stator currents, 
which are related to the states in the following way 
(Y1 = C1z): 

a 0 -c 
O a  0 - C O  

and calculate 02 = H ( C I H ) - ~  e @ I  = 1-02C1. Define 
cy = a/c.  Let ai, denote the element of row a’ and 

column j of the induction motor state transition matrix 
A, given in (23). This leads to: 

I all a12 a13 a14 a15 

021 a22 a23 a24 a25 

aal l  aa12 aa13 aa14 aa15 (27) 
~ a z 1  aa22 &a23 aa24 ffa25 

a51 a52 a53 a54 a55 

-1 
@2y1 = - [ 0 0 i q ,  a’& 0 1’ (29) 

C 

The error dynamics in the observer depends on matrix 
0f a =  [@1A + @2L1+ Lc] eigenvalues, which may be 
arbitrarily assigned through the choice of L1 and L. 
Note that such eigenvalues must be understood as the 
eigenvalues of a “linear” time-varying matrix. These 
eigenvalues may be assigned through time-varying feed- 
back matrices L and L1 which are calculated at each 
sampling time in order to fix a linear time-invariant 
error dynamics. 

Supposing there is no mismatched disturbance, or no 
reason to filter it, matrix L1 may be chosen to be zero (a 
discussion on this procedure is performed in [l]). This 
choice implies that two eigenvalues of matrix @,A are 
located at the origin. 

Let Oj = @,A + LC, and let Lij be the i-th row and 
j-th column element of L. As: 

a 0 - c  0 0 

0 0 0  0 1  
.=[$I= [ 0 a 0 -c 0 1  (30) 

then: 

a11 + aL11 a12 + aL12 . . . 
at1 + aL21 a22 + aLzz . . . 

oa21+ aL41 aa22 + aL42 * * 

Of = cyall+ aL31 aa12 + aL32 

... I aLe1 aL52 

(31) 
1 a13 - cL11 a14 - CLIZ L13 

. . aa13 - ~L31 &a14 - cL32 L33 

. . aa23 - cL41 0 ~ 2 4  - cL42 L43 

. 

... 
a23 - C L 2 1  a24 - CL22 L23 ... 

a53 - C L 5 1  a54 - C L 5 2  a55 + L53 

Choose an L matrix such that matrix @f has the fol- 
lowing structure: 

a11 a 1 2  0 0 

’:: ] (32) 
021 a22 0 0 

a@11 d l 2  0 0 ffL13 
&@21 &@22 0 0 ffL23 

0 0 a53 a54 a55+ L53 
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This particular choice is taken in order to allow obtain- 
ing an analytic expression for the observer gains matrix 
L as a function of machine parameters and operating 
conditions. This form for L implies in: 

a13 a14 

c c 
L11= - = RsK5 L I Z  = - = -R,K6 

LZl = -L12 L 2 2  = L11 L31 = aL11 

L51 = 0 L52 = 0 
(33) 

With these gains, matrix @j becomes: 

Kz -Ki 0 0 
K1 Kz 0 0 

@ o f =  aK2 -aK1 0 0 aL13 

a K l  aK2 0 0 aL23 

2 ] (34) [ 0 0 a53 Q54 a55 +L53 

Three eigenvalues may be assigned through the choice 
of the remaining parameters L13, L23 and L53. Note 
that the rotor resistance does not influence matrix Q j  . 

The matrix Q j  eigenvalues are determined through the 
algebraic expression: det(7I - @ j )  = 0. The expression 
for parameters L13, L23 and L53 is given as a linear 
system of three equations: 

AlL l3  + A2L23 + A3L53 = &(7i - (155) (35) 

in which: 

Ai = a [a53(K2 - 7 )  - %&I] 

= a [a54(K2 - 7)  + a53K1] 

A3 = 7(K2 - 7)  + (K27 - 1) 

and each imposed eigenvalue, 71, 7 2  and 73 ,  generates 
one equation. The observer final form is: 

fl(k + 1) = Kzli.1- KIli.2 + L1325+ 

+K5vqs - K 6 V d s  - Liiigs - LlZids - LiW,  

These equations might be implemented in a real time 
DSP system, involving at each step the solution of equa- 
tions (22) and then equations (35), which give the time- 
varying parameters for the dynamic equations (36). 

5. State Observer for Unknown Stator 
Resistance 

Using an analogous procedure, one may derive the 
state observer which rejects the stator resistance dis- 
turbances. This derivation is bellow sketched, without 
comments: 

(C,H)--L= [ 0 1/a O ] 
(37) 

@#u(k) = [ 0 0 0 0 0 1’ (40) 

The results presented in figures 1 to 3 refer to accelera- 
tion from stall of an induction motor with the following 
parameters: 

2.03 HP, 220/380 V, 4 poles, 60 Hz; 
Stator nominal resistance: R, = 1.5Q 
Rotor nominal resistance: R,. = 1.6Q; 
Stator inductance: L,, = 109 mH; 
Rotor inductance: L,., = 117 mH; 
Mutual inductance: M = 98 mH; 
Inertia: J = 0.008 kg.m 

The observer eigenvalues are assigned to: U = 
[ 0 0 0.6 0.65 0.7 1. The motor equations are 
solved through the 4th order Runge-Kutta method, 
with 1 O O p  step, and the observer discretization step 
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Figure 1: Quadrature-axis rotor flux (Aqr) error, in P.U. 

is fixed to be 500ps. Figures 1 and 2 show the errors 
for states x1 to 2 4  in a per-unit basis, or: 

(42) 
xi - 4i 

X i R O M % d  

ei = - 

In the above expression, the value of xi is obtained 
through the continuous-time model [2]. The discretiza- 
tion error due to the employment of a discrete-time 
model in the observer derivation is, therefore, at  once 
included in the error expression. 

01,  , . . . . . . , . f 

0 

-0 05 

Q l  

nnm fsl 

Figure 2: Direct-axis rotor flux (Adr) error, in p.u. 

In order to test the observer robustness against para- 
metric variations, the stator and rotor resistances are 
varied as shown in figure 3. As would be expected, the 
observer completely rejects the rotor resistance varia- 
tions. The error due to a variation of nearly 20% in the 
stator resistance is about 2% in the estimated variables. 

7. Conclusion 

An observer design methodology for non-linear uncer- 
tain discrete-time systems has been presented. Such 
methodology has been employed in the estimation of 
induction motor variables. Two observers have been 
derived from the general methodology: the first re- 
jecting rotor resistance uncertainties, the second reject- 
ing stator resistance ones. The obtained observers are 
computationally simple, and thus suitable for real time 
implementation. Additionally, the observers eigenval- 
ues are arbitrarily assignable. The resulting observer 
completely decouples the perturbations or uncertain- 
ties eventually present in the specified subspaces, what 
is stronger than an ordinary disturbances attenuation 
property. 
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Figure 3 Stator and rotor resistances variation, in P.U. 
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