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Introdução

Tema abordado:

Caracterização das funções objetivo e de restrições;

Condições de otimalidade que deverão ser atentindas em xxx∗:

xxx∗ = arg min
xxx

f (xxx)

sujeito a:







gi (xxx) ≤ 0; i = 1, . . . , p

hj(xxx) = 0; j = 1, . . . , q

(1)

sendo que xxx ∈ R
n, f (·) : Rn 7→ R

1, g(·) : Rn 7→ R
p, e h(·) : Rn 7→ R

q.
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Introdução

A escolha da técnica de otimização depende da natureza das funções
f (xxx), g(xxx), h(xxx).

Não há uma técnica de otimização que seja universal.

Mas existem informações que guiam essa escolha.

Questões sobre otimalidade a serem respondidas:

1 Dado o funcional f (·), o que são os pontos de ḿınimo desse funcional?

2 O que são os pontos de ḿınimo local desse funcional, se são dadas
também as restrições gi(xxx) ≤ 0 e hj(xxx) = 0?

3 Dado um ponto xxx ∈ R
n, que tipo de testes podem ser realizados para

determinar se esse ponto é ou não um ponto de ḿınimo de f (·), nos
dois casos anteriores?
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Caracterização de Funções
Introdução

Quais condições de otimalidade empregar?

Algumas caracterizações úteis:

1 Função, funcional, continuidade e diferenciabilidade;

2 Curvas de ńıvel, superf́ıcie de ńıvel, região subńıvel;

3 Convexidade, quasi-convexidade, e não convexidade;

4 Unimodalidade e multimodalidade.
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Caracterização de Funções
Função e Funcional

Uma função é uma relação que associa de maneira única membros de um
conjunto A com membros de um conjunto B .

Matematicamente:

Sejam A e B dois conjuntos com membros ai , . . . , am e bi , . . . , bn,
respectivamente. Uma função f que associa de maneira única membros de
A em B é definida como:

f : A 7→ B (f : Rm 7→ R
n) (2)
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Caracterização de Funções
Função e Funcional

Um funcional é uma função que retorna um único valor, i.e., um número
escalar.

Formalmente:

Se f (·) é um funcional então:

f : Rn 7→ R
1 (3)
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Caracterização de Funções
Superf́ıcie de Ńıvel e Região Subńıvel

Seja f (·) : C ⊂ R
n 7→ R. A superf́ıcie de ńıvel S(f , α), associada ao

ńıvel α, é definida como:

S(f , α) = {xxx ∈ C | f (xxx) = α} (4)
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Caracterização de Funções
Superf́ıcie de Ńıvel e Região Subńıvel

Ilustração do conceito de superf́ıcie de ńıvel.

As curvas de ńıvel estão representadas no plano x1 × x2.

Cada curva contém os pontos que possuem o mesmo valor de função.
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Caracterização de Funções
Superf́ıcie de Ńıvel e Região Subńıvel

Seja f (·) : C ⊂ R
n 7→ R. A região de sub-ńıvel R(f , α), associada ao

ńıvel α, é definida como:

R(f , α) = {xxx ∈ C | f (xxx) ≤ α} (5)
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Caracterização de Funções
Superf́ıcie de Ńıvel e Região Subńıvel

Seja f (·) : C ⊂ R
n 7→ R. As regiões de sub-ńıvel dessa função obedecem a:

R(f , α1) ⊃ R(f , α2) ⇔ α1 > α2 (6)

Pode-se pensar os problemas de otimização como sendo equivalentes a um
problema de determinar pontos que estejam sucessivamente no interior de
regiões de sub-ńıvel cada vez menores.
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Caracterização de Funções
Unimodalidade e Multimodalidade

Seja f (·) : C ⊂ R
n 7→ R. Diz-se que f (·) é unimodal se R(f , α) é conexo

para todo α ∈ R.
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Caracterização de Funções
Unimodalidade e Multimodalidade

Seja f (·) : C ⊂ R
n 7→ R. Diz-se que f (·) é multimodal se existe α ∈ R

tal que R(f , α) não é conexo.
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Caracterização de Funções
Unimodalidade e Multimodalidade

Note-se que uma função unimodal pode possuir múltiplos ḿınimos,
desde que o conjunto deste seja conexo. Por exemplo:

f (x) =
[

x1 x2
]

[

1 0
0 0

] [

x1
x2

]

(7)
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Caracterização de Funções
Bacias de Atração

Região Conexa de Sub-Ńıvel: Seja f (·) : C ⊂ R
n 7→ R, seja a região de

sub-ńıvel R(f , α), associada ao ńıvel α, e seja um ponto xxx0 ∈ R(f , α). A
região conexa de sub-ńıvel R(f , α,xxx0) é definida como o maior
subconjunto conexo de R(f , α) que contém xxx0.

Bacia de Atração: Seja f (·) : C ⊂ R
n 7→ R, e seja xxx∗ ∈ C um ḿınimo

local de f (·). A bacia de atração de xxx∗ é definida como a maior região
conexa de sub-ńıvel associada a xxx∗, sendo α∗ o ńıvel correspondente, tal
que a função restrita a essa região

f (·) : Rc (f , α∗,xxx∗) 7→ R (8)

é unimodal.
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Caracterização de Funções
Continuidade e Diferenciabilidade

Uma função cont́ınua é aquela para a qual uma pequena variação na
entrada gera uma pequena variação no resultado da função.

Formalmente, uma função f (·) : C ⊂ R
n 7→ R é cont́ınua se ∀ xxx0 ∈ C :

1 f (xxx0) é definido;

2 lim
xxx→xxx0

f (xxx) = f (xxx0).
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Caracterização de Funções
Continuidade e Diferenciabilidade

Função diferenciável: Uma função f (·) : C ⊂ R
n 7→ R é diferenciável se

∀ xxx0 ∈ C existe o vetor gradiente:

∇f (xxx) =
[

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]

(9)
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Caracterização de Funções
Continuidade e Diferenciabilidade

Outras propriedades importantes:

1) Seja f (·) : C ⊂ R
n 7→ R. Se f (·) é cont́ınua no doḿınio C , então

dist(S(f , α1),S(f , α2)) > 0 ∀ (α1, α2) | |α1 − α2| > 0 (10)

sendo dist(·, ·) a função distância.

2) Superf́ıcies de ńıvel de funções cont́ınuas não se tocam nem se cruzam.

3) Seja f (·) : C ⊂ R
n 7→ R. Se f (·) é diferenciável no doḿınio C , então

toda superf́ıcie de ńıvel S(f , α) é suave, sendo o hiperplano tangente à
superf́ıcie em cada ponto perpendicular ao gradiente da função no ponto.
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Caracterização de Funções
Continuidade e Diferenciabilidade

4) Seja f (·) : C ⊂ R
n 7→ R uma função diferenciável no doḿınio C , seja

xxx0 um ponto pertencente à superf́ıcie de ńıvel S(f , α), e seja ∇f (xxx0) o
gradiente de f (·) no ponto xxx0. Seja ainda um vetor ddd ∈ R

n. Então, se

ddd · ∇f (xxx0) < 0 (11)

então existe ǫ > 0 tal que:

f (xxx0 + ǫddd) < f (xxx0) (12)

Diz-se que ddd é uma direção minimizante de f (·) no ponto xxx0.
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Caracterização de Funções
Continuidade e Diferenciabilidade

No caso de funções não diferenciáveis, define-se,

Subgradiente: Seja f (·) : Rn 7→ R. Um funcional linear f sb é um
subgradiente de f (·) no ponto xxx0 se:

f (xxx) ≥ f (xxx0) + f sb(xxx − xxx0) , ∀ xxx (13)

Por exemplo, a derivada da função f (x) = |x | é:

f ′(x) =

{

1, x > 0

−1, x < 0
(14)

No ponto x = 0 a derivada não é definida, entretanto pode-se definir o
subgradiente como qualquer número real no intervalo [−1, 1].

Exemplo em duas dimensões...
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Caracterização de Funções
Convexidade e Quasi-Convexidade

Conjunto Convexo: Diz-se que um conjunto C ∈ R
n é convexo se para

quaisquer vetores xxx , yyy ∈ C ,

αxxx + (1− α)yyy ∈ C (15)

para todo α ∈ [0, 1].

Figura: Representação: (a) Conjunto convexo, (b) Conjunto não convexo
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Caracterização de Funções
Convexidade e Quasi-Convexidade

Função Convexa: Diz-se que uma função f (·) : C ⊂ R
n 7→ R definida

sobre um conjunto convexo C é convexa se para quaisquer xxx , yyy ∈ C ,

f (αxxx + (1− α)yyy) ≤ αf (xxx) + (1− α)f (yyy) (16)

para todo α ∈ [0, 1]. Se para quaisquer xxx , yyy ∈ C , sendo xxx 6= yyy e
0 < α < 1, a desigualdade é estrita, então f (·) é estritamente convexa.
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Caracterização de Funções
Convexidade e Quasi-Convexidade

Caracterizações de Funções Convexas: Seja f (·) uma função duas
vezes diferenciável, sobre um conjunto convexo C ⊂ R

n.

Então são equivalentes as afirmativas a seguir:

1 f (αxxx + (1− α)yyy) ≤ αf (xxx) + (1− α)f (yyy) ∀ α ∈ [0, 1]

2 f (yyy) ≥ f (xxx) +∇f (xxx)′(yyy − xxx) ∀ xxx , yyy ∈ C

3 H(xxx) ≥ 0 ∀ xxx ∈ C
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Caracterização de Funções
Convexidade e Quasi-Convexidade

Combinações Convexas: Sejam fi (·) : Ci ⊂ R
n 7→ R funções convexas

definidas sobre conjuntos convexos Ci , i = 1, . . . ,m. Então:

1 αfi (·) é convexa sobre Ci , ∀ α ≥ 0

2

m
∑

i=1

αi fi(·) é convexa sobre

m
⋂

i=1

Ci para αi ≥ 0 , i = 1, . . . ,m
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Caracterização de Funções
Convexidade e Quasi-Convexidade

Função Quasi-Convexa: Seja f (·) : C ⊂ R
n 7→ R uma função tal que

suas regiões de sub-ńıvel R(f , α) são convexas para todo α ∈ R. Neste
caso, diz-se que f (·) é quasi-convexa no doḿınio C.

Se f (·) : C ⊂ R
n 7→ R é uma função quasi-convexa, então:

f (αxxx + (1− α)yyy ) ≤ max {f (xxx), f (yyy)} ∀ xxx , yyy ∈ C , ∀ α ∈ [0, 1] (17)
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Caracterização de Funções
Convexidade e Quasi-Convexidade

A convexidade de funções pode ser relacionada com as regiões de
sub-ńıvel, superf́ıcies de ńıvel e bacias de atração.

1) Todas as regiões de sub-ńıvel de uma função convexa num doḿınio
convexo são conjuntos convexos.

2) Uma função convexa em um doḿınio convexo possui uma única bacia
de atração, a qual é um conjunto convexo.
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Caracterização de Funções
Ḿınimo Local e Ḿınimo Global

Introduz-se o conceito de ḿınimo local como o ponto xxx∗, para o qual
qualquer vetor xxx na vizinhança ǫ de xxx∗ implica em f (xxx∗) ≤ f (xxx).
Matematicamente:

Mı́nimo Local: Seja f (·) : C ⊂ R
n 7→ R. Um ponto xxx∗ é um ḿınimo local

de f (·) sobre C se existe ǫ > 0 tal que

f (xxx∗) ≤ f (xxx) , ∀ xxx ∈ V (xxx∗, ǫ) ∩ C (18)

onde V (xxx∗, ǫ) , {xxx : ‖xxx − xxx∗‖ ≤ ǫ}. O ponto xxx∗ ∈ C é um ḿınimo local
estrito se vale a desigualdade estrita.
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Caracterização de Funções
Ḿınimo Local e Ḿınimo Global

O conjunto C é o subconjunto do espaço R
n definido pelas restrições:

C , {xxx ∈ R
n | gi (xxx) ≤ 0 ; i = 1, . . . , p ; hj(xxx) = 0 ; j = 1, . . . , q} (19)

Mı́nimo global do funcional: Se for posśıvel escolher ǫ > 0 tal que
V (xxx∗, ǫ) ∩ C = C , então xxx∗ é um ḿınimo global de f (·) sobre C . O
ḿınimo global é ainda estrito se a desigualdade for satisfeita de modo
estrito.
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Problema Exemplo
Introdução

Consideremos o problema:

xxx∗ = arg min
xxx

f (xxx) = (x1 − 3)2 + 2(x2 − 3)2

Sujeito a:























g1(x1, x2) : 3x1 + 2x2 ≤ 12

h1(x1, x2) : x1 + x2 = 5

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(20)
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Problema Exemplo
Introdução
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Figura: Ilustração gráfica do problema exemplo.
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Problema Exemplo
Problema irrestrito

A partir de (20) pode-se definir o problema irrestrito:

xxx∗ = arg min
xxx

f (xxx) = (x1 − 3)2 + 2(x2 − 3)2

Sujeito a:
{

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(21)

Não existe nenhuma função de restrição imposta a f (·).

Os limites inferiores e superiores de xxx definem a região fact́ıvel.
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Problema Exemplo
Problema irrestrito
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Figura: Solução gráfica do problema exemplo – irrestrito.

c©J.A. Raḿırez et al. (UFMG) ELE037: Condições de Otimalidade 32 / 88



Problema Exemplo
Restrição de desigualdade

A partir de (20) pode-se definir o problema com restrição de desigualdade:

xxx∗ = arg min
xxx

f (xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:







g1(x1, x2) : 3x1 + 2x2 ≤ 12

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(22)

Ao incluir g1(·) ≤ 0, a solução deverá satisfazer tal restrição.

Por inspeção, pode-se identificar que o ḿınimo é o ponto (x∗1 , x
∗

2 )
definido na curva de ńıvel de f (·) que tangencia g1(·).

No ponto solução (x∗1 , x
∗

2 ), ∇f (·) está, exatamente, no sentido oposto
de ∇g1(·). Essa relação entre os gradientes é a base para estabelecer
as condições de otimalidade de primeira ordem.
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Problema Exemplo
Restrição de desigualdade
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Figura: Solução gráfica do problema exemplo – restrição de desigualdade.
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Problema Exemplo
Restrição de igualdade

A partir de (20), pode-se definir o problema:

xxx∗ = arg min
xxx

f (xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:







h1(x1, x2) : x1 + x2 = 5

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(23)

Ao incluir h1(·), força-se que a solução esteja sobre a reta h1(·).

Por inspeção, pode-se identificar que o ḿınimo é o ponto (x∗1 , x
∗

2 )
definido na curva de ńıvel de f (·) que tangencia h1(·).

Nesse ponto ∇f (·) está, exatamente, no sentido oposto de ∇h1(·).
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Problema Exemplo
Restrição de igualdade
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Figura: Solução gráfica do problema exemplo – restrição de igualdade.
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Problema Exemplo
Restrições de desigualdade e igualdade

A partir de (20), pode-se definir o problema:

xxx∗ = arg min
xxx

f (xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:







g1(x1, x2) : 3x1 + 2x2 ≤ 12
h1(x1, x2) : x1 + x2 = 5
0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(24)

A região fact́ıvel deve satisfazer simultaneamente g1(·) ≤ 0 e
h1(·) = 0, respeitando-se os limites de x1 e x2.

Por inspeção, tem-se que o ḿınimo (x∗1 , x
∗

2 ) é o ponto de interseção
entre g1(·) e h1(·).

Observe que, no ponto solução, o somatório dos gradientes de f (·),
g1(·) e h1(·) não se anula automaticamente.
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Problema Exemplo
Restrições de desigualdade e igualdade
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Figura: Solução gráfica do problema – restrição de desigualdade e igualdade.
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Condições Anaĺıticas
Problemas irrestritos

Condições anaĺıticas necessárias e suficientes;

Permitem afirmar se a solução encontrada xxx é de fato a solução
ótima;

Essas condições serão usadas como critérios de parada e convergência.

Seja o problema irrestrito definido por:

xxx∗ = arg min
xxx

f (xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:
{

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(25)
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Condições Anaĺıticas
Problemas irrestritos
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Figura: Solução gráfica 3D do problema irrestrito.
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Condições Anaĺıticas
Problemas irrestritos

Analisando a Figura 7, observa-se:

O ḿınimo ocorre em (x∗1 = 3, x∗2 = 3), e nesse ponto f (x1, x2) = 0.

Qualquer variação em xxx∗ leva a um aumento de f (·).

Supondo a variação na vizinhança do ponto ótimo como ∆xxx , e a variação
do valor ótimo da função como ∆f (·):

Fica evidente que o ḿınimo deve ser um ponto que satisfaça:

∆f > 0 , ∀ ∆xxx (26)
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Condições Anaĺıticas
Problemas irrestritos: condições de 1a ordem

O conceito desenvolvido em (26) pode ser aplicado no limite, isto é,
para incrementos infinitesimais dx1 e dx2 sobre xxx∗.

A função f (·) pode ser aproximada por um plano tangente em xxx∗, por
exemplo usando os primeiros termos da série de Taylor.

Supondo esta aproximação para f (·), o seu valor será o mesmo em
qualquer ponto deste plano (i.e., df = 0).

Por outro lado, qualquer variação no plano a partir do ponto ḿınimo
implica que dx1 e dx2 não são zero (i.e. dx1 6= 0 e dx2 6= 0).
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Condições Anaĺıticas
Problemas irrestritos: condições de 1a ordem

Matematicamente:

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 = 0 (27)

ou

df =

[

∂f

∂x1

∂f

∂x2

] [

dx1
dx2

]

= 0 (28)

A equação (28) deve ser satisfeita para todos os pontos do plano.

Sabendo-se que dx1 6= 0 e dx2 6= 0, obtém-se consequentemente:

∂f

∂x1
= 0 ;

∂f

∂x2
= 0 (29)

ou
∇f (x∗1 , x

∗

2 ) = 0 (30)
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Condições Anaĺıticas
Problemas irrestritos: condições de 1a ordem

Condições Necessárias de 1a Ordem: Seja Ω ⊂ R
n e f (·) uma função

diferenciável sobre Ω. Se xxx∗ é um ḿınimo local de f (·) sobre Ω, então
tem-se que:

∇f (xxx∗) = 0 (31)

Considerações adicionais devem ser impostas para assegurar que a solução
encontrada pela condição de primeira ordem seja de fato ótima.
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Condições Anaĺıticas
Problemas irrestritos: condições de 2a ordem

As condições de segunda ordem são normalmente conhecidas como
condições suficientes.

As condições de segunda ordem são obtidas através da expansão de
Taylor da função.

Se xxx∗ é ótima e ∆xxx representa a variação no ponto solução, a qual
resulta em uma variação em ∆f , então:

∆f = f (xxx∗ +∆xxx)− f (xxx∗) = ∇f (xxx∗)T∆ xxx +
1

2
∆xxxTH(xxx∗)∆xxx (32)
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Condições Anaĺıticas
Problemas irrestritos: condições de 2a ordem

No ponto de ótimo (xxx∗), ∆f ≥ 0, ∀ ∆xxx .

Pelas condições necessárias de primeira ordem:

∇f (xxx∗)T∆ xxx = 0 (33)

∆f = f (xxx∗ +∆xxx)− f (xxx∗) = 0.5∆xxxTH(xxx∗)∆xxx ≥ 0 (34)

Para que (34) seja verdadeira, a matrix H(xxx∗) deve ser positiva
semidefinida.
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Condições Anaĺıticas
Problemas irrestritos: condições de 2a ordem

Há três maneiras para determinar se H é positiva definida:

1 Para todos os valores posśıveis de ∆xxx , ∆xxxTH(xxx∗)∆xxx > 0.

2 Todos os autovalores de H(xxx∗) devem ser positivos.

3 Os determinantes de todas as submatrizes que envolvem a diagonal
principal de H(xxx∗) devem ser positivos.

c©J.A. Raḿırez et al. (UFMG) ELE037: Condições de Otimalidade 47 / 88



Condições Anaĺıticas
Problemas irrestritos: condições de 2a ordem

De forma geral, uma matriz H é:

positiva definida sss todos os autovalores são positivos

positiva semi-definida sss todos os autovalores são não-negativos

negativa definida sss todos os autovalores são negativos

negativa semi-definida sss todos os autovalores são não-posititos

indefinida sss possui autovalores positivos e negativos
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Condições Anaĺıticas
Problemas irrestritos: condições de 2a ordem

Classificação dos pontos estacionários de f ((((x)):

H positiva definida ponto de ḿınimo local

H negativa definida ponto de máximo local

H indefinida ponto de sela

H semi-definida inconclusivo (ponto de sela ou extremo local)
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Condições Anaĺıticas
Problemas irrestritos: condições de 2a ordem

Seja o problema de minimização definido por:

xxx∗ = arg min
xxx

f (xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:
{

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(35)

As condições necessárias de primeira ordem requerem:

∂f (·)

∂x1
= 2(x1 − 3) = 0 e

∂f (·)

∂x2
= 4(x2 − 3) = 0 (36)

Resultando na solução x∗1 = 3 e x∗2 = 3.

Este ponto é de ḿınimo, máximo ou inflexão?
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Condições Anaĺıticas
Problemas irrestritos: condições de 2a ordem

As condições de segunda ordem requerem que a matriz Hessiana seja
positiva definida:

H =

[

2 0
0 4

]

(37)

Se verdadeiro, a solução encontrada é de fato o ponto de ḿınimo da
função.
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Condições Anaĺıticas
Problemas irrestritos: condições de 2a ordem

Condições Necessárias de 2a Ordem: Seja Ω ⊂ R
n e f (·) uma função

duas vezes diferenciável sobre Ω. Se xxx∗ é um ḿınimo local de f (·) sobre
Ω, então tem-se que:

1 ∇f (xxx∗) = 0

2 H(xxx∗) ≥ 0
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Condições Anaĺıticas
Problemas irrestritos: condições de 1a e 2a ordem

Assim, conclui-se a dedução anaĺıtica das condições necessárias e

suficientes que um ponto deve satisfazer para ser considerado um
ḿınimo de uma função f (·) sem restrições.

Otimização Irrestrita: Seja f (·) ∈ C 2 e xxx∗ ∈ R
n. Se forem

simultaneamente satisfeitas:

1 ∇f (xxx∗) = 0

2 H(xxx∗) > 0

então xxx∗ é um ḿınimo local estrito de f (·) sobre R
n.
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Condições Anaĺıticas
Problemas com restrição de desigualdade

O problema sujeito à restrição de desigualdade é definido como:

xxx∗ = arg min
xxx

f (xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:







g1(xxx) : 3x1 + 2x2 ≤ 12

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(38)
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Condições Anaĺıticas
Problemas com restrição de desigualdade
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Figura: Solução gráfica do problema exemplo – restrição de desigualdade.
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Condições Anaĺıticas
Problemas com restrição de desigualdade

No ponto solução, o vetor ∇f (·) está na mesma direção e no sentido
oposto do vetor ∇g1(·).

Essa relação entre ∇f (·) e ∇g1(·) só é posśıvel no ponto solução.

Existe no ponto solução uma relação proporcional entre ∇f (·) e
∇g1(·).

Representando a constante de proporcionalidade por β1, pode-se
expressar a relação entre os gradientes por:

∇f (·) = −β1∇g1(·) ou ∇f (·) + β1∇g1(·) = 0 (39)
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 1a ordem

Método de Lagrange (tranforma o problema original restrito em irrestrito):

xxx∗ = arg min
xxx

f (xxx)

sujeito a:

{

g1(xxx) ≤ 0
xmin
1 ≤ x1 ≤ xmax

1 e xmin
2 ≤ x2 ≤ xmax

2

(40)

xxx∗ = arg min
xxx

f (xxx , β1, z
2
1 ) = f (xxx) + β1[g1(xxx) + z21 ]

sujeito a:

{

g1(xxx) + z21 = 0
xmin
1 ≤ x1 ≤ xmax

1 e xmin
2 ≤ x2 ≤ xmax

2

(41)
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 1a ordem

Considerando o Lagrangeano, f (xxx , β1, z
2
1 ), como uma função irrestrita, as

condições de primeira ordem tem que ser satisfeitas, ou seja:

∂f (·)

∂x1
=

∂f (·)

∂x1
+ β1

∂g1(·)

∂x1
= 0 (42)

∂f (·)

∂x2
=

∂f (·)

∂x2
+ β1

∂g1(·)

∂x2
= 0 (43)

∂f (·)

∂z1
= 2β1z1 = 0 (44)

∂f (·)

∂β1
= g1(·) + z21 = 0 (45)
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 1a ordem

As equações (44) e (45) podem ser combinadas para eliminar a variável de
folga z1. Assim:

∂f (·)

∂x1
=

∂f (·)

∂x1
+ β1

∂g1(·)

∂x1
= 0 (46)

∂f (·)

∂x2
=

∂f (·)

∂x2
+ β1

∂g1(·)

∂x2
= 0 (47)

β1g1(·) = 0 (48)
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 1a ordem

Em linhas gerais, as condições de primeira ordem para um problema

com restrição de desigualdade são:

∇f (·) + β1∇g1(·) = 0 (49)

β1g1(·) = 0 (50)

A generalização para p restrições de desigualdade será apresentada no final
da unidade.
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 1a ordem

Substituindo os valores do problema original no sistema de equações
(46)–(48), obtém-se:

∂f (·)

∂x1
= 2x1 − 6 + 3β1 = 0 (51)

∂f (·)

∂x2
= 4x2 − 12 + 2β1 = 0 (52)

β1g1(·) = β1(3x1 + 2x2 − 12) = 0 (53)
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 1a ordem

O sistema de equações simultâneas (51)–(53) requer que as condições no
multiplicador β1 e na restrição g1(·) sejam satisfeitas simultaneamente.

1 Caso a: β1 = 0 [g1 < 0]

2 Caso b: β1 6= 0 [g1 = 0]
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 1a ordem

A solução do sistema de equações (51)–(53) é inviável no caso a.

Considerando o caso b, obtém-se x∗1 = 2.18, x∗2 = 2.73 e β∗

1 = 0.55.

A solução anaĺıtica encontrada usando o multiplicador de Lagrange
indica que é necessário multiplicar o ∇g1(·) por β1 = 0.55 para que o
somatório de ∇f (·) e ∇g1(·) seja zero no ponto solução.
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 1a ordem
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Figura: Solução gráfica do problema exemplo – restrição de desigualdade.
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 2a ordem

Condições de segunda ordem:

∆f (·) = f (xxx∗+∆xxx)− f (xxx∗) = ∇f (xxx∗)T∆xxx+
1

2
∆xxxT [H(xxx∗)]∆xxx > 0 (54)

∇g1(·)
T∆xxx = 0 (55)
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 2a ordem

Considerando um problema com duas variáveis e uma restrição de
desigualdade, tem-se (∇f (xxx∗) = 0):

∆f (·) =
1

2

[

∂2f (·)

∂x21
(∆x1)

2 + 2
∂2f (·)

∂x1∂x2
(∆x1)(∆x2) +

∂2f (·)

∂x22
(∆x2)

2

]

> 0

(56)
Rearranjando os termos de resulta em:

∆f (·) =
1

2

[

∂2f (·)

∂x21
(
∆x1

∆x2
)2 + 2

∂2f (·)

∂x1∂x2
(
∆x1

∆x2
) +

∂2f (·)

∂x22

]

(∆x2)
2 > 0 (57)
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 2a ordem

A equação (55) pode ser expressa por:

∆x1

∆x2
= −

∂g1(·)/∂x2
∂g1(·)/∂x1

(58)

Substituindo a equação (58) na equação (57) obtém-se:

∆f (·) =
1

2

[

∂2f (·)

∂x21
(
∂g1(·)/∂x2
∂g1(·)/∂x1

)2 − 2
∂2f (·)

∂x1∂x2
(
∂g1(·)/∂x2
∂g1(·)/∂x1

) +
∂2f (·)

∂x22

]

(∆x2)
2

(59)
que representa a condição de segunda ordem, ou condição suficiente.

No problema exemplo, [ · ] = 44/9 > 0.
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Condições Anaĺıticas
Problemas com restrição de desigualdade: condições de 1a e 2a ordem

Otimização Restrita – Desigualdade: Sejam f (·) ∈ C 2 e gi (·) ∈ C 2,
i = 1, . . . , p, e xxx∗ tal que gi (xxx

∗) ≤ 0, i = 1, . . . , p. Se existem
multiplicadores β1, β2, . . . , βp tais que

1 βi ≥ 0 , i = 1, . . . , p

2 βigi (xxx
∗) = 0 , i = 1, . . . , p

3 ∇f (xxx∗) +

p
∑

i=1

βi∇gi (xxx
∗) = 0

4 H(xxx∗) +

p
∑

i=1

βiGi (xxx
∗) > 0 sobre

M = {yyy ∈ R
n : ∇gi (xxx

∗)′yyy = 0 , i ∈ I (xxx∗)},
I (xxx∗) = {i : gi (xxx

∗) = 0 , βi > 0}

são simultaneamente satisfeitos, então xxx∗ é um ḿınimo local estrito de
f (·) sobre gi (xxx) ≤ 0 , i = 1, . . . , p.
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Condições Anaĺıticas
Problemas com restrição de igualdade

O problema sujeito à restrição de igualdade pode ser definido como:

xxx∗ = arg min
xxx

f (xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:







h1(xxx) : x1 + x2 = 5

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(60)
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Condições Anaĺıticas
Problemas com restrição de igualdade
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Figura: Solução gráfica do problema exemplo – restrição de igualdade.
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Condições Anaĺıticas
Problemas com restrição de igualdade

No ponto solução, ∇f (·) está na mesma direção e no sentido oposto
do vetor ∇h(·).

Examinando outros pontos fact́ıveis, pode-se afirmar que essa relação
entre ∇f (·) e ∇h(·) só é posśıvel em xxx∗.

Existe em xxx∗ uma relação proporcional entre ∇f (·) e ∇h(·).

Representando a constante de proporcionalidade por λ1:

∇f (·) = −λ1∇h1(·) ou ∇f (·) + λ1∇h1(·) = 0 (61)
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Condições Anaĺıticas
Problemas com restrição de igualdade

A equação (61) pode ser obtida usando o método de Lagrange.

No método de Lagrange o problema original (60) é transformado com
a introdução de uma função Lagrangeana f .

minimize f (x1, x2, λ1) = f (x1, x2) + λ1h1(x1, x2) (62)

Neste caso, o problema restrito passa a ser expresso por:

minimize f (xxx , λ1) = (x1 − 3)2 + 2(x2 − 3)2 + λ1(x1 + x2 − 5)

sujeito a:







h1(x1, x2) : x1 + x2 = 5

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(63)

sendo λ1 um multiplicador de Lagrange.
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Condições Anaĺıticas
Problemas com restrição de igualdade: condições de 1a ordem

As condições necessárias de primeira ordem são obtidas considerando
f (·) como uma função irrestrita das variáveis x1, x2 e λ1.

∂f (·)

∂x1
=

∂f (·)

∂x1
+ λ1

∂h1(·)

∂x1
= 0 (64)

∂f (·)

∂x2
=

∂f (·)

∂x2
+ λ1

∂h1(·)

∂x2
= 0 (65)

∂f (·)

∂λ1
= h1(·) = 0 (66)
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Condições Anaĺıticas
Problemas com restrição de igualdade: condições de 1a ordem

Em linhas gerais:

∇f (·) + λ1∇h1(·) = 0 (67)

h1(·) = 0 (68)

A generalização para q restrições de igualdade é direta.
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Condições Anaĺıticas
Problemas com restrição de igualdade: condições de 1a ordem

Aplicando as condições de 1a ordem ao problema (63), obtém-se:

∂f (·)

∂x1
= 2x1 − 6 + λ1 = 0 (69)

∂f (·)

∂x2
= 4x2 − 12 + λ1 = 0 (70)

h1(·) = x1 + x2 = 5 (71)
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Condições Anaĺıticas
Problemas com restrição de igualdade: condições de 1a ordem

A solução do sistema de equações (69)–(71) é x∗1 = 2, 33, x∗2 = 2, 67
e λ∗

1 = 1, 34.

A solução anaĺıtica encontrada coincide com a solução geométrica
obtida por inspeção.

A verificação das condições de 2a ordem, ou suficientes, é deixada
para o leitor.
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Condições Anaĺıticas
Problemas com restrição de igualdade: condições de 1a ordem
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Figura: Solução gráfica do problema exemplo – restrição de igualdade.
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Condições Anaĺıticas
Problemas com restrição de igualdade: condições de 1a e 2a ordem

Otimização Restrita – Igualdade: Sejam f (·) ∈ C 2 e hj(·) ∈ C 2,
j = 1, . . . , q e xxx∗ tal que hj(xxx

∗) = 0, j = 1, . . . , q. Se existem
multiplicadores λ1, λ2, . . . , λq tais que

1 ∇f (xxx∗) +

q
∑

j=1

λj∇hj(xxx
∗) = 0

2 H(xxx∗) +

q
∑

j=1

λjHj(xxx
∗) > 0 sobre

M = {yyy ∈ R
n : ∇hj(xxx

∗)′yyy = 0 , j = 1, . . . , q}

são simultaneamente satisfeitos, então xxx∗ é um ḿınimo local estrito de
f (·) sujeito a hj(xxx) = 0, j = 1, . . . , q.
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Condições Anaĺıticas
O Problema Geral de Otimização

O problema geral de otimização é definido incluindo simultaneamente
as restrições de desigualdade e igualdade:

xxx∗ = arg min
xxx

f (xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:























g1(xxx) : 3x1 + 2x2 ≤ 12

h1(xxx) : x1 + x2 = 5

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(72)
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Condições Anaĺıticas
O Problema Geral de Otimização

Usando o método de multiplicadores de Lagrange:

xxx∗ = arg min
xxx

f (xxx , β1, λ1, z
2
1 ) = f (xxx) + β1[g1(xxx) + z21 ] + λ1h1(xxx)

sujeito a:























g1(xxx) + z21 = 0

h1(xxx) = 0

xmin
1 ≤ x1 ≤ xmax

1 e xmin
2 ≤ x2 ≤ xmax

2

(73)
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Condições Anaĺıticas
O Problema Geral de Otimização

Considerando a função Lagrangeana f (·) como uma função irrestrita, as
condições de primeira ordem para este caso podem ser obtidas por:

∂f (·)

∂x1
=

∂f (·)

∂x1
+ β1

∂g1(·)

∂x1
+ λ1

∂h1(·)

∂x1
= 0 (74)

∂f (·)

∂x2
=

∂f (·)

∂x2
+ β1

∂g1(·)

∂x2
+ λ1

∂h1(·)

∂x2
= 0 (75)

∂f (·)

∂z1
= 2β1z1 = 0 (76)

∂f (·)

∂β1
= g1(·) + z21 = 0 (77)

∂f (·)

∂λ1
= h1(·) = 0 (78)
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Condições Anaĺıticas
O Problema Geral de Otimização

As equações (74) a (78) podem ser reduzidas a quatro expressões:

∂f (·)

∂x1
=

∂f (·)

∂x1
+ β1

∂g1(·)

∂x1
+ λ1

∂h1(·)

∂x1
= 0 (79)

∂f (·)

∂x2
=

∂f (·)

∂x2
+ β1

∂g1(·)

∂x2
+ λ1

∂h1(·)

∂x2
= 0 (80)

β1g1(·) = 0 (81)

h1(·) = 0 (82)

A equação (81) requer que duas possibilidades sejam testadas:

1 Caso a: β1 = 0 [g1 < 0]

2 Caso b: β1 6= 0 [g1 = 0]
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Condições Anaĺıticas
O Problema Geral de Otimização

As condições de 1a ordem podem ser resumidas da seguinte maneira:

∇f (·) + β1∇g1(·) + λ1∇h1(·) = 0 (83)

β1g1(·) = 0 (84)

h1(·) = 0 (85)

A generalização para p restrições de desigualdade e q restrições de
igualdade é direta.
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Condições Anaĺıticas
O Problema Geral de Otimização

No problema exemplo, as condições de primeira ordem resultam em:

∂f (·)

∂x1
= 2x1 − 6 + λ1 + 3β1 = 0 (86)

∂f (·)

∂x2
= 4x2 − 12 + λ1 + 2β1 = 0 (87)

β1g1(·) = β1(3x1 + 2x2 − 12) = 0 (88)

∂f (·)

∂λ1
= x1 + x2 − 5 = 0 (89)
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Condições Anaĺıticas
O Problema Geral de Otimização

Duas soluções devem ser examinadas:

1 Caso a: (β1 = 0 e [g1 < 0]). Obtém-se x1 = 7/3, x2 = 8/3 e
λ1 = 4/3, porém g1(·) = 1/3 > 0.

2 Caso b: (β1 6= 0 [g1 = 0]). Obtém-se x1 = 2, x2 = 3, β1 = 2 e
λ1 = −4.

Observe que no ponto solução (x1 = 2; x2 = 3), verifica-se que
∇f (·) + β1g1(·) + λ1h1(·) = 0.
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Condições Anaĺıticas
O Problema Geral de Otimização
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Figura: Solução anaĺıtica do caso geral.
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Condições Anaĺıticas
Condições de Karush-Kuhn-Tucker

Condições Necessárias de Karush-Kuhn-Tucker: Seja xxx∗ um ponto
regular das restrições do problema de otimização:

xxx∗ = arg min
xxx

f (xxx)

sujeito a







gi (xxx) ≤ 0 , i = 1, . . . , p

hj(xxx) = 0 , j = 1, . . . , q

(90)

sendo que f (·), g(·), h(·) ∈ C 1.

c©J.A. Raḿırez et al. (UFMG) ELE037: Condições de Otimalidade 87 / 88



Condições Anaĺıticas
Condições de Karush-Kuhn-Tucker

Para xxx∗ ser um ótimo local do problema, deve existir um conjunto de
multiplicadores de KKT β∗

i ∈ R
p com β∗

i ≥ 0 e λ∗

j ∈ R
q tal que:

∇f (xxx∗) +

q
∑

j=1

λ∗

j ∇hj(xxx
∗) +

p
∑

i=1

β∗

i ∇gi (xxx
∗) = 0

β∗

i gi (xxx
∗) = 0 e βi ≥ 0 ∀ i = 1, . . . , p

hj(xxx) = 0 ∀ j = 1, . . . , q

(91)
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