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Introducao

Assunto abordado:

@ O problema de otimizagio;

@ Otimizagdo de fungdes matematicas simples (2 varidveis);
@ Caracterizacdo de diferentes tipos de fungoes;

@ Caracterizacdo de diferentes estratégias de otimizagdo;

@ Principio de funcionamento dos métodos de otimizac¢3o.

J. A. Ramirez et al. (UFMG) ELEO37: Introducdo 3/ 78



O Jogo da Otimizacao

Introducao

A Otimizacdo representa um conjunto de ferramentas capazes de
determinar as melhores configuracdes possiveis para a constru¢do ou o
funcionamento de sistemas de interesse.

A mesma teoria é aplicada a diferentes contextos:

@ Projeto de circuitos, antenas, motores (Eng. Elétrica);
@ Controle de processos industriais (Eng. CA);
@ Politica eficiente de vacina¢do (Mat. Computacional);

@ Otimizac¢do do trafego de informagdo em redes (Cientista da
Computagio);

@ etc.
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O Jogo da Otimizacao

Formula¢do do Problema

Como modelar um problema de otimizag¢do?

Formalmente, um problema de otimizacao pode ser definido por:

x* = arg min f(x)
X

gix)<0,i=1,...,p (1)

Obs.: variaveis em negrito sdo vetores; as demais s3o escalares.
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O Jogo da Otimizacao

Formulacdo do Problema: exemplo

Seja o problema de otimizacdo de um alto-falante como ilustrado a seguir.

Objetivo:

@ Minimizar o volume do
alto-falante e atender um valor
minimo de densidade de fluxo
magnético B no entreferro.

Matematicamente:

min: f(x) = volume

sujeito a: g1(x) : |B| > Bpmin
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O Jogo da Otimizacao

Formula¢do do Problema: exemplo

Modelo 2D do alto-falante:
Questdes praticas:

@ Como calcular o volume do
X9 alto-falante usando xi, ..., x167

@ Quais os limites de xi,...,x167

@ Quais materiais serdo usados?

x1

@ Como calcular B?

Pure Iron

[ -
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O Jogo da Otimizacao

Formula¢do do Problema: o vetor de varidveis de decisido

O vetor x é o vetor de varidveis de otimizagao.

O processo de otimizacdo busca especificar os valores destas varidveis.
X1

X2

Xn

O vetor x possui um significado concreto/fisico?
O vetor x é composto de varidveis reais ou discretas?

As técnicas de otimizag¢ao s3o as mesmas para qualquer representacido das
varidveis de decisdo?
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O Jogo da Otimizacao

Formulagdo do Problema: a fungio objetivo

A fungdo objetivo f(-), ou fungdo custo:

@ Representa um indice especifico do sistema, cujo valor, por convencao,
queremos minimizar para alcancarmos o desempenho étimo.

Qual a possivel fun¢ido custo do projeto do alto-falante?
Qual a possivel fun¢ido custo do projeto de um motor?

Ex. fungdes de custo: consumo de combustivel; ruido; probabilidade de
defeitos, etc.
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O Jogo da Otimizacao

Formulagdo do Problema: a fungio objetivo

Como tratar problemas de maximizag¢do?

Neste caso basta minimizarmos a funcdo que se deseja maximizar
multiplicada por -1.

Maximizar a fun¢do p(x) é o mesmo que minimizar f(x) = —p(x).
O vetor x que minimiza f(-) é também o vetor que maximiza p(-).

Note que f(-) : R" — R.
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O Jogo da Otimizacao

Formula¢do do Problema: a solugdo étima

As variaveis de otimizacdo x s3o reais?

No exemplo anterior, quantas possibilidades de construgcdo existem para o
alto-falante?

Na solu¢do 6tima de um problema de minimizac3o:

O vetor étimo x* é igual ao argumento da fungio f(-) que faz
com que essa func¢do atinja seu minimo valor.

Como encontrar x*?
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O Jogo da Otimizacao

Formulacdo do Problema: as restricées

@ As restricdes significam o conjunto dos requisitos que o resultado do
projeto deve atender para ser admissivel enquanto solugdo.

@ Restricoes de desigualdade:

gi(x) <0 (3)

@ Restricoes de igualdade:
hi(x) =0 (4)
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O Jogo da Otimizacao

Formulacdo do Problema: as restricées

Restricdes de natureza n3o-técnica:
S3o fisicamente implementdveis, porém violam certos padroes.
Exemplo:

@ Objetivo: Projeto de um automdével de baixo custo;

@ Restricao: Emissao de gases poluentes abaixo de um limiar
estabelecido por lei.

gi(-) ' R"—RP: gi(x)<0,i=1,...,p
hi() : RP > RY: hi(x)=0,j=1,....q
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O Jogo da Otimizacao

Formulacdo do Problema: as restricées

Em relagcdo as restricdes, definimos ainda a seguinte nomenclatura:

@ Regiao factivel: Conjunto dos pontos do espago " que satisfazem,
simultaneamente, a todas as restricoes;

@ Regiao infactivel: Conjunto dos pontos do espaco :" que violam
pelo menos uma das restricGes do problema;

@ Ponto factivel: Ponto pertencente a regido factivel,
@ Ponto infactivel: Ponto pertencente a regido infactivel,

@ Restricao violada: Cada uma das componentes do vetor gj(x) que
apresentar valor positivo, ou cada uma das componentes do vetor
hj(x) que apresentar valor ndo-nulo serd chamada de restricdo violada
no ponto Xx.
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O Jogo da Otimizacao

As regras do jogo: acesso a informagado

Regras de acesso a informagao:

@ Nao conhecemos expressoes matematicas explicitas que representem a
fungdo objetivo f(-) e as fungbes de restricdo gi(-) e h;(-);

@ Temos, entretanto, a possibilidade de descobrir quanto valem as
funcgdes objetivo e de restricao em qualquer ponto do espago de
varidveis de otimizac3o. Essa é a tnica informacdo que conseguiremos
adquirir, ao longo do processo de otimizagdo, para nos guiar em
direcdo a solucdo desejada.

Por que nem sempre conhecemos f(x)?

Ex.: Qual a funcdo objetivo do problema do alto-falante? E a funcio de

restricdo?
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O Jogo da Otimizacao

As regras do jogo: custo da informagdo

Os métodos de otimizacdo serdo comparados entre si de acordo com os
critérios:

@ Numero de avaliagdes da funcido objetivo e das restri¢des;

@ Quanto menos avaliacGes forem necessarias, melhor serd considerado
o método;

@ Precisdo e robustez: quanto mais a solucdo fornecida pelo método se
aproximar da solugdo exata do problema, melhor serd considerado o
método.
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O Jogo da Otimizacao

O processo

flx)

Modelo
Computacional
do sistema

glx).hix,)

Algoritmo de
otimizagdo

J. A. Ramirez et al. (UFMG) ELEO37: Introducao 17 /78



Otimizac3ao sem Restricao

Introducao

Embora f(x) seja do tipo caixa-preta, ela é bem definida.
O processo de otimizagdo utiliza informacgdes locais da superficie de f(x).

Problema de minimizacdo de uma funcdo objetivo sem restricdo:

*

x* = arg min f(x) (5)
X
Para viabilizar a representacio grafica do problema, supde-se x € R2.
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Otimizac3ao sem Restricao

Introducao

Consideremos a seguinte fungdo ndo-linear f(x):

Figura: Superficie que representa o grafico de uma fun¢do n3o-linear f(x) de
duas varidveis reais.

J. A. Ramirez et al. (UFMG) ELEO37: Introducao 19 /78



Otimizac3ao sem Restricao

Introducao

Figura: Grafico de curvas de nivel de f(x).
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Otimizac3ao sem Restricao

Introducao

Metafora para a solugdo do problema de otimizagdo:
@ Um aluno é lancado de para-quedas sobre um ponto qualquer da
superficie de f(x);

@ O objetivo do aluno é encontrar o ponto mais baixo de f(x), i.e. o
ponto de minimo, com o menor niimero possivel de “passos”;

@ Deverd caminhar com uma venda cobrindo seus olhos, sem poder
“olhar” para a superficie;

@ A Unica informacdo que ele pode utilizar é a altura do ponto no qual
estiver “pisando”;

@ Pode, entretanto, se “lembrar” das alturas dos pontos em que j3 tiver
pisado;

@ Esta informacao pode ser utilizada para tomar a decisdo de “para
onde caminhar”.
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Otimizac3ao sem Restricao

Introducao

A metafora descrita anteriormente ilustra bem o que é o problema de
otimizacao.

Construir os chamados métodos de otimizacao corresponde, dentro
dessa metdfora, a formular as estratégias a serem utilizadas pelo “aluno”
em sua busca pelo ponto de minimo.
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Otimizac3ao sem Restricao

Introducao

Que tipo de estratégia de otimizacao utilizar?
Esta escolha depende das caracteristicas da superficie de f(x):
@ Diferenciabilidade: diferencidvel ou n3o-diferencidvel
@ Modalidade: unimodal ou multimodal
@ Convexidade: convexa, quasi-convexa, hdo-convexa
@ Linearidade: linear ou n3o-linear

@ Escala: uni-escala ou multi-escala

Estas caracteristicas sdo discutidas ao longo da apresentacao das
diferentes estratégias de otimizac3o.
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Otimizac3ao sem Restricao

Estratégia de direcdo de busca

Vamos considerar a funcdo quadrética definida por:

f(x) = (x = x0)' Q(x — xo)

o-[& ] ~-i]

cujo grafico e curvas de nivel sdo ilustrados a seguir.
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Otimizac3ao sem Restricao

Estratégia de direcdo de busca
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Figura: Superficie que representa o grafico de uma fun¢do quadratica f(x) de
duas varidveis reais.

A. Ramirez et al. (UFMG) ELEO37: Introducdo 25 /78



Otimizac3ao sem Restricao

Estratégia de direcdo de busca
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Figura: Gréfico de curvas de nivel da mesma fun¢do quadratica de duas varidveis

reais, f(x).
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Otimizac3ao sem Restricao

Estratégia de direcdo de busca

Meétodo do Gradiente (um método de direcio de busca)

O aluno:

@ Passo 1: colhe amostras locais da funcdo e determina em qual direcdo
a fungdo decresce mais rapidamente (usa aproximagdo numérica do
gradiente da func3o).

@ Passo 2: caminha na direcdo encontrada enquanto a funcdo decrescer.

@ Passo 3: decide se para (caso considere que esteja suficientemente
préximo do ponto de minimo da fung3o) ou se continua a busca,
retornando ao Passo 1.
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Otimizac3ao sem Restricao

Estratégia de direcdo de busca

Requisitos exigidos pelas Estratégias de Direcdo de Busca

@ A fungdo deve ser diferencidvel (a aproximagdo numérica do
gradiente da funcdo contém informacao significativa sobre a forma
como a fungdo varia nas vizinhancas do ponto em que tiver sido
estimado).

@ A fun¢do deve ser unimodal (possuir um Ginico minimo global, no
interior de uma unica bacia de atracgdo).
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Otimizac3ao sem Restricao

Estratégia de direcdo de busca

Consideremos uma fun¢do um pouco mais complexa.
Fungdo de Rosenbrock (diferencidvel e unimodal; x* = [1
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Otimizac3ao sem Restricao

Estratégia de direcdo de busca

O Meétodo do Gradiente é eficiente para resolver este problema?
Existem outros Métodos de Direcio de Busca mais eficientes?

Funcéo de Rosenbrock
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Otimizac3ao sem Restricao

Questdes praticas

Consideremos agora uma fungdo f(x) com as seguintes caracteristicas:

@ Ainda unimodal;

@ Porém nao-diferenciavel.

Qual a dificuldade encontrada por técnicas de Direcoes de Busca?
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Otimizac3ao sem Restricao
Questdes praticas
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Figura: Superficie que representa o grafico de uma fun¢do unimodal n3o
diferencidvel f(x) de duas varidveis.
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Otimizac3ao sem Restricao

Questdes praticas

Figura: Gréfico de curvas de nivel da fungdo unimodal n3o diferenciavel de duas
varidveis reais, f(x).
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Otimizac3ao sem Restricao

Questdes praticas

@ Como tratar problemas unimodais e n3o-diferencidveis usando
Métodos de Direcdo de Busca?

@ A nao-diferenciabilidade ocorre em todos os pontos da fun¢ao?

@ Como saber, numericamente, se a funcdo ndo é diferencidavel em um
ponto especifico?

@ Quando identificada a n3o-diferenciabilidade em um ponto, o que
fazer?

@ A otimizacao por esses métodos pode se tornar inviavel.

o Esta dificuldade é intrinseca a toda a familia dos métodos de
direcao de busca.
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Otimizac3ao sem Restricao

Questdes praticas

Dificuldade encontrada pelos Métodos de Direcdo de Busca em fungdes
n3o-diferencidveis:
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Otimizac3ao sem Restricao

Estratégia de exclusdo de regides

@ Func¢bes n3o-diferencidveis sdo muito comuns em problemas praticos.
@ Uma nova familia de métodos é formulada para tratar tais problemas.

@ Métodos de Exclusdao de Regides:

@ Unimodalidade da func3o;
o Diferenciabilidade n3o é exigida;

o Convexidade da funcao.
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Otimizac3ao sem Restricao

Estratégia de exclusdo de regides

Por que a fungdo f(x) precisa ser convexa?

@ Uma curva de nivel de uma fung¢do convexa sempre delimita uma
regiao convexa em seu interior.

@ O vetor gradiente é sempre perpendicular a curva de nivel que passa
pelo ponto onde o vetor foi calculado.

@ A reta perpendicular ao vetor gradiente que passa no ponto onde esse
vetor foi calculado é tangente a curva de nivel.

@ Devido a convexidade da regido no interior da curva de nivel, esta
regido sempre fica inteiramente localizada em apenas um dos lados
dessa reta tangente.
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Otimizac3ao sem Restricao

Estratégia de exclusdo de regides

Funcionamento do Método de Exclusdo de Regides

Partindo de um ponto inicial sobre o espaco de busca:

@ Passo 1: adquire-se informacao local, e faz-se uma estimativa do
gradiente da funcdo objetivo nesse ponto.

@ Passo 2: com base no gradiente, identifica-se qual é a reta tangente
a curva de nivel que passa pelo ponto atual (todo o semi-plano
que contém o vetor gradiente é descartado).

@ Passo 3: move-se para algum ponto no interior da regido que ainda
nao foi descartada.

@ Passo 4: caso o novo ponto esteja suficientemente préximo do minimo
da funcdo, o processo termina. Do contrério, retorna-se ao Passo 1.
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Otimizac3ao sem Restricao

Estratégia de exclusdo de regides

Algumas observagoes:

@ A convergéncia do método ocorre devido a diminuicao sistematica
da regiao que contém x:x.

@ Como a regido “viavel” diminui, o novo ponto tende a aproximar-se
cada vez mais de xx.

@ A n3do-diferenciabilidade ndo impede a convergéncia do método.

Qual o possivel critério de parada do método?

Qual a relacdo entre a velocidade de convergéncia no inicio e no final
do processo de otimizagcao?
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Otimizac3ao sem Restricao

Estratégia de exclusdo de regides

Figura: Iteragbes de um método de exclusdo de regides, mostradas sobre as
curvas de nivel de uma fung¢3do cujo minimo exato é x*.
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Otimizac3ao sem Restricao

Estratégias de populagdes

@ Grande parte das funcdes objetivo que queremos otimizar na pratica,
infelizmente, ndo sao unimodais.

@ Note que uma funcao multimodal também nao é convexa. Mas
pode apresentar regides convexas.

@ Por consequéncia, tanto as estratégias de direcao de busca quanto
as estratégias de exclusao de regides irdo falhar em sua otimizagao.
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Otimizac3ao sem Restricao

Estratégias de populagdes

@ Caso f(x) seja multimodal, o resultado encontrado por qualquer uma
das técnicas estudadas sempre serd o minimo local associado a bacia
de atracdo onde a busca tiver sido iniciada.

@ Para determinar o minimo global, todas as bacias devem ser
investigadas.

@ As estratégias de populacoes evoluem um conjunto de solucoes
candidatas em paralelo, e estas cooperam entre si.
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Otimizac3ao sem Restricao

Estratégias de populagdes

Considere a fungdo f(x) multimodal:

Funcéo Peaks

10

D
oSS
SSSoSS
==
e
=
—

<

=
S
3

N

Figura: Fung¢do multimodal
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Otimizac3ao sem Restricao

Estratégias de populagdes

|

Figura: Curvas de nivel da fungdo multimodal
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Otimizac3ao sem Restricao

Estratégias de populagdes

Vdrios Otimizadores:
@ Passo 1: encontram-se distribuidos no espa¢o de busca, e colhem
informacoes locais da funcdo.

@ Passo 2: comunicam entre si, e trocam informacgoes a respeito dos
valores da func3o objetivo em cada ponto.

@ Passo 3: um pequeno sub-grupo de Otimizadores, que estiver nas
melhores regides, fica parado.

@ Passo 4: os demais se deslocam, com movimentos que
simultaneamente: (i) os fagam se aproximarem daqueles melhor
localizados; e (ii) os facam explorarem outras regides ainda nio
investigadas.

@ Passo 5: cada Otimizador avalia a funcdo no ponto para onde foi.

@ Passo 6: o algoritmo pdra ou retorna ao Passo 2.
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Otimizac3ao sem Restricao

Estratégias de populagdes

Algoritmos baseados em Populacdes

@ Vantagem (n3o exigem unimodalidade, convexidade ou
diferenciabilidade).

@ Limitagdo (custo computacional elevado).
@ Quando sdo Uteis?
@ Métodos hibridos:

@ SHo vidveis? Por que? (ex.: custo computacional)
@ Quando podem ser empregados? (ex.: fungdes multi-escala)

@ Quais requisitos devem ser considerados? (ex.: convexidade)
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Otimizac3ao sem Restricao

Estratégias de populagdes
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Figura: Superficie que representa o gréfico de uma fungdo multimodal f(x) de
duas varidveis que apresenta a caracteristica de muiltiplas escalas.

J. A. Ramirez et al. (UFMG) ELEO37: Introducao 47 /78



Otimizac3ao sem Restricao

Estratégias de populagdes

Figura: Superficie que representa o gréifico de uma funcdo multimodal f(x) de
duas varidveis que apresenta a caracteristica de muiltiplas escalas.
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Otimizacao com Restricées de Desigualdade

Introducao

Suponha agora um problema de otimiza¢do com restricoes de
desigualdade:

*

X" = arg min f(x)

Sujeito a: { gi(x)<0; i=1,...,p
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Otimizacao com Restricées de Desigualdade

Introducao

O ponto de étimo x* deve satisfazer as p desigualdades:

gi1(x") <0
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Otimizacao com Restricées de Desigualdade

Interpretacdo geométrica
Consideremos inicialmente uma Unica restricao de desigualdade:
g1(x) <0 (9)

@ Admitamos que a fungdo gi(-) seja continua;

@ Se verdadeiro, essa funcdo nunca muda “bruscamente” de valor;
@ Logo, se existem. ..

o Py CR"em que g1(-) > 0; e

o N1 CR" em que g1(+) < 0;

o Entdo, deve existir G; C R"” em que g1(-) = 0;

o Além disso, G separa P; de Ni.
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Otimizacao com Restricées de Desigualdade

Interpretacdo geométrica

Matematicamente:
P1 £ {x | &1(x) > 0}
M £ {x | g1(x) < 0} (10)

G1 = {x | g1(x) = 0}
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Otimizacao com Restricées de Desigualdade

Interpretacdo geométrica

Exemplo de restricdo: superficie z = gy(x)
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Otimizacao com Restricées de Desigualdade
Interpretacdo geométrica
Exemplo de restricdo: curva de nivel onde gi(x) =0

@ a=P;; b=N;c=G;
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0.2
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Otimizacao com Restricées de Desigualdade

Interpretacdo geométrica

A exigéncia de que gi(x*) < 0 implica que:

@ P representa o conjunto/regido invidvel/infactivel;

o Nj e Gy sdo conjuntos/regides vidveis/factiveis;

@ O conjunto factivel ou a regido factivel F; é a unido de G; e N:

Fi=G1UM (11)
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Otimizacao com Restricées de Desigualdade

Interpretacdo geométrica

Interpretacao para problemas com vdrias restrigoes:

081 1

0.6 1

041 B

0.2 1
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Otimizacao com Restricées de Desigualdade

Interpretacdo geométrica

Interpretacdo para problemas com varias restricbes: b = F>

081

0.6

0.4

0.2 b
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Otimizacao com Restricées de Desigualdade

Interpretacdo geométrica

Interpretacdo para problemas com varias restricbes: ¢ = F = F1 N Fo
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Otimizacao com Restricées de Desigualdade

Interpretacdo geométrica

@ Os métodos discutidos sdo aplicdveis a problemas restritos?
@ O 6timo restrito devera pertencer a F.
@ Como garantir que x* € F?

@ Como adaptar os métodos conhecidos, de maneira simples e
eficiente, para resolver problemas restritos?
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Otimizacao com Restricées de Desigualdade

Barreiras e penalidades

@ Solucdo Geral: Método de Barreiras ou Método de Penalidades.

@ A ideia é transformar a funcdo-objetivo em uma funcao
pseudo-objetivo.

@ Barreiras: impedem a existéncia de solugdes em regides infactiveis.
@ Penalidades: penalizam solugdes localizadas em regides invidveis.

@ A funcgao pseudo-objetivo deve ser semelhante a fungdo original na
regido viavel.
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Otimizacao com Restricées de Desigualdade

Barreiras e penalidades

Em termos matematicos, o problema de otimizagdo original:

x* = arg min f(x)
X
(12)
Sujeito a: {gi(x) <0
é transformado no problema:
x* = arg mxin f(x)+ F(x) (13)

A fungdo F(-) deve ser muito pequena (ou zero) no interior da regido
factivel, de tal forma que f(-) seja muito parecida com f(-) + F(-) em
qualquer ponto deste espaco.
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Otimizacao com Restricées de Desigualdade

Barreiras e penalidades

@ O valor de F(x) cresce subtamente perto da fronteira.
@ Pré-requisito: a solucao inicial deve ser factivel.

Figura: llustracdo de uma funcdo de barreira.
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Otimizacao com Restricées de Desigualdade

Barreiras e penalidades

@ O valor de F(x) cresce a medida que se afasta da regido vidvel.
@ A solucao inicial pode ser factivel ou nao.

Figura: A fungdo de penalidade é igual a zero no interior da regido factivel, e
cresce rapidamente a medida em que o ponto se afasta dessa regido.
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Otimizacao com Restricées de Desigualdade

Barreiras e penalidades

@ O problema restrito é entdo tratado como irrestrito.

@ Logo, os métodos discutidos podem ser aplicados na otimizag¢ao dos
problemas transformados.

@ Qual método utilizar: Direcdo de Busca, Exclusdo de Regides ou
Método de Populagdes?

@ Barreiras ou Penalidades?
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Otimizacao com Restricées de Desigualdade

Composicao pelo maximo

Exclusao de Regides e tratamento de gj(x) < 0 por
Composicao pelo Maximo

@ Dado um ponto x, identifica-se a restricdo mais violada:

G(x) = max(g1(x), g&2(x), - - -, 8p(x)) (14)

@ Aplica-se exclusdo de regido a fungdo G(-).

@ Caso x seja vidvel, aplica-se exclusdo de regido a fungdo f(-).
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Otimizacao com Restricées de Desigualdade

Composicao pelo maximo

Exclusdao de Regides e tratamento de gj(x) < 0 por
Composicao pelo Maximo

@ A sequéncia de pontos x pode oscilar entre vidvel e invidvel.
@ No entanto, a regido factivel diminui iterativamente.

@ A solugdo final termina arbitrariamente préoxima do étimo.
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Otimizacao com Restricées de Desigualdade

Composicao pelo maximo

Exclusdao de Regioes e Composicao pelo Maximo
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Otimizacao com Restricoes de Igualdade

Introducao

Consideremos agora o problema de otimizagdo com restrigoes de igualdade:

x* = arg min f(x)
X

(15)
Sujeito a: {hj(x)=0, j=1,...,q
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Otimizacao com Restricoes de Igualdade

Introducao

O 6timo x* deve satisfazer as g equacdes:

hi(x*) = 0
ha(x*) = 0

(16)
hg(x*) = 0
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Otimizacao com Restricoes de Igualdade

Introducao

@ A regido factivel é descrita por um conjunto de pontos que satisfazem
h(x) = 0.

@ Esta regido vidvel é uma superficie de dimensiao n — 1.

@ No caso de q restricdes de igualdade, o conjunto factivel corresponde
a intersegdo de todas as superficies hj(x) = 0.
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Otimizacao com Restricoes de Igualdade

Introducao

25

-15 L L L L L L L L L

Figura: A linha corresponde ao lugar geométrico dos pontos que satisfazem
h(x) = 0. Essa linha é a regido factivel de um problema de otimizac3o com essa
restrigdo.
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Otimizacao com Restricoes de Igualdade

Introducao

@ Como tratar as restricoes de igualdade?
@ Quais das técnicas discutidas sio vidveis neste caso?
@ Por que?

@ As técnicas de barreiras e composicdo pelo maximo dependem da
existéncia de pontos interiores a regiao factivel do problema.

@ A técnica de penalidades € a tnica vidvel nestes problemas.
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Otimizacao Linear

Introducao

Suponha fungdes objetivo e de restricdes lineares.
O problema agora é chamado de otimiza¢3o linear:

x* = argminc’x
X

(17)
Sujeito a: {Ax < b
De outra forma:
f(X) =C1X1+ X2+ ...+ ChXy (18)
e o conjunto de restrigdes corresponde as m desigualdades:
ai1x1 + awxo + ...+ aipxn < by
anix1 + apxo + ...+ axpxp < by
: (19)

am1X1 + ameXo + ... + amnXn < by
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Otimizacao Linear

Introducao

Importancia da otimizacao linear

@ Problemas praticos podem ser modelados via fungdes lineares;
@ Podem ser resolvidos mais rapidamente que problemas n3o-lineares:
@ Para o mesmo nimero de varidveis; e

@ Mesmo niimero de restri¢oes.

@ Algoritmos especializados sao capazes de lidar com problemas muito
grandes (centenas de varidveis de decisdo).
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Otimizacao Linear

Introducao

@ As curvas de nivel de uma fungdo linear s3o retas paralelas.

@ Nao exite minimo local irrestrito de um problema linear.

Figura: Superficie correspondente a func3o objetivo linear f(x) = ¢’x.
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Otimizacao Linear

Introducao

@ A presenca de restricdes de desigualdade definem um poliedro factivel.

Figura: Regido factivel F correspondente as restri¢des lineares de desigualdade.

J. A. Ramirez et al. (UFMG) ELEO37: Introducdo 76 / 78



Otimizacao Linear

Introducao

@ Curvas de nivel de uma fungdo linear e regido factivel:

Figura: O vetor gradiente, Vf(x), é constante em todo o espa¢o.
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Otimizacao Linear

Introducao

@ O minimo da func3o linear nunca estarad no interior da regido factivel.
@ O minino devera estar na fronteira, e sobre algum vértice.

@ O conjunto étimo pode ser toda uma fronteira.

@ Como otimizar eficientemente tais fun¢des?

o Método Simplex.

@ Métodos de Pontos Interiores.
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