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Introdução

Assunto abordado:

O problema de otimização;

Otimização de funções matemáticas simples (2 variáveis);

Caracterização de diferentes tipos de funções;

Caracterização de diferentes estratégias de otimização;

Prinćıpio de funcionamento dos métodos de otimização.
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O Jogo da Otimização
Introdução

A Otimização representa um conjunto de ferramentas capazes de
determinar as melhores configurações posśıveis para a construção ou o
funcionamento de sistemas de interesse.

A mesma teoria é aplicada a diferentes contextos:

Projeto de circuitos, antenas, motores (Eng. Elétrica);

Controle de processos industriais (Eng. CA);

Poĺıtica eficiente de vacinação (Mat. Computacional);

Otimização do tráfego de informação em redes (Cientista da
Computação);

etc.
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O Jogo da Otimização
Formulação do Problema

Como modelar um problema de otimização?

Formalmente, um problema de otimização pode ser definido por:

xxx∗ = arg min
xxx

f (xxx)

sujeito a:







gi (xxx) ≤ 0; i = 1, . . . , p

hj(xxx) = 0; j = 1, . . . , q

(1)

Obs.: variáveis em negrito são vetores; as demais são escalares.
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O Jogo da Otimização
Formulação do Problema: exemplo

Seja o problema de otimização de um alto-falante como ilustrado a seguir.

Objetivo:

Minimizar o volume do
alto-falante e atender um valor
ḿınimo de densidade de fluxo
magnético B no entreferro.

Matematicamente:
{

min: f (xxx) = volume

sujeito a: g1(xxx) : |B| ≥ Bmin
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O Jogo da Otimização
Formulação do Problema: exemplo

Modelo 2D do alto-falante:

Questões práticas:

Como calcular o volume do
alto-falante usando x1, . . . , x16?

Quais os limites de x1, . . . , x16?

Quais materiais serão usados?

Como calcular B?
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O Jogo da Otimização
Formulação do Problema: o vetor de variáveis de decisão

O vetor xxx é o vetor de variáveis de otimização.

O processo de otimização busca especificar os valores destas variáveis.

xxx =











x1
x2
...
xn











(2)

O vetor xxx possui um significado concreto/f́ısico?

O vetor xxx é composto de variáveis reais ou discretas?

As técnicas de otimização são as mesmas para qualquer representação das
variáveis de decisão?
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O Jogo da Otimização
Formulação do Problema: a função objetivo

A função objetivo f (· ), ou função custo:

Representa um ı́ndice espećıfico do sistema, cujo valor, por convenção,
queremos minimizar para alcançarmos o desempenho ótimo.

Qual a posśıvel função custo do projeto do alto-falante?

Qual a posśıvel função custo do projeto de um motor?

Ex. funções de custo: consumo de combust́ıvel; rúıdo; probabilidade de
defeitos, etc.
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O Jogo da Otimização
Formulação do Problema: a função objetivo

Como tratar problemas de maximização?

Neste caso basta minimizarmos a função que se deseja maximizar
multiplicada por -1.

Maximizar a função p(xxx) é o mesmo que minimizar f (xxx) = −p(xxx).

O vetor xxx que minimiza f (·) é também o vetor que maximiza p(·).

Note que f (·) : Rn 7→ R.
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O Jogo da Otimização
Formulação do Problema: a solução ótima

As variáveis de otimização xxx são reais?

No exemplo anterior, quantas possibilidades de construção existem para o
alto-falante?

Na solução ótima de um problema de minimização:

O vetor ótimo xxx∗ é igual ao argumento da função f (·) que faz
com que essa função atinja seu ḿınimo valor.

Como encontrar xxx∗?
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O Jogo da Otimização
Formulação do Problema: as restrições

As restrições significam o conjunto dos requisitos que o resultado do
projeto deve atender para ser admisśıvel enquanto solução.

Restrições de desigualdade:

gi (xxx) ≤ 0 (3)

Restrições de igualdade:
hj(xxx) = 0 (4)
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O Jogo da Otimização
Formulação do Problema: as restrições

Restrições de natureza não-técnica:

São fisicamente implementáveis, porém violam certos padrões.

Exemplo:

Objetivo: Projeto de um automóvel de baixo custo;

Restrição: Emissão de gases poluentes abaixo de um limiar
estabelecido por lei.

gi (·) : R
n 7→ R

p: gi (xxx) ≤ 0, i = 1, . . . , p

hj(·) : R
n 7→ R

q: hj(xxx) = 0, j = 1, . . . , q

J. A. Raḿırez et al. (UFMG) ELE037: Introdução 13 / 78



O Jogo da Otimização
Formulação do Problema: as restrições

Em relação às restrições, definimos ainda a seguinte nomenclatura:

Região fact́ıvel: Conjunto dos pontos do espaço ℜn que satisfazem,
simultaneamente, a todas as restrições;

Região infact́ıvel: Conjunto dos pontos do espaço ℜn que violam
pelo menos uma das restrições do problema;

Ponto fact́ıvel: Ponto pertencente à região fact́ıvel;

Ponto infact́ıvel: Ponto pertencente à região infact́ıvel;

Restrição violada: Cada uma das componentes do vetor gi (xxx) que
apresentar valor positivo, ou cada uma das componentes do vetor
hj(xxx) que apresentar valor não-nulo será chamada de restrição violada

no ponto xxx .
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O Jogo da Otimização
As regras do jogo: acesso a informação

Regras de acesso à informação:

Não conhecemos expressões matemáticas expĺıcitas que representem a
função objetivo f (·) e as funções de restrição gi (·) e hj(·);

Temos, entretanto, a possibilidade de descobrir quanto valem as
funções objetivo e de restrição em qualquer ponto do espaço de
variáveis de otimização. Essa é a única informação que conseguiremos
adquirir, ao longo do processo de otimização, para nos guiar em
direção à solução desejada.

Por que nem sempre conhecemos f (xxx)?

Ex.: Qual a função objetivo do problema do alto-falante? E a função de
restrição?
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O Jogo da Otimização
As regras do jogo: custo da informação

Os métodos de otimização serão comparados entre si de acordo com os
critérios:

Número de avaliações da função objetivo e das restrições;

Quanto menos avaliações forem necessárias, melhor será considerado
o método;

Precisão e robustez: quanto mais a solução fornecida pelo método se
aproximar da solução exata do problema, melhor será considerado o
método.
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O Jogo da Otimização
O processo
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Otimização sem Restrição
Introdução

Embora f (xxx) seja do tipo caixa-preta, ela é bem definida.

O processo de otimização utiliza informações locais da superf́ıcie de f (xxx).

Problema de minimização de uma função objetivo sem restrição:

xxx∗ = arg min
xxx

f (xxx) (5)

Para viabilizar a representação gráfica do problema, supõe-se xxx ∈ ℜ2.
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Otimização sem Restrição
Introdução

Consideremos a seguinte função não-linear f (xxx):
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Figura: Superf́ıcie que representa o gráfico de uma função não-linear f (xxx) de
duas variáveis reais.
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Otimização sem Restrição
Introdução
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Figura: Gráfico de curvas de ńıvel de f (xxx).
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Otimização sem Restrição
Introdução

Metáfora para a solução do problema de otimização:

Um aluno é lançado de pára-quedas sobre um ponto qualquer da
superf́ıcie de f (xxx);

O objetivo do aluno é encontrar o ponto mais baixo de f (xxx), i.e. o
ponto de ḿınimo, com o menor número posśıvel de “passos”;

Deverá caminhar com uma venda cobrindo seus olhos, sem poder
“olhar” para a superf́ıcie;

A única informação que ele pode utilizar é a altura do ponto no qual
estiver “pisando”;

Pode, entretanto, se “lembrar” das alturas dos pontos em que já tiver
pisado;

Esta informação pode ser utilizada para tomar a decisão de “para
onde caminhar”.
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Otimização sem Restrição
Introdução

A metáfora descrita anteriormente ilustra bem o que é o problema de
otimização.

Construir os chamados métodos de otimização corresponde, dentro
dessa metáfora, a formular as estratégias a serem utilizadas pelo “aluno”
em sua busca pelo ponto de ḿınimo.
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Otimização sem Restrição
Introdução

Que tipo de estratégia de otimização utilizar?

Esta escolha depende das caracteŕısticas da superf́ıcie de f (xxx):

Diferenciabilidade: diferenciável ou não-diferenciável

Modalidade: unimodal ou multimodal

Convexidade: convexa, quasi-convexa, não-convexa

Linearidade: linear ou não-linear

Escala: uni-escala ou multi-escala

Estas caracteŕısticas são discutidas ao longo da apresentação das
diferentes estratégias de otimização.
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Otimização sem Restrição
Estratégia de direção de busca

Vamos considerar a função quadrática definida por:

f (xxx) = (xxx − xxx0)
′Q(xxx − xxx0)

Q =

[

2 0.3
0.3 1

]

xxx0 =

[

1
1

] (6)

cujo gráfico e curvas de ńıvel são ilustrados a seguir.
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Otimização sem Restrição
Estratégia de direção de busca
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Figura: Superf́ıcie que representa o gráfico de uma função quadrática f (xxx) de
duas variáveis reais.
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Otimização sem Restrição
Estratégia de direção de busca
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Figura: Gráfico de curvas de ńıvel da mesma função quadrática de duas variáveis
reais, f (xxx).
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Otimização sem Restrição
Estratégia de direção de busca

Método do Gradiente (um método de direção de busca)

O aluno:

Passo 1: colhe amostras locais da função e determina em qual direção
a função decresce mais rapidamente (usa aproximação numérica do
gradiente da função).

Passo 2: caminha na direção encontrada enquanto a função decrescer.

Passo 3: decide se pára (caso considere que esteja suficientemente
próximo do ponto de ḿınimo da função) ou se continua a busca,
retornando ao Passo 1.
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Otimização sem Restrição
Estratégia de direção de busca

Requisitos exigidos pelas Estratégias de Direção de Busca

A função deve ser diferenciável (a aproximação numérica do
gradiente da função contém informação significativa sobre a forma
como a função varia nas vizinhanças do ponto em que tiver sido
estimado).

A função deve ser unimodal (possuir um único ḿınimo global, no
interior de uma única bacia de atração).
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Otimização sem Restrição
Estratégia de direção de busca

Consideremos uma função um pouco mais complexa.
Função de Rosenbrock (diferenciável e unimodal; xxx∗ = [1 1]′).
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Otimização sem Restrição
Estratégia de direção de busca

O Método do Gradiente é eficiente para resolver este problema?
Existem outros Métodos de Direção de Busca mais eficientes?
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J. A. Raḿırez et al. (UFMG) ELE037: Introdução 30 / 78



Otimização sem Restrição
Questões práticas

Consideremos agora uma função f (xxx) com as seguintes caracteŕısticas:

Ainda unimodal;

Porém não-diferenciável.

Qual a dificuldade encontrada por técnicas de Direções de Busca?
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Otimização sem Restrição
Questões práticas
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Figura: Superf́ıcie que representa o gráfico de uma função unimodal não
diferenciável f (xxx) de duas variáveis.
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Otimização sem Restrição
Questões práticas

100

200

300 300

300

300

400

400

500

500

x
1

x 2

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figura: Gráfico de curvas de ńıvel da função unimodal não diferenciável de duas
variáveis reais, f (xxx).
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Otimização sem Restrição
Questões práticas

Como tratar problemas unimodais e não-diferenciáveis usando
Métodos de Direção de Busca?

A não-diferenciabilidade ocorre em todos os pontos da função?

Como saber, numericamente, se a função não é diferenciável em um
ponto espećıfico?

Quando identificada a não-diferenciabilidade em um ponto, o que
fazer?

A otimização por esses métodos pode se tornar inviável.

Esta dificuldade é intŕınseca a toda a faḿılia dos métodos de

direção de busca.
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Otimização sem Restrição
Questões práticas

Dificuldade encontrada pelos Métodos de Direção de Busca em funções
não-diferenciáveis:
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Otimização sem Restrição
Estratégia de exclusão de regiões

Funções não-diferenciáveis são muito comuns em problemas práticos.

Uma nova faḿılia de métodos é formulada para tratar tais problemas.

Métodos de Exclusão de Regiões:

Unimodalidade da função;

Diferenciabilidade não é exigida;

Convexidade da função.
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Otimização sem Restrição
Estratégia de exclusão de regiões

Por que a função f (xxx) precisa ser convexa?

Uma curva de ńıvel de uma função convexa sempre delimita uma
região convexa em seu interior.

O vetor gradiente é sempre perpendicular à curva de ńıvel que passa
pelo ponto onde o vetor foi calculado.

A reta perpendicular ao vetor gradiente que passa no ponto onde esse
vetor foi calculado é tangente à curva de ńıvel.

Devido à convexidade da região no interior da curva de ńıvel, esta
região sempre fica inteiramente localizada em apenas um dos lados
dessa reta tangente.
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Otimização sem Restrição
Estratégia de exclusão de regiões

Funcionamento do Método de Exclusão de Regiões

Partindo de um ponto inicial sobre o espaço de busca:

Passo 1: adquire-se informação local, e faz-se uma estimativa do

gradiente da função objetivo nesse ponto.

Passo 2: com base no gradiente, identifica-se qual é a reta tangente

à curva de ńıvel que passa pelo ponto atual (todo o semi-plano
que contém o vetor gradiente é descartado).

Passo 3: move-se para algum ponto no interior da região que ainda
não foi descartada.

Passo 4: caso o novo ponto esteja suficientemente próximo do ḿınimo
da função, o processo termina. Do contrário, retorna-se ao Passo 1.
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Otimização sem Restrição
Estratégia de exclusão de regiões

Algumas observações:

A convergência do método ocorre devido a diminuição sistemática

da região que contém xxx∗.

Como a região “viável” diminui, o novo ponto tende a aproximar-se
cada vez mais de xxx∗.

A não-diferenciabilidade não impede a convergência do método.

Qual o posśıvel critério de parada do método?

Qual a relação entre a velocidade de convergência no ińıcio e no final
do processo de otimização?
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Otimização sem Restrição
Estratégia de exclusão de regiões

a

b

c
x

Figura: Iterações de um método de exclusão de regiões, mostradas sobre as
curvas de ńıvel de uma função cujo ḿınimo exato é xxx∗.
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Otimização sem Restrição
Estratégias de populações

Grande parte das funções objetivo que queremos otimizar na prática,
infelizmente, não são unimodais.

Note que uma função multimodal também não é convexa. Mas
pode apresentar regiões convexas.

Por consequência, tanto as estratégias de direção de busca quanto
as estratégias de exclusão de regiões irão falhar em sua otimização.
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Otimização sem Restrição
Estratégias de populações

Caso f (xxx) seja multimodal, o resultado encontrado por qualquer uma
das técnicas estudadas sempre será o ḿınimo local associado à bacia
de atração onde a busca tiver sido iniciada.

Para determinar o ḿınimo global, todas as bacias devem ser
investigadas.

As estratégias de populações evoluem um conjunto de soluções

candidatas em paralelo, e estas cooperam entre si.
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Otimização sem Restrição
Estratégias de populações

Considere a função f (xxx) multimodal:
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Figura: Função multimodal
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Otimização sem Restrição
Estratégias de populações
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Figura: Curvas de ńıvel da função multimodal
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Otimização sem Restrição
Estratégias de populações

Vários Otimizadores:

Passo 1: encontram-se distribúıdos no espaço de busca, e colhem
informações locais da função.

Passo 2: comunicam entre si, e trocam informações a respeito dos
valores da função objetivo em cada ponto.

Passo 3: um pequeno sub-grupo de Otimizadores, que estiver nas
melhores regiões, fica parado.

Passo 4: os demais se deslocam, com movimentos que
simultaneamente: (i) os façam se aproximarem daqueles melhor

localizados; e (ii) os façam explorarem outras regiões ainda não
investigadas.

Passo 5: cada Otimizador avalia a função no ponto para onde foi.

Passo 6: o algoritmo pára ou retorna ao Passo 2.

J. A. Raḿırez et al. (UFMG) ELE037: Introdução 45 / 78



Otimização sem Restrição
Estratégias de populações

Algoritmos baseados em Populações

Vantagem (não exigem unimodalidade, convexidade ou
diferenciabilidade).

Limitação (custo computacional elevado).

Quando são úteis?

Métodos h́ıbridos:

São viáveis? Por que? (ex.: custo computacional)

Quando podem ser empregados? (ex.: funções multi-escala)

Quais requisitos devem ser considerados? (ex.: convexidade)
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Otimização sem Restrição
Estratégias de populações
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Figura: Superf́ıcie que representa o gráfico de uma função multimodal f (xxx) de
duas variáveis que apresenta a caracteŕıstica de múltiplas escalas.
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Otimização sem Restrição
Estratégias de populações
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Figura: Superf́ıcie que representa o gráfico de uma função multimodal f (xxx) de
duas variáveis que apresenta a caracteŕıstica de múltiplas escalas.
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Otimização com Restrições de Desigualdade
Introdução

Suponha agora um problema de otimização com restrições de

desigualdade:

xxx∗ = arg min
xxx

f (xxx)

Sujeito a:
{

gi (xxx) ≤ 0; i = 1, . . . , p

(7)
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Otimização com Restrições de Desigualdade
Introdução

O ponto de ótimo xxx∗ deve satisfazer às p desigualdades:

g1(xxx
∗) ≤ 0

g2(xxx
∗) ≤ 0

...

gp(xxx
∗) ≤ 0

(8)
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Otimização com Restrições de Desigualdade
Interpretação geométrica

Consideremos inicialmente uma única restrição de desigualdade:

g1(xxx) ≤ 0 (9)

Admitamos que a função g1(·) seja cont́ınua;

Se verdadeiro, essa função nunca muda “bruscamente” de valor;

Logo, se existem. . .

P1 ⊂ R
n em que g1(·) > 0; e

N1 ⊂ R
n em que g1(·) < 0;

Então, deve existir G1 ⊂ R
n em que g1(·) = 0;

Além disso, G1 separa P1 de N1.

J. A. Raḿırez et al. (UFMG) ELE037: Introdução 51 / 78



Otimização com Restrições de Desigualdade
Interpretação geométrica

Matematicamente:

P1 , {xxx | g1(xxx) > 0}

N1 , {xxx | g1(xxx) < 0}

G1 , {xxx | g1(xxx) = 0}

(10)
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Otimização com Restrições de Desigualdade
Interpretação geométrica

Exemplo de restrição: superf́ıcie z = g1(xxx)
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Otimização com Restrições de Desigualdade
Interpretação geométrica

Exemplo de restrição: curva de ńıvel onde g1(xxx) = 0

a = P1; b = N1; c = G1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

a

b

c

x

y
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Otimização com Restrições de Desigualdade
Interpretação geométrica

A exigência de que g1(xxx
∗) ≤ 0 implica que:

P1 representa o conjunto/região inviável/infact́ıvel;

N1 e G1 são conjuntos/regiões viáveis/fact́ıveis;

O conjunto fact́ıvel ou a região fact́ıvel F1 é a união de G1 e N1:

F1 = G1 ∪ N1 (11)
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Otimização com Restrições de Desigualdade
Interpretação geométrica

Interpretação para problemas com várias restrições: a = F1
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Otimização com Restrições de Desigualdade
Interpretação geométrica

Interpretação para problemas com várias restrições: b = F2
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Otimização com Restrições de Desigualdade
Interpretação geométrica

Interpretação para problemas com várias restrições: c = F = F1 ∩ F2
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Otimização com Restrições de Desigualdade
Interpretação geométrica

Os métodos discutidos são aplicáveis a problemas restritos?

O ótimo restrito deverá pertencer a F .

Como garantir que xxx∗ ∈ F?

Como adaptar os métodos conhecidos, de maneira simples e
eficiente, para resolver problemas restritos?
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Otimização com Restrições de Desigualdade
Barreiras e penalidades

Solução Geral: Método de Barreiras ou Método de Penalidades.

A ideia é transformar a função-objetivo em uma função

pseudo-objetivo.

Barreiras: impedem a existência de soluções em regiões infact́ıveis.

Penalidades: penalizam soluções localizadas em regiões inviáveis.

A função pseudo-objetivo deve ser semelhante à função original na
região viável.
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Otimização com Restrições de Desigualdade
Barreiras e penalidades

Em termos matemáticos, o problema de otimização original:

xxx∗ = arg min
xxx

f (xxx)

Sujeito a: {gi (xxx) ≤ 0

(12)

é transformado no problema:

xxx∗ = arg min
xxx

f (xxx) + F (xxx) (13)

A função F (·) deve ser muito pequena (ou zero) no interior da região
fact́ıvel, de tal forma que f (·) seja muito parecida com f (·) + F (·) em
qualquer ponto deste espaço.
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Otimização com Restrições de Desigualdade
Barreiras e penalidades

O valor de F (xxx) cresce subtamente perto da fronteira.
Pré-requisito: a solução inicial deve ser fact́ıvel.
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Figura: Ilustração de uma função de barreira.
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Otimização com Restrições de Desigualdade
Barreiras e penalidades

O valor de F (xxx) cresce a medida que se afasta da região viável.

A solução inicial pode ser fact́ıvel ou não.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

2

4

6

8

10

x1

x2

F
(x
)

Figura: A função de penalidade é igual a zero no interior da região fact́ıvel, e
cresce rapidamente à medida em que o ponto se afasta dessa região.
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Otimização com Restrições de Desigualdade
Barreiras e penalidades

O problema restrito é então tratado como irrestrito.

Logo, os métodos discutidos podem ser aplicados na otimização dos
problemas transformados.

Qual método utilizar: Direção de Busca, Exclusão de Regiões ou
Método de Populações?

Barreiras ou Penalidades?
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Otimização com Restrições de Desigualdade
Composição pelo máximo

Exclusão de Regiões e tratamento de gi (xxx) ≤ 0 por
Composição pelo Máximo

Dado um ponto xxx , identifica-se a restrição mais violada:

G (xxx) = max(g1(xxx), g2(xxx), . . . , gp(xxx)) (14)

Aplica-se exclusão de região à função G (·).

Caso xxx seja viável, aplica-se exclusão de região à função f (·).
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Otimização com Restrições de Desigualdade
Composição pelo máximo

Exclusão de Regiões e tratamento de gi (xxx) ≤ 0 por
Composição pelo Máximo

A sequência de pontos xxx pode oscilar entre viável e inviável.

No entanto, a região fact́ıvel diminui iterativamente.

A solução final termina arbitrariamente próxima do ótimo.
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Otimização com Restrições de Desigualdade
Composição pelo máximo

Exclusão de Regiões e Composição pelo Máximo

~x∗

~xi
∇f (~x)

∇g(~x)
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Otimização com Restrições de Igualdade
Introdução

Consideremos agora o problema de otimização com restrições de igualdade:

x∗ = arg min
x

f (x)

Sujeito a: {hj(x) = 0 , j = 1, . . . , q

(15)
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Otimização com Restrições de Igualdade
Introdução

O ótimo x∗ deve satisfazer às q equações:

h1(x
∗) = 0

h2(x
∗) = 0

...

hq(x
∗) = 0

(16)
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Otimização com Restrições de Igualdade
Introdução

A região fact́ıvel é descrita por um conjunto de pontos que satisfazem
h(xxx) = 0.

Esta região viável é uma superf́ıcie de dimensão n− 1.

No caso de q restrições de igualdade, o conjunto fact́ıvel corresponde
à interseção de todas as superf́ıcies hj(xxx) = 0.
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Otimização com Restrições de Igualdade
Introdução
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Figura: A linha corresponde ao lugar geométrico dos pontos que satisfazem
h(x) = 0. Essa linha é a região fact́ıvel de um problema de otimização com essa
restrição.
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Otimização com Restrições de Igualdade
Introdução

Como tratar as restrições de igualdade?

Quais das técnicas discutidas são viáveis neste caso?

Por que?

As técnicas de barreiras e composição pelo máximo dependem da
existência de pontos interiores à região fact́ıvel do problema.

A técnica de penalidades é a única viável nestes problemas.
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Otimização Linear
Introdução

Suponha funções objetivo e de restrições lineares.
O problema agora é chamado de otimização linear:

xxx∗ = argmin
xxx

ccc ′xxx

Sujeito a: {Axxx ≤ bbb

(17)

De outra forma:
f (xxx) = c1x1 + c2x2 + . . .+ cnxn (18)

e o conjunto de restrições corresponde às m desigualdades:

a11x1 + a12x2 + . . .+ a1nxn ≤ b1
a21x1 + a22x2 + . . .+ a2nxn ≤ b2
...
am1x1 + am2x2 + . . .+ amnxn ≤ bm

(19)
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Otimização Linear
Introdução

Importância da otimização linear

Problemas práticos podem ser modelados via funções lineares;

Podem ser resolvidos mais rapidamente que problemas não-lineares:

Para o mesmo número de variáveis; e

Mesmo número de restrições.

Algoritmos especializados são capazes de lidar com problemas muito
grandes (centenas de variáveis de decisão).
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Otimização Linear
Introdução

As curvas de ńıvel de uma função linear são retas paralelas.

Não exite ḿınimo local irrestrito de um problema linear.
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Figura: Superf́ıcie correspondente à função objetivo linear f (xxx) = ccc ′xxx .

J. A. Raḿırez et al. (UFMG) ELE037: Introdução 75 / 78



Otimização Linear
Introdução

A presença de restrições de desigualdade definem um poliedro fact́ıvel.

F

Figura: Região fact́ıvel F correspondente às restrições lineares de desigualdade.
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Otimização Linear
Introdução

Curvas de ńıvel de uma função linear e região fact́ıvel:

F

∇f (xxx)
xxx

Figura: O vetor gradiente, ∇f (xxx), é constante em todo o espaço.
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Otimização Linear
Introdução

O ḿınimo da função linear nunca estará no interior da região fact́ıvel.

O ḿınino deverá estar na fronteira, e sobre algum vértice.

O conjunto ótimo pode ser toda uma fronteira.

Como otimizar eficientemente tais funções?

Método Simplex.

Métodos de Pontos Interiores.
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