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Caṕıtulo 7

Algoritmos de Evolução

Diferencial

Este caṕıtulo apresenta os algoritmos de evolução diferencial para a solução de
problemas de otimização. Inicialmente, faz-se uma apresentação do algoritmo em
sua versão básica e uma análise de seu comportamento em algumas funções objetivo
usadas como exemplo. Na sequência, são discutidos aspectos avançados e variações
do algoritmo de evolução diferencial. Posteriormente, é desenvolvido um esquema
geral para os algoritmos de evolução diferencial.

7.1 Introdução

O algoritmo de Evolução Diferencial é um algoritmo de otimização simples e eficiente
que tem recebido cada vez mais destaque no âmbito da otimização não linear com
variáveis cont́ınuas. A primeira publicação sobre esse algoritmo ocorreu em 1995,
em um relatório técnico de Rainer Storn e Kenneth Price [?]. O algoritmo ganhou
destaque na comunidade internacional de Computação Evolutiva nos anos seguintes,
após apresentar excelente desempenho nas edições de 1996 e 1997 da International

Contest on Evolutionary Optimization da IEEE International Conference on Evo-

lutionary Computation (IEEE ICEC), ver [?,?]. Na edição de 1996, o algoritmo de
evolução diferencial ficou em terceiro lugar. O algoritmo classificado em primeiro
explorava a caracteŕıstica de separabilidade presente nas funções de teste usadas na
competição e o algoritmo classificado em segundo lugar se sustentava em quadra-
dos latinos e, por essa razão, não era muito escalável para problemas com muitas
variáveis. O algoritmo de evolução diferencial foi o melhor classificado entre os
algoritmos de otimização de propósito geral, perdendo para dois métodos mais espe-
cializados e menos gerais. Já na edição de 1997, com um novo conjunto de funções
de teste, o algoritmo de evolução diferencial apresentou o melhor desempenho entre
os algoritmos classificados. Em dezembro do mesmo ano, [?] publicaram um artigo
no Journal of Global Optimization apresentando testes experimentais mais amplos
e resultados emṕıricos que ilustravam a robustez do algoritmo.

Em 1999, foi publicado o livro New Ideas in Optimization, editado pelos pesqui-
sadores David Corne, Marco Dorigo e Fred Glover, incluindo uma seção de caṕıtulos
sobre o algoritmo de evolução diferencial [?,?,?]. Atualmente, já podem ser encon-
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trados alguns livros dedicados exclusivamente aos algoritmos de evolução diferencial,
ver por exemplo [?,?,?], incluindo um livro recente com foco e diversas aplicações
em engenharia elétrica e eletrônica [?].

Nos últimos anos, esse algoritmo tem se mostrado versátil e eficaz em muitas
aplicações práticas, desde o projeto de filtros digitais [?] até a otimização de sistema
reservatório de água [?] e localização do foco śısmico de terremotos [?]. O algoritmo
de evolução diferencial também tem se mostrado eficiente para o treinamento de
redes neurais [?,?,?,?], para o projeto de dispositivos de engenharia elétrica [?,?] e
solução de problemas inversos [?].

Pesquisas recentes têm se concentrado no estudo de variações do algoritmo [?],
em técnicas para o tratamento de restrições [?, ?] e em versões para a solução de
problemas de otimização multiobjetivo [?,?,?].

Este caṕıtulo tem como objetivo apresentar uma visão geral sobre esse algoritmo
e seu peculiar mecanismo de busca, sustentado no operador de mutação diferencial,
que dá nome ao algoritmo. Embora o método de evolução diferencial seja classificado
como um algoritmo evolutivo, e se enquadre em um esquema geral de um algoritmo
evolutivo, a mutação diferencial não tem base ou inspiração em nenhum processo
natural. A forma como esse operador gera perturbações (mutações) nos indiv́ıduos
da população se sustenta em argumentos matemáticos e heuŕısticos que indicam
sua adequabilidade para a otimização de funções e não exatamente em argumentos
derivados de metáforas da natureza. Contudo, o algoritmo de evolução diferencial
segue uma linha histórica de algoritmos e métodos que evoluem uma população
de soluções candidatas segundo operadores heuŕısticos inspirados em mecanismos
bastante gerais de adaptação natural. Por essa razão, o algoritmo de evolução
diferencial é classificado como uma instância dos algoritmos evolutivos.

A mutação diferencial emprega a diferença entre pares de indiv́ıduos na po-
pulação corrente para gerar os vetores de perturbação, denominados vetores-diferen-
ça. Porém, à medida que o algoritmo progride no processo de busca, a distribuição
espacial da população se modifica de acordo com a paisagem da função objetivo.
Essa mudança, por sua vez, altera as orientações e tamanhos dos vetores-diferença
que podem ser criados a partir da população. Por essa razão, observa-se que a dis-
tribuição dos vetores-diferença, e portanto a distribuição das direções e tamanhos
de passo das perturbações, se ajusta à paisagem da função. Essa caracteŕıstica de
autoadaptação da mutação diferencial confere ao algoritmo de evolução diferencial
qualidades interessantes do ponto de vista da otimização, tais como robustez, versa-
tilidade e eficiência em diversos problemas. Neste caṕıtulo, mostraremos por meio
de exemplos essa autoadaptação dos vetores-diferença à medida que o algoritmo
avança no processo de otimização.

7.2 Evolução Diferencial

Nesta seção é apresentada uma visão geral do algoritmo de evolução diferencial.
Considere um problema genérico de otimização não linear com variáveis cont́ınuas,
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formulado como:
x∗ = argmin f(x)

sujeito a:







x ∈ R
n

g1(x) ≤ 0
...
gm(x) ≤ 0

(7.1)

Neste caṕıtulo, vamos considerar o problema irrestrito, isto é, sem as funções
de restrição g1(x) a gm(x). [?] apresenta uma forma simples de tratar restrições
no algoritmo de evolução diferencial. O tratamento de restrições em algoritmos
evolutivos será discutido de forma mais geral no Caṕıtulo XX.

Ao longo deste caṕıtulo, usaremos a notação U[a,b] para indicar a amostragem
de uma variável aleatória com distribuição uniforme entre a e b e a notação N[µ,σ]

para indicar a amostragem de uma variável aleatória com distribuição normal com
média µ e desvio padrão σ.

Seja uma população de soluções candidatas para o problema, representada por
Xt = {xt,i; i = 1, . . . , N}, em que t é o ı́ndice da geração corrente e i é o ı́ndice do
indiv́ıduo na população. Cada indiv́ıduo na população corrente é representado por
um vetor coluna:

xt,i =








xt,i,1

xt,i,2
...

xt,i,n








(7.2)

dessa forma, o terceiro ı́ndice indica uma entre as n variáveis do problema de oti-
mização.

O mecanismo de busca do algoritmo de evolução diferencial utiliza vetores-
diferença criados a partir de pares de vetores da própria população. Dois indiv́ıduos
são selecionados aleatoriamente da população corrente, criando-se um vetor-diferença
que nada mais é do que a diferença entre estes dois indiv́ıduos. Este vetor-diferença,
por sua vez, é somado a um terceiro indiv́ıduo, também selecionado aleatoriamente,
produzindo uma nova solução mutante. A nova solução mutante é portanto o resul-
tado de uma perturbação em algum indiv́ıduo da população, sendo esta perturbação
um vetor-diferença constrúıdo aleatoriamente. A equação a seguir ilustra esse pro-
cedimento:

vt,i = xt,r1 + F (xt,r2 − xt,r3) , r1, r2, r3 ∈ {1, . . . , N} (7.3)

em que vt,i representa a i-ésima solução mutante e F é um fator de escala aplicado
ao vetor-diferença e parâmetro do algoritmo de evolução diferencial. O vetor xt,r1 ,
ao qual é aplicada a mutação diferencial, é denominado vetor de base.

Usando este procedimento, obtém-se uma população mutante Vt = {vt,i; i =
1, . . . , N}. Os próximos passos no algoritmo são bem simples. Os indiv́ıduos da
população corrente Xt são recombinados com os indiv́ıduos da população mutante,
produzindo a descendência ou população de soluções teste Ut. Na versão clássica do
algoritmo de evolução diferencial, emprega-se a recombinação discreta com proba-
bilidade C ∈ [0, 1]:
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Figura 7.1: Ilustração do procedimento de geração de uma solução mutante.

ut,i,j =

{

vt,i,j, se U[0,1] ≤ C ∨ j = δi

xt,i,j, caso contrário
(7.4)

em que δi ∈ {1, . . . , n} é um ı́ndice aleatório sorteado para o vetor teste i. Como em
algum momento a igualdade j = δi será verificada, essa condição garante que pelo
menos um dos parâmetros da solução teste será herdado do indiv́ıduo mutante. O
parâmetro C controla a fração de valores em ut,i que são copiados do vetor mutante
vt,i. Quanto mais próximo de 1 for o valor de C, maior a chance de que a solução
teste contenha muitos valores herdados do vetor mutante. No limite, quando C = 1,
o vetor teste é igual ao vetor mutante.

A Figura 7.1 ilustra a geração de um vetor mutante e as posśıveis soluções teste
obtidas após a recombinação, indicadas por � na Figura. Note que pelo menos a
coordenada j = δi será herdada do vetor mutante, dessa forma, garante-se ut,i 6= xt,i.
Pode-se observar que uma solução teste é o resultado da recombinação de cada
solução xt,i com uma solução mutante gerada a partir de uma perturbação em algum
indiv́ıduo da população. A direção e o tamanho dessa perturbação são definidos pela
diferença entre as soluções xt,r2 e xt,r3 , portanto dependem das posições relativas
destes indiv́ıduos no domı́nio de busca.

Finalmente, o valor da função objetivo é avaliado em ut,i. Cada solução teste
ut,i é comparada com seu correspondente na população corrente, no caso xt,i. Se a
solução teste é melhor do que a solução corrente xt,i, a solução corrente é eliminada e
seu lugar passa a ser ocupado por ut,i. Caso contrário, a solução teste é descartada
e a solução corrente sobrevive, permanecendo na população da próxima geração,
representada por Xt+1. O processo se repete até que algum critério de parada
definido seja satisfeito.

Como pode-se observar, o algoritmo de evolução diferencial em sua versão ori-
ginal é bastante simples. Essa simplicidade torna-se evidente quando escrevemos as
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equações (7.3) e (7.4) na forma compacta a seguir:

ut,i,j =

{

xt,r1,j + F (xt,r2,j − xt,r3,j) , se U[0,1] ≤ C ∨ j = δi

xt,i,j, caso contrário
(7.5)

com r1, r2, r3 ∈ {1, . . . , N}, t = 1, . . . , tmax, i = 1, . . . , N , e j = 1, . . . , n.
A seleção para sobrevivência pode ser descrita por:

xt+1,i =

{

ut,i, se f(ut,i) ≤ f(xt,i)

xt,i, caso contrário
(7.6)

As operações do algoritmo de evolução diferencial básico são apresentadas na
forma de pseudocódigo no Algoritmo 1 a seguir.

Algorithm 1: Pseudocódigo do algoritmo de evolução diferencial básico
1: t← 1
2: Inicializar população Xt = {xt,i; i = 1, . . . , N}
3: while algum critério de parada não for satisfeito do

4: for i = 1 até N do

5: Selecione aleatoriamente r1, r2, r3 ∈ {1, . . . , N}
6: Selecione aleatoriamente δi ∈ {1, . . . , n}
7: for j = 1 até n do

8: if U[0,1] ≤ C ∨ j = δi then
9: ut,i,j = xt,r1,j + F (xt,r2,j − xt,r3,j)
10: else

11: ut,i,j = xt,i,j

12: end if

13: end for

14: end for

15: for i = 1 até N do

16: if f(ut,i) ≤ f(xt,i) then
17: xt+1,i ← ut,i

18: else

19: xt+1,i ← xt,i

20: end if

21: end for

22: t← t+ 1
23: end while

A equações (7.5)-(7.6) descrevem todas as operações necessárias no algoritmo
de evolução diferencial em sua versão básica. É realmente impressionante que um
algoritmo tão simples apresente tantas caracteŕısticas computacionais desejáveis,
tais como robustez, versatilidade, eficiência e adaptabilidade. Nas próximas seções,
tentaremos compreender o comportamento do algoritmo em alguns exemplos de
funções-objetivo de forma a elucidar seu mecanismo de funcionamento. Além disso,
discutiremos variantes do algoritmo básico e aspectos avançados da evolução dife-
rencial.
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7.3 Comportamento da Mutação Diferencial

Nesta seção discutiremos o comportamento do algoritmo de evolução diferencial,
buscando compreender os prinćıpios de funcionamento de seu mecanismo de busca.

O prinćıpio básico de funcionamento do algoritmo de evolução diferencial é per-
turbar soluções da população corrente gerando vetores mutantes. Essas perturbações
são proporcionais à diferença entre pares de soluções escolhidas aleatoriamente na
população. Portanto, para entender melhor o comportamento do algoritmo convém
verificar a distribuição dos posśıveis vetores-diferença em diversos instantes do pro-
cesso de otimização.

Vamos considerar uma população de tamanho N , supondo inicialmente que os
N vetores sejam distintos entre si. Existem ao todo N2 combinações de diferenças
posśıveis, das quais N são nulas, pois correspondem a diferenças de um vetor com
ele mesmo. As N(N − 1) diferenças restantes são não nulas. Além disso, essas
N(N − 1) diferenças apresentam simetria, porque cada diferença (xt,r2 − xt,r3) pos-
sui seu simétrico correspondente, bastando para isso trocar os ı́ndices r2 e r3. Como
os ı́ndices são escolhidos aleatoriamente com distribuição uniforme, a probabilidade
de selecionar uma dada diferença e seu simétrico é a mesma. Fica claro que a
distribuição de todos os vetores-diferença posśıveis de ser constrúıdos com N ve-
tores distintos quaisquer apresenta média nula, uma vez que cada vetor possui seu
correspondente negativo e uma mesma probabilidade de ser selecionado.

Matematicamente, tem-se:

〈∆xt〉 =
1

N2

N∑

i=1

N∑

j=1

(xt,i − xt,j) = 0 (7.7)

Nesta seção, adotaremos como recurso de visualização o desenho da distribuição
dos vetores-diferença em um gráfico polar, considerando que todos tenham a mesma
origem em (ρ = 0, θ = 0). O gráfico polar nos ajuda a visualizar a distribuição dos
vetores-diferença de acordo com suas orientações e tamanhos.

7.3.1 Função convexa

O ponto fundamental para entender o funcionamento do algoritmo de evolução di-
ferencial é perceber que a distribuição dos vetores-diferença depende da distribuição

espacial dos indiv́ıduos da população no problema em questão. À medida que a
população se distribui de acordo com o “contorno” da função, a distribuição dos
vetores-diferença também se ajusta a esse contorno.

As Figuras 7.2 a 7.4 ilustram essa propriedade do algoritmo em uma função
quadrática, cujas curvas de ńıvel correspondem a elipsóides rotacionados de π/4 no
sentido anti-horário em relação aos eixos coordenados. Além disso, um dos eixos
desse elipsóide é maior do que o outro, tornando o elipsóide “alongado” numa dada
direção.

Na primeira geração, a população é distribúıda aleatoriamente com distribuição
uniforme em uma região retangular que corresponde aos limites inferiores e superi-
ores de cada variável. Neste primeiro momento, a população não possui nenhuma
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Figura 7.2: Função-objetivo quadrática. (a) Distribuição espacial da população na geração
t = 1. (b) Distribuição dos vetores-diferença na geração t = 1.
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Figura 7.3: Função-objetivo quadrática. (a) Distribuição espacial da população na geração
t = 10. (b) Distribuição dos vetores-diferença na geração t = 10.

informação sobre o contorno da função. A Figura 7.2-(a) ilustra a distribuição es-
pacial inicial da população e o gráfico na Figura 7.2-(b) mostra a distribuição dos
vetores-diferença correspondente. A distribuição inicial dos vetores-diferença não é
polarizada em nenhuma direção, havendo vetores com vários tamanhos distintos e
apontando para diversas direções.

Esses vetores-diferença são usados na operação de mutação diferencial para per-
turbar indiv́ıduos da população, produzindo a população mutante Vt. Cada in-
div́ıduo xt,i sofre recombinação com seu mutante correspondente, produzindo uma
solução teste ut,i. Algumas soluções teste serão piores do que as soluções originais
e serão descartadas, porém, algumas soluções teste serão melhores e substituirão as
soluções originais. Nesse momento, a distribuição espacial da população corrente
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Figura 7.4: Função-objetivo quadrática. (a) Distribuição espacial da população na geração
t = 20. (b) Distribuição dos vetores-diferença na geração t = 20.

Xt se altera. A tendência é que, ao longo das gerações, essa distribuição espacial se
alinhe com o contorno da função.

A Figura 7.3 ilustra a distribuição espacial da população e a distribuição dos
vetores-diferença 10 gerações após a distribuição inicial. Observe que a distribuição
dos vetores-diferença agora está mais alinhada com o eixo maior do elipsóide, ou
seja, mais alinhada com a direção mais favorável para a minimização desta função-
objetivo quadrática. Outra caracteŕıstica interessante é que os tamanhos de passo
estão menores do que na distribuição da Figura 7.2-(b), devido à aglomeração dos
indiv́ıduos em torno do ponto de mı́nimo.

A Figura 7.4 ilustra a distribuição espacial da população e a distribuição dos
vetores diferenciais na geração t = 20. A população está agora mais próxima do
ponto de mı́nimo e ocupa um volume reduzido em relação à distribuição espacial
em t = 1. A distribuição dos vetores-diferença continua alinhada com os elipsóides
que formam as curvas de ńıvel da função, porém os tamanhos desses vetores estão
reduzidos, favorecendo uma busca bem mais local. Nesse momento, o algoritmo
converge para o mı́nimo local.

A sequência de gráficos nas Figuras 7.2 a 7.4 mostra que as direções e os tama-
nhos de passo dos vetores usados na perturbação das soluções se adaptam ao longo
do processo de otimização. As orientações dos vetores-diferença se alinham com a
direção mais favorável para a minimização e os tamanhos dos vetores-diferença dimi-
nuem à medida que a população se aglomera em torno de algum ponto, favorecendo
uma busca cada vez mais local.

Esse exemplo ilustra o comportamento geral do algoritmo de evolução diferencial
em funções convexas, mostrando claramente a adaptação dos tamanhos de passo
e das direções das mutações. As seções seguintes ilustram o comportamento do
algoritmo em uma função multimodal e em uma função unimodal não convexa.
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Figura 7.5: Função-objetivo multimodal. (a) Distribuição espacial da população na geração
t = 1. (b) Distribuição dos vetores-diferença na geração t = 1.

7.3.2 Função multimodal

Na seção anterior vimos como o algoritmo de evolução diferencial se comporta em
uma função convexa. Contudo, cabe explorar o comportamento do algoritmo em
uma função multimodal, com diversos mı́nimos locais. Em uma função multimo-
dal, a população tende a se distribuir em torno dos mı́nimos locais. Nesse caso,
convém verificar como ficará a distribuição dos vetores-diferença. Para explorar
essas questões, usaremos a mesma metodologia usada anteriormente, mostrando a
distribuição espacial da população e o gráfico em coordenadas polares da distribuição
de vetores-diferença correspondente em instantes distintos da otimização.

As Figuras 7.5 a 7.7 mostram o resultado obtido para o caso da otimização de
uma função-objetivo multimodal.

Na primeira geração, os vetores-diferença apontam para quase todas as direções
e possuem diversos tamanhos devido à geração aleatória da população inicial. Após
algumas gerações, ver Figura 7.6, a população se concentra nas duas bacias de
atração existentes1. Observe a distribuição de vetores-diferença correspondente na
Figura 7.6-(b). Pode-se notar dois grupos bem definidos de vetores. Essa distri-
buição apresenta um conjunto de vetores de pequena amplitude, formados por pares
de soluções que se localizam na mesma bacia de atração. Os vetores desse conjunto
favorecem uma busca local em cada bacia de atração. A distribuição de vetores-
diferença apresenta um segundo conjunto de vetores de maior amplitude, estes por
sua vez formados por pares de soluções que se localizam cada uma em bacias distin-
tas. Além disso, as direções desses vetores-diferença de maior amplitude se alinham
com a direção que une as duas bacias de atração. Esses vetores-diferença favorecem
uma busca global, levando a perturbações que permitem “saltar” de uma bacia à
outra, além de gerar soluções na região intermediária entre as duas bacias.

Finalmente, na geração t = 20, ver Figura 7.7, a população se concentra em

1Esta função apresenta três bacias de máximo local e duas bacias de mı́nimo local.



D
R
A
FT

10 Notas de Aula de Otimização

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x
2

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

t = 10

(a) (b)

Figura 7.6: Função-objetivo multimodal. (a) Distribuição espacial da população na geração
t = 10. (b) Distribuição dos vetores-diferença na geração t = 10.
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Figura 7.7: Função-objetivo multimodal. (a) Distribuição espacial da população na geração
t = 20. (b) Distribuição dos vetores-diferença na geração t = 20.

uma única bacia, aquela que apresenta melhores valores de função-objetivo. Os
vetores-diferença automaticamente diminuem de tamanho, favorecendo uma busca
local e mais refinada. A convergência para o mı́nimo global da função na região
considerada é agora iminente.

Esse exemplo ilustra que, no caso de funções multimodais, a distribuição espacial
da população se concentra em bacias de atração distintas, causando a geração de
grupos de vetores-diferença bem definidos. Alguns conjuntos de vetores causam
perturbações que levam a saltos na direção de uma bacia à outra, enquanto outros
grupos de vetores-diferença causam perturbações pequenas, favorecendo uma busca
local em cada bacia de atração. Após algumas gerações, a população se concentra
em uma única bacia e a distribuição de vetores-diferença se reduz ao caso de uma
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função-objetivo convexa.

7.3.3 Função unimodal não convexa

Vamos analisar agora o comportamento do algoritmo em uma função unimodal não
convexa. Usaremos a função a seguir, uma função-objetivo de teste conhecida como
função de Rosenbrock:

f(x) = (1− x1)
2 + 100(x2 − x2

1)
2 (7.8)

Essa função-objetivo é unimodal e suas curvas de ńıvel formam conjuntos não
convexos. Observando as curvas de ńıvel desta função, vemos que seu ponto de
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Figura 7.8: Função-objetivo unimodal não convexa. (a) Distribuição espacial da população
na geração t = 1. (b) Distribuição dos vetores-diferença na geração t = 1.
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Figura 7.9: Função-objetivo unimodal não convexa. (a) Distribuição espacial da população
na geração t = 10. (b) Distribuição dos vetores-diferença na geração t = 10.
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Figura 7.10: Função-objetivo unimodal não convexa. (a) Distribuição espacial da população
na geração t = 20. (b) Distribuição dos vetores-diferença na geração t = 20.

mı́nimo se localiza em um vale estreito e longo com curvatura na forma de uma
parábola. Essa região apresenta uma inclinação pequena que dificulta a convergência
de métodos de otimização baseados em derivadas.

As Figuras 7.8 a 7.10 mostram o comportamento do algoritmo para essa função
não convexa. Observe que após algumas gerações (t = 10) a população se concen-
tra em torno do vale em curva da função. O gráfico da distribuição de vetores-
diferença apresenta caracteŕısticas interessantes. Observa-se dois grupos de vetores
em direções quase ortogonais, quase formando a figura da letra ‘x’. Os vetores-
diferença em cada grupo são formados por pares de vetores localizados em uma das
metades da curvatura em formato de parábola. Além disso, observa-se um grupo
de vetores com amplitude maior que representam perturbações as quais levam de
uma metade à outra da curvatura. O comportamento do algoritmo de evolução
diferencial nesta função é similar ao comportamento do algoritmo em uma função
multimodal.

Quando a distribuição espacial da população apresenta “formato” linear, como
no caso da função convexa, dizemos que há uma forte correlação linear entre as
variáveis nessa distribuição espacial. O algoritmo de evolução diferencial é capaz de
descobrir correlações lineares na distribuição espacial da população e utilizar essa
informação para produzir perturbações favoráveis. Entretanto, no caso de distri-
buições mais complexas do que uma reta, como a distribuição espacial curva na Fi-
gura 7.10, o algoritmo trata essa distribuição como uma combinação de distribuições
com correlações lineares. Dessa forma, o algoritmo trata funções não convexas, que
causariam distribuições espaciais com formatos curvos mais complicados, como se
fossem funções multimodais, mesmo que a função não convexa em questão seja uni-
modal. Cada trecho aproximadamente convexo é enxergado pelo algoritmo como
uma bacia de atração e gera um grupo de vetores-diferença.

Na Figura 7.10-(a), pode-se perceber três agrupamentos de indiv́ıduos bem des-
tacados na distribuição espacial da população. Na Figura 7.10-(b), que ilustra a
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distribuição de vetores-diferença correspondente, pode-se notar também três grupos
de vetores-diferença bem distintos. Cada grupo de vetores-diferença está alinhado
com a direção que conecta dois agrupamentos distintos e gera perturbações que per-
mitem saltar de um grupo de pontos ao outro. O algoritmo se comporta como se
existissem três bacias de atração na função.

7.3.4 Rotação e translação

Uma das caracteŕısticas interessantes do operador de mutação diferencial é sua in-
variância à rotação e translação do sistema de coordenadas. É fácil verificar que
a mutação diferencial é invariante à rotação e translação, já que se trata de uma
operação vetorial. O que importa na definição dos vetores-diferença são as posições
relativas dos indiv́ıduos da população, não suas posições absolutas.
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Figura 7.11: Invariância da mutação diferencial em relação à rotação do sistema de coorde-
nadas.

A propriedade de invariância à rotação é uma caracteŕıstica desejável em algo-
ritmos de otimização. Um algoritmo cujo desempenho não depende da orientação do
sistema de coordenadas é mais geral, uma vez que a orientação ideal não é conhecida
na prática.

Embora a mutação diferencial apresente essas caracteŕısticas desejáveis, a re-
combinação discreta usada no algoritmo de evolução diferencial clássico não possui
invariância à rotação. Observando a Figura 7.11, percebe-se claramente que os veto-
res teste produzidos pela recombinação discreta variam com a rotação do sistema de
coordenadas, exceto quando C = 1, pois nesse caso não há recombinação, somente
mutação, e ut,i = vt,i.
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7.4 Aspectos Avançados

7.4.1 Combinações degeneradas

Ao apresentarmos a equação do operador de mutação diferencial, ver (7.3), apenas
comentamos que os ı́ndices r1, r2, r3 são sorteados aleatoriamente para cada i. En-
tretanto, há uma probabilidade, mesmo que pequena, de que algum par dos ı́ndices
i, r1, r2, r3 em (7.3) seja coincidente. Nesta seção discutimos esses casos degenerados
e procedimentos que podem ser adotados para evitá-los.

As seguintes situações degeneradas podem ocorrer:

1. r2 = r3. Nesse caso, (7.3) se reduz a:

vt,i = xt,r1

e não há perturbação aplicada ao vetor de base. O vetor de base não sofre
mutação, causando a recombinação de xt,i com algum vetor escolhido aleato-
riamente da população.

2. r1 = r2 ou r1 = r3. Nesse caso a mutação diferencial se reduz a um operador
de recombinação aritmética2. Para r1 = r2, temos:

vt,i = xt,r1 + F (xt,r1 − xt,r3) = (1 + F )xt,r1 − Fxt,r3

Ocorre uma recombinação degenerada, em que a nova solução é gerada ex-
ternamente ao segmento que une xt,r1 e xt,r3 , ver Figura 7.12. Para r1 = r3,
ocorre uma recombinação aritmética tradicional entre xt,r1 e xt,r2 :

vt,i = xt,r1 + F (xt,r2 − xt,r1) = (1− F )xt,r1 + Fxt,r2

se F ∈ [0, 1], ocorrendo cruzamentos degenerados para valores de F > 1.

3. i = r1. Uma perturbação é aplicada a xt,i de acordo com:

vt,i = xt,i + F (xt,r2 − xt,r3)

A solução teste é o resultado da recombinação da solução xt,i com sua versão
perturbada. Na prática, o parâmetro C passa a ter o significado de um
parâmetro de mutação, controlando quantas variáveis de xt,i serão pertur-
badas.

4. i = r2 ou i = r3. Nesse caso o vetor-diferença está na direção que liga xt,i

a algum outro vetor da população, xt,r2 ou xt,r3 . Essa combinação não é
necessariamente indesejável.

2A recombinação aritmética de dois vetores xa e xb é definida pela combinação convexa λxa +
(1 − λ)xb, para λ ∈ [0, 1]. Por essa razão, a recombinação aritmética é também conhecida na
literatura como recombinação convexa ou recombinação intermediária. Para o caso particular
λ = 0.5, a recombinação é denominada recombinação média. No contexto de algoritmos genéticos,
a operação de recombinação é tradicionalmente denominada cruzamento.
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Figura 7.12: (a) Quando r1 = r2, ocorre uma recombinação degenerada, em que a nova
solução é gerada fora do segmento que une as duas soluções recombinantes. (b) Quando
r1 = r3, ocorre uma recombinação aritmética tradicional. Nos exemplos acima, F = 0.4.

Estas combinações degeneradas, mesmo que tenham baixa probabilidade de
ocorrência, são em geral indesejáveis e podem prejudicar o desempenho do algo-
ritmo. Por essa razão, recomenda-se adotar ı́ndices mutuamente distintos, isto é,
i 6= r1 6= r2 6= r3, em implementações mais práticas do algoritmo de evolução di-
ferencial. Uma maneira simples de garantir essa condição é substituir a linha 5 no
Algoritmo 1 pelo código no Algoritmo 2 a seguir.

Outra maneira de implementar a escolha de ı́ndices distintos é utilizar uma
rotina de permutação aleatória de um vetor de inteiros, se dispońıvel. Nesse caso,
pode-se utilizar essa rotina para gerar uma permutação aleatória do vetor de ı́ndices
(1, . . . , N). Em seguida, utilize os três primeiros elementos do vetor resultante como
valores para os ı́ndices r1, r2 e r3. Esse procedimento assegura r1 6= r2 6= r3. Para
garantir a condição i 6= r1 6= r2 6= r3, procure o ı́ndice i no vetor resultante da
permutação aleatória e use os três elementos seguintes como valores para os ı́ndices
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Algorithm 2: Pseudocódigo para a seleção de ı́ndices mutuamente distintos
1: repeat

2: Selecione aleatoriamente r1 ∈ {1, . . . , N}
3: until r1 6= i
4: repeat

5: Selecione aleatoriamente r2 ∈ {1, . . . , N}
6: until r2 6= i ∧ r2 6= r1
7: repeat

8: Selecione aleatoriamente r3 ∈ {1, . . . , N}
9: until r3 6= i ∧ r3 6= r1 ∧ r3 6= r2

r1, r2 e r3. Nesse caso, deve-se considerar uma contagem circular para as posições
do vetor, isto é, ao se chegar à última posição do vetor, a posição seguinte representa
um retorno à primeira posição.

7.4.2 Variações do algoritmo

O algoritmo de evolução diferencial em sua versão básica utiliza seleção aleatória
com probabilidade uniforme do vetor de base, um vetor-diferença para a mutação, e
recombinação discreta entre a solução corrente e seu vetor mutante correspondente.
Entretanto, muitas variações desse esquema básico são posśıveis. Nesta seção, co-
mentaremos sobre algumas dessas variações.

Com relação ao vetor de base, este pode ser escolhido aleatoriamente entre os
indiv́ıduos da população corrente com probabilidade uniforme ou com probabilidade
proporcional à qualidade de cada solução3. Ao usar uma seleção com probabilidade
uniforme, de fato o algoritmo de evolução diferencial está eliminando a pressão sele-
tiva para a reprodução, uma vez que cada indiv́ıduo possui a mesma probabilidade
de ser selecionado como vetor de base, portanto, cada indiv́ıduo produz em média um
descendente. Essa forma de seleção corresponde a uma seleção por roleta estocástica
em que cada indiv́ıduo ocupa uma área igual na roleta.

A seleção uniforme pode entretanto causar repetição do vetor de base e fazer
com que algumas soluções na população não sejam usadas como vetor de base. Para
garantir a seleção de um vetor de base único para cada indiv́ıduo, pode-se usar
permutação aleatória de um vetor de ı́ndices (1, . . . , N). Dessa forma garante-se
que cada indiv́ıduo da população será selecionado uma única vez como vetor de base
na mutação diferencial, portanto, cada indiv́ıduo produz um único descendente, um
único vetor mutante vt,i. Usando a analogia com a seleção por roleta, essa estratégia
de seleção dos vetores de base equivale a um giro de uma roleta com N ponteiros
igualmente espaçados, ao invés de N giros de uma roleta com um ponteiro, como
na situação anterior. Como cada indiv́ıduo ocupa uma área igual na roleta, cada
indiv́ıduo é selecionado uma única vez.

Pode-se ainda utilizar um mesmo vetor como vetor de base em todas as operações
de mutação diferencial. A escolha mais comum é usar a melhor solução na população
como vetor de base. Assim, temos:

3Esquema de seleção proporcional à aptidão muito utilizado em algoritmos genéticos.
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vt,i = xt,best + F (xt,r2 − xt,r3) (7.9)

em que xt,best representa o melhor indiv́ıduo na população na geração t.
Pode-se ainda adotar o vetor correspondente à média da distribuição espacial

da população como vetor base. As perturbações geradas pela mutação diferencial
são aplicadas à média da população:

vt,i = xt,mean + F (xt,r2 − xt,r3) (7.10)

com:

xt,mean =
1

N

N∑

i=1

xt,i (7.11)

Utilizar um único vetor de base significa adotar uma pressão seletiva forte na
reprodução, em contraste à ausência de pressão seletiva da seleção uniforme. Em
geral, essa estratégia apresenta uma maior velocidade de convergência e uma rápida
redução de diversidade, que podem levar à convergência prematura em alguns pro-
blemas, em particular em problemas em que a função-objetivo é multimodal. O al-
goritmo de evolução diferencial já possui uma pressão seletiva forte na sobrevivência
dos indiv́ıduos, em que ocorre uma competição determińıstica entre o indiv́ıduo xt,i

e a solução teste ut,i. Portanto, se a pressão seletiva para reprodução também
for forte, pode ocorrer uma rápida perda de diversidade na população. Na versão
clássica do algoritmo, a ausência de pressão seletiva para a reprodução compensa
a pressão seletiva forte na etapa de sobrevivência de maneira similar ao que ocorre
com as estratégias evolutivas, ver Caṕıtulo XX.

Outra possibilidade é gerar soluções na direção do melhor indiv́ıduo para servi-
rem como vetores de base. A equação a seguir ilustra essa abordagem:

vt,i = xt,i + λ (xt,best − xt,i)
︸ ︷︷ ︸

xt,base

+F (xt,r2 − xt,r3) (7.12)

com λ ∈ [0, 1]. Nesse caso, ocorre uma recombinação aritmética entre xt,i e xt,best. O
vetor de base corresponde a um ponto gerado aleatoriamente sobre o segmento que
liga xt,i e xt,best. Essa forma de seleção do vetor de base apresenta menor pressão
seletiva do que em (7.9), embora haja uma polarização na direção da melhor solução.

A mutação diferencial pode ser generalizada para empregar mais vetores-diferença
na criação do vetor mutante:

vt,i = xt,r1 +

d∑

k=1

Fk∆xt,k (7.13)

em que a perturbação aplicada ao vetor de base é composta pela soma de d vetores-
diferença da forma:

∆xt,k =
(
xt,rk+1

− xt,rk+1+d

)
(7.14)

Por exemplo, usando o mesmo valor de Fk para todo k e d = 3, a equação (7.13)
fica:

vt,i = xt,r1 + F (xt,r2 − xt,r5 + xt,r3 − xt,r6 + xt,r4 − xt,r7) (7.15)
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O uso de mais de um vetor-diferença na mutação diferencial aumenta a capa-
cidade de geração de diversidade no algoritmo. Contudo, essa estratégia reduz a
capacidade de alinhamento dos vetores-diferença com o contorno da função, em-
bora o alinhamento não seja totalmente perdido. Além disso, fica cada vez mais
dif́ıcil garantir ı́ndices mutuamente distintos. O uso de mais vetores-diferença au-
menta a busca global no algoritmo e prejudica a busca local, porque os tamanhos
de passo adaptados se somam produzindo perturbações de maior magnitude. Por
essa razão, o valor de F deve ser menor para compensar o aumento no tamanho das
perturbações.

Existe uma notação sintética para representar as variações do algoritmo de
evolução diferencial. Essa notação padrão segue o formato DE/base/d/rec. O
termo usado no lugar de base indica a forma como o vetor de base é selecionado, d
indica o número de vetores-diferença usados, e o termo usado no lugar de rec faz
referência ao operador de recombinação utilizado.

Por exemplo, a versão clássica do algoritmo de evolução diferencial, ver Algo-
ritmo 1, pode ser representada pela notação DE/rand/1/bin, em que rand indica
que o vetor base na mutação diferencial é escolhido aleatoriamente com probabili-
dade uniforme, d = 1 indica que apenas um vetor-diferença é usado, e bin indica
o método de recombinação. O termo bin faz referência à distribuição binomial,
pois a recombinação discreta com probabilidade C faz com que o número de valores
herdados de vt,i siga uma distribuição binomial. A probabilidade de que p valores
sejam herdados do vetor mutante é dada por:

P{X = p} =

(
n

p

)

Cp(1− C)n−p (7.16)

que corresponde a todas as combinações de p sucessos e n − p falhas, isto é, p
ocorrências de U[0,1] que foram menores do que C e n − p ocorrências de U[0,1] que
foram maiores do que C.

Existe uma forma alternativa de implementação da recombinação discreta, que
produz uma distribuição exponencial do número de valores herdados da solução
mutante. Na recombinação discreta binomial uma realização de U[0,1] é obtida para
cada coordenada e o valor de ut,i,j é copiado de vt,i,j se U[0,1] ≤ C para a coordenada
j, isto é, cada coordenada é testada de maneira independente. Na recombinação
discreta exponencial, indicada por exp na notação padrão, uma posição no vetor
é sorteada aleatoriamente com probabilidade uniforme. A partir dessa posição, os
valores da solução teste são herdados da solução mutante enquanto U[0,1] ≤ C. Na
primeira ocorrência de U[0,1] > C, os valores para as coordenadas restantes são
obtidos de xt,i. Observe que nesse caso a probabilidade de que p valores sejam
herdados do vetor mutante é dada por:

P{X = p} = Cp(1− C) = Cp − Cp+1 (7.17)

que corresponde a p ocorrências sucessivas de U[0,1] que foram menores do que C e
uma ocorrência de U[0,1] que foi maior do que C.

Na recombinação discreta do tipo exponencial, as primeiras coordenadas do
vetor teste a partir da posição sorteada possuem maior probabilidade de serem her-
dadas do vetor mutante do que as últimas coordenadas. Em outras palavras, os
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valores das coordenadas em posições adjacentes têm maior probabilidade de perma-
necerem juntas no vetor teste do que os valores em posições não adjacentes. Na
terminologia usada em algoritmos evolutivos, dizemos que esse operador apresenta
polarização posicional, ou seja, uma polarização na probabilidade de que algumas
posições do genótipo sejam escolhidas em detrimento de outras. Para contornar
a polarização posicional desse tipo de recombinação, os ı́ndices das coordenadas
podem ser embaralhados aleatoriamente antes de aplicar a recombinação.

Para concluir esta seção, a Tabela 7.1 apresenta alguns exemplos de instâncias
do algoritmo de evolução diferencial, cada uma com sua notação padrão correspon-
dente. Se o melhor indiv́ıduo for usado como vetor de base, e utilizarmos três vetores-
diferença na mutação diferencial, podemos referenciar o algoritmo de evolução dife-
rencial correspondente como DE/best/3/bin. O algoritmo de evolução diferencial
que utiliza a abordagem de seleção do vetor de base em (7.12) e recombinação dis-
creta exponencial pode ser representado pela notação DE/current-to-best/1/exp.

Notação Mutação diferencial
DE/rand/1/bin vt,i = xt,r1 + F (xt,r2 − xt,r3)

DE/best/1/bin vt,i = xt,best + F (xt,r2 − xt,r3)

DE/mean/1/bin vt,i =
1
N

∑N

k=1 xt,k + F (xt,r2 − xt,r3)

DE/rand-to-best/1/bin vt,i = xt,r1 + λ (xt,best − xt,r1) +
F (xt,r2 − xt,r3)

DE/current-to-best/1/bin vt,i = xt,i + λ (xt,best − xt,i) +F (xt,r2 − xt,r3)

DE/rand/2/bin vt,i = xt,r1 + F1 (xt,r2 − xt,r4) +
F2 (xt,r3 − xt,r5)

Tabela 7.1: Algumas instâncias do algoritmo de evolução diferencial.

7.4.3 Variação do parâmetro de escala

O parâmetro de escala F do vetor-diferença não necessariamente precisa variar, pois
os tamanhos de passo são autoadaptados na distribuição de vetores-diferença, con-
forme vimos anteriormente. À medida que o algoritmo progride, e a população se
agrupa em torno de um ponto de mı́nimo local, os tamanhos de passo automatica-
mente diminuem devido à proximidade das soluções no domı́nio de busca. Dessa
forma, o parâmetro de escala pode ser mantido fixo no algoritmo de evolução dife-
rencial sem comprometer seu desempenho significativamente.

Entretanto, variar o valor de F dentro de alguma faixa cont́ınua de valores
aumenta a diversidade de vetores-diferença e de soluções posśıveis que podem ser
geradas com o operador. Além disso, variar o parâmetro de escala reduz as chances
de estagnação do algoritmo. A estagnação no algoritmo de evolução diferencial pode
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ocorrer com a escolha de um valor fixo para F em situações degeneradas, quando
a população está presa numa dada distribuição espacial que não oferece vetores-
diferença que permitam a geração de soluções melhores. Variando o valor de F , a
possibilidade de estagnação diminui.

Uma maneira simples de variar o valor de F é fazer:

F = U[a,b] (7.18)

Tipicamente, adota-se U[0.5,1]. Valores muito pequenos de F prejudicam a con-
vergência pois reduzem muito o efeito da mutação diferencial, causando perturbações
pequenas nos vetores de base. Por outro lado, valores de F maiores do que 1 de-
saceleram a redução natural dos tamanhos de passo, retardando a convergência do
algoritmo. Observe que F pode variar em uma faixa relativamente pequena de va-
lores, uma vez que os tamanhos de passo são adaptados no algoritmo de evolução
diferencial de acordo com a distribuição espacial da população. Por exemplo, [?] in-
dica o valor 0.3 como um limite inferior confiável para F . Outros estudos emṕıricos
indicam um limite inferior para F de 0.4 [?,?]. Até o momento, estudos emṕıricos
na literatura indicaram que não há benef́ıcios em se utilizar valores superiores a 1
para F .

Alguns autores estudaram o emprego de parâmetros de escala independentes
para cada variável, fazendo a mutação diferencial da forma:

vt,i,j = xt,r1,j + Fj (xt,r2,j − xt,r3,j) (7.19)

ou, escrito na forma matricial:

vt,i = xt,r1 + F (xt,r2 − xt,r3) (7.20)

com:

F =






F1 · · · 0
...

. . .
...

0 · · · Fn




 (7.21)

O parâmetro de escala Fj é retirado de uma distribuição aleatória independente
para cada variável. Contudo, essa escolha se mostrou desvantajosa, porque utilizar
valores independentes de Fj descorrelaciona as componentes do vetor-diferença, des-
truindo a correlação linear entre as variáveis aprendida pelo operador de mutação
diferencial e o alinhamento das orientações dos vetores-diferença.

Entretanto, pequenas variações nos valores de Fj em torno de um valor central
representam pequenas variações de ângulo nos vetores-diferença e podem ser interes-
santes para aumentar a diversidade de soluções geradas sem prejudicar gravemente
o alinhamento dos vetores-diferença. Para implementar essa abordagem, pode-se
utilizar:

Fj = F0 + U[−α,α], j ∈ {1, . . . , n} (7.22)

ou ainda
Fj = F0 +N[0,α], j ∈ {1, . . . , n} (7.23)

com α ≪ 1 em ambos os casos. O valor de F0 é fixo para todo j, mas pode variar
para cada i, usando por exemplo (7.18).
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7.4.4 Outros operadores de recombinação

Como discutido anteriormente, a recombinação discreta, seja ela do tipo binomial
ou exponencial, não é invariante à rotação do sistema de coordenadas. Além disso,
como somente algumas coordenadas são herdadas do vetor mutante, o vetor teste
produzido é algum ponto obtido com passos ortogonais a partir da solução mutante,
veja Figura 7.1 novamente.

A Figura 7.13 ilustra uma função multimodal com variáveis correlacionadas de
tal forma que a bacia de atração B2 é alcançável a partir da bacia de atração B1
na Figura por meio de um movimento correlacionado em ambas as coordenadas.
A recombinação discreta pode causar movimentos ortogonais em que apenas uma
variável é modificada. Um movimento em uma única coordenada pode não alcançar
a bacia de atração B2 e não ser aceito. Dessa forma, a bacia B2 não seria alcançável, a
menos que um movimento seja executado em ambas as coordenadas simultaneamente
e na direção adequada.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2
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4.5

5
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Figura 7.13: Função multimodal com variáveis correlacionadas.

Em uma função convexa com variáveis correlacionadas, como aquela ilustrada
na Figura 7.2, passos ortogonais diminuem a velocidade de convergência que poderia
ser obtida com passos correlacionados. Em problemas multimodais, é interessante
que os movimentos sejam executados simultaneamente em muitas ou em todas as
variáveis. Por essa razão, em problemas convexos com variáveis correlacionadas
e em problemas multimodais, o algoritmo de evolução diferencial usando recom-
binação discreta apresenta melhor desempenho quando C é próximo de 1. Para
valores próximos de 1, vários valores da solução mutante são aceitos simultanea-
mente, permitindo movimentos correlacionados.

Outra forma de contornar o problema, é substituir a recombinação discreta
por outros operadores de recombinação, incluindo operadores que executem passos
em várias ou em todas as coordenadas simultaneamente e que sejam invariantes à
rotação do sistema de coordenadas.
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Um operador de recombinação simples que satisfaz esses requisitos é a recom-
binação aritmética, muito utilizada em algoritmos genéticos e estratégias evolutivas.
A solução teste é obtida a partir de:

ut,i = λxt,i + (1− λ)vt,i, λ ∈ [0, 1] (7.24)

sempre que U[0,1] ≤ C. Dessa forma, o parâmetro C passa a ter o significado de
um parâmetro de taxa de recombinação da população atual Xt com a população
mutante Vt.

A equação (7.24) pode ser combinada com (7.3) obtendo:

ut,i = λxt,i + (1− λ) [xt,r1 + F (xt,r2 − xt,r3)] , λ ∈ [0, 1] (7.25)

que combina a mutação diferencial e a recombinação numa única equação.
Novamente, podemos escrever a equação para a geração do vetor teste na forma

compacta a seguir:

ut,i =

{

λxt,i + (1− λ) [xt,r1 + F (xt,r2 − xt,r3)] , se U[0,1] ≤ C

xt,r1 + F (xt,r2 − xt,r3) , caso contrário
(7.26)

em que a seleção para sobrevivência é feita como antes, ver (7.6).
Além da recombinação aritmética, outros operadores de recombinação propostos

na literatura podem ser utilizados, veja [?] para uma referência bastante ampla de
operadores de recombinação para problemas de otimização numérica.

7.4.5 Esquema geral dos algoritmos de evolução diferencial

Vamos concluir esta seção com a apresentação de um esquema geral para as variações
do algoritmo de evolução diferencial. Esse esquema geral é apresentado no Algoritmo
3.

Algorithm 3: Pseudocódigo geral para a famı́lia de algoritmos de evolução
diferencial

1: t← 1
2: Inicializar população Xt = {xt,i; i = 1, . . . , N}
3: while algum critério de parada não for satisfeito do

4: for i = 1 até N do

5: Selecionar vetor de base xt,base {Seleção para reprodução}
6: Selecionar conjunto de vetores-diferença {∆xt,k}, k = 1, . . . , d
7: Selecionar fatores de escala Fk, k = 1, . . . , d
8: Gerar solução mutante usando vt,i = xt,base +

∑d

k=1 Fk∆xt,k

9: Adicionar vt,i à população mutante Vt

10: end for

11: Recombinar Xt e Vt, com parâmetro C, gerando Ut

12: Aplicar seleção para sobrevivência entre Xt e Ut

13: t← t+ 1
14: end while
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Na linha 5 do Algoritmo 3, ocorre a seleção do vetor de base, que representa
a seleção para reprodução no algoritmo de evolução diferencial. Nas duas linhas
seguintes, são selecionados d vetores-diferença e os valores para os parâmetros de
escala de cada vetor-diferença, que serão usados na geração do vetor mutante na
linha 8.

O laço nas linhas 4 a 10 está relacionado somente à operação de mutação di-
ferencial para produção da população mutante Vt. Após a operação de mutação
diferencial, a recombinação é executada na linha 11. Finalmente, deve-se definir um
mecanismo de seleção para sobrevivência entre Xt e Ut, formando a população Xt

da próxima geração.
Apresentado dessa maneira, podemos observar que a mutação diferencial é um

operador de busca que tem um papel primário no algoritmo, enquanto a recom-
binação tem um papel secundário.

O algoritmo de evolução diferencial básico apresentado no Algoritmo 1 e as
variações discutidas neste caṕıtulo podem ser vistos como instâncias particulares do
Algoritmo 3, mais geral.

7.5 Considerações finais

Este caṕıtulo apresentou os algoritmos baseados em evolução diferencial para oti-
mização de funções cont́ınuas. Ultimamente, a evolução diferencial tem recebido
bastante destaque no contexto da otimização não linear com variáveis cont́ınuas, de-
vido às suas caracteŕısticas de versatilidade, robustez e autoadaptação, colocando-o
entre os algoritmos evolutivos mais eficientes nesse contexto.

O algoritmo de evolução diferencial possui muitas qualidades desejáveis em al-
goritmos de otimização de propósito geral: (i) capacidade de adaptar-se à estrutura
da função, aprendendo correlações lineares entre as variáveis do problema a par-
tir da distribuição espacial da população; (ii) invariância à rotação e translação
do sistema de coordenadas; (iii) poucos parâmetros de controle a serem ajustados,
sendo que o parâmetro de escala não precisa ser necessariamente ajustado, uma vez
que os tamanhos de passo da mutação são autoadaptados; e (iv) simplicidade de
implementação.

Embora o algoritmo de evolução diferencial tenha sido desenvolvido para tratar
problemas de otimização não linear cont́ınua, pode-se encontrar na literatura, em
especial nos últimos anos, alguns trabalhos que visam adaptar o algoritmo para
problemas de otimização combinatória. Por exemplo, [?] apresenta uma versão do
algoritmo de evolução diferencial para problemas de planejamento e escalonamento
da produção. O leitor interessado também pode consultar o recente livro editado por
[?], que discute várias abordagens de utilização da evolução diferencial em problemas
de otimização baseados em vetores de permutações.


