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Capitulo 7

Algoritmos de Evolucao
Diferencial

Este capitulo apresenta os algoritmos de evolucao diferencial para a solucao de
problemas de otimizacao. Inicialmente, faz-se uma apresentacao do algoritmo em
sua versao bésica e uma andlise de seu comportamento emalgumas fungées objetivo
usadas como exemplo. Na sequencia, sao discutidos aspectos avancados e variagoes
do algoritmo de evolucao diferencial. Posteriormente, é desenvolvido um esquema
geral para os algoritmos de evolucao diferencial.

7.1 Introducao

O algoritmo de Evolu¢ao Diferencial ¢ um algoritmo de otimizagao simples e eficiente
que tem recebido’cada vez mais destaque no ambito da otimizacao nao linear com
variaveis continuas. A primeira publicacao sobre esse algoritmo ocorreu em 1995,
em um relatério téenico de'Rainer Storn e Kenneth Price [?]. O algoritmo ganhou
destaque na comunidadeinternacional de‘Computagao Evolutiva nos anos seguintes,
apos apresentar excelente desempenho nas edigoes de 1996 e 1997 da International
Contest on Evolutionary Optimization da IEEE International Conference on Evo-
lutionary Computation (IEEEICEC), ver [?,?]. Na edicao de 1996, o algoritmo de
evolucao diferencial ficou em terceiro lugar. O algoritmo classificado em primeiro
explorava a caracteristica de separabilidade presente nas funcoes de teste usadas na
competicao e o algoritmo classificado em segundo lugar se sustentava em quadra-
dos latinos e, por essa razao, nao era muito escalavel para problemas com muitas
variaveis. O algoritmo de evolucao diferencial foi o melhor classificado entre os
algoritmos de otimizacao de proposito geral, perdendo para dois métodos mais espe-
cializados e'menos gerais. Ja na edicao de 1997, com um novo conjunto de fungoes
de teste, o algoritmo de evolucao diferencial apresentou o melhor desempenho entre
os algoritmos classificados. Em dezembro do mesmo ano, [?] publicaram um artigo
no Journal of Global Optimization apresentando testes experimentais mais amplos
e resultados empiricos que ilustravam a robustez do algoritmo.

Em 1999, foi publicado o livro New Ideas in Optimization, editado pelos pesqui-
sadores David Corne, Marco Dorigo e Fred Glover, incluindo uma secao de capitulos
sobre o algoritmo de evolugao diferencial [?,7,7?]. Atualmente, j4 podem ser encon-
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trados alguns livros dedicados exclusivamente aos algoritmos de evolucao diferencial,
ver por exemplo [?, 7, 7], incluindo um livro recente com foco e diversas aplicagoes
em engenharia elétrica e eletronica [?].

Nos ultimos anos, esse algoritmo tem se mostrado versatil e eficaz em muitas
aplicagoes praticas, desde o projeto de filtros digitais [?] até a otimizagao de sistema
reservatério de dgua [?] e localizac@o do foco sismico de terremotos [?]. O algoritmo
de evolucao diferencial também tem se mostrado eficiente para o treinamento de
redes neurais [?,7,7, 7], para o projeto de dispositivos de engenharia elétrica [?,7?] e
solugao de problemas inversos [?].

Pesquisas recentes tém se concentrado no estudo de variagdes do algoritmo [?],
em técnicas para o tratamento de restrigoes [?, 7] e em versdes para a solucao de
problemas de otimizagao multiobjetivo [?,7?,7].

Este capitulo tem como objetivo apresentar uma visao geral sobre esse algoritmo
e seu peculiar mecanismo de busca, sustentado no operador.de mutacdao diferencial,
que dé nome ao algoritmo. Embora o método de evolugao diferencial seja classificado
como um algoritmo evolutivo, e se enquadre emum esquema geral de um algoritmo
evolutivo, a mutacao diferencial nao tem base ou inspiracdo em nenhum processo
natural. A forma como esse operador gera perturbagées (mutagoes) nos individuos
da populacao se sustenta em argumentos matematicos e heuristicos que indicam
sua adequabilidade para a otimizagao de funcoes e nao exatamente em argumentos
derivados de metéaforas da natureza. Centudo, o algoritmo de evolucao diferencial
segue uma linha histérica de algoritmos e métodos que evoluem uma populagao
de solugoes candidatas segundo operadores heuristicos inspirados em mecanismos
bastante gerais de adaptacao natural.. Por essa razao, o algoritmo de evolucao
diferencial é classificado como uma instancia dos algoritmos evolutivos.

A mutacao diferencial emprega a diferenca entre pares de individuos na po-
pulacao corrente’para gerar 0s vetores de perturbagao, denominados vetores-diferen-
ca. Porém, aimedida que o algoritmo progride no processo de busca, a distribuicao
espacial da populagao se modifica de acordo com a paisagem da funcao objetivo.
Essa mudanca, por sua‘vez, altera as orientagoes e tamanhos dos vetores-diferenca
que podem ser criados a partir da populacao. Por essa razao, observa-se que a dis-
tribuicao dos vetores-diferenca, e portanto a distribuicao das diregoes e tamanhos
de passo das perturbagoes, se ajusta a paisagem da funcao. Essa caracteristica de
autoadaptacao da mutacao diferencial confere ao algoritmo de evolugao diferencial
qualidades interessantes do ponto de vista da otimizacao, tais como robustez, versa-
tilidade e eficiéencia em diversos problemas. Neste capitulo, mostraremos por meio
de exemplos essa autoadaptacao dos vetores-diferenca a medida que o algoritmo
avanca no processo de otimizacao.

7.2 Evolugao Diferencial

Nesta secao é apresentada uma visao geral do algoritmo de evolucao diferencial.
Considere um problema genérico de otimizagao nao linear com variaveis continuas,
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formulado como:
x* = arg min f(x)

x € R”

o Ja<o 1)
sujeito a: ¢ .

gn(x) < 0

Neste capitulo, vamos considerar o problema irrestrito, isto é, sem as funcgoes
de restricao ¢1(x) a gn(x). [?] apresenta uma forma simples de’tratar restri¢oes
no algoritmo de evolugao diferencial. O tratamento de restricoes em algoritmos
evolutivos serd discutido de forma mais geral no Capitulo XX.

Ao longo deste capitulo, usaremos a notacgao U, para indicar a amostragem
de uma varidvel aleatéria com distribuicao uniforme entre a e.b e a notacao NV, o
para indicar a amostragem de uma variavel aleatoria com distribuicao normal com
média p e desvio padrao o.

Seja uma populacao de solugoes candidatas para o problema, representada por
Xi={xt;; i=1,...,N}, em que t é o indice da geragao_ corrente e i ¢ o indice do
individuo na populacao. Cada individuo na populacao corrente é representado por
um vetor coluna:

Tl
L 32

Xti — . (72)

b

Tgn

dessa forma, o terceiro-indice indica uma entre as n varidveis do problema de oti-
mizacao.

O mecanismo de busca do algoritmo de-evolucao diferencial utiliza vetores-
diferenca criados a partir de pares de vetores da propria populacao. Dois individuos
sao selecionados aleatoriamente da populagao corrente, criando-se um vetor-diferenca
que nada mais é do que a diferenca entre estes dois individuos. Este vetor-diferenca,
por sua vez, é somado a um terceiro individuo, também selecionado aleatoriamente,
produzindo uma nova solugae mutante. A nova solucao mutante é portanto o resul-
tado de uma perturbacao em algum individuo da populagao, sendo esta perturbacao
um vetor-diferenca construido aleatoriamente. A equagao a seguir ilustra esse pro-
cedimento:

Vii=Xep + F Xy — Xtg) s T1,72,73 €{1,..., N} (7.3)

em que v, ; representa a i-ésima solucao mutante e F' é um fator de escala aplicado
ao vetor-diferenga e parametro do algoritmo de evolugao diferencial. O vetor x;,,,
ao qual é aplicada a mutacao diferencial, é denominado vetor de base.

Usando este procedimento, obtém-se uma populagdo mutante V; = {v;;; i =
1,...,N}. Os préximos passos no algoritmo sao bem simples. Os individuos da
populacao corrente X; sao recombinados com os individuos da populagao mutante,
produzindo a descendéncia ou populacao de solucoes teste U;. Na versao classica do
algoritmo de evolucao diferencial, emprega-se a recombinagao discreta com proba-

bilidade C' € [0, 1]:
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Figura 7.1: llustragdo do procedimento de geragdo de uma solucdo mutante.

Vige e Up <C V j =0

Ty, caso contrario

(7.4)

Ut =

em que ; € {1,...,n} é um indice aleatério sorteado para o vetor teste i. Como em
algum momento a igualdade j = §; sera verificada, essa condigao garante que pelo
menos um dos parametros da solugao teste serd herdado do individuo mutante. O
parametro C' controla a fragao de valores em u;; que sao copiados do vetor mutante
v;. Quanto mais proximo de 1 for o valor de C', maior a chance de que a solugao
teste contenha muitos valores herdados do vetor mutante. No limite, quando C' = 1,
o vetor teste é igual ao vetor mutante:

A Figura 7.1 ilustra a geracao de um vetor mutante e as possiveis solugoes teste
obtidas apds a recombinagao, indicadas por B na Figura. Note que pelo menos a
coordenada j = ¢; serd herdadaido vetor mutante, dessa forma, garante-se u;; # x; ;.
Pode-se observar que uma solucao teste é o resultado da recombinacao de cada
solucao x;; com uma solugao mutante gerada a partir de uma perturbagao em algum
individuo da populagao. A diregao e o tamanho dessa perturbagao sao definidos pela
diferenga entre as solucoes X;,, € X¢,,, portanto dependem das posicoes relativas
destes individuos'no dominio de busca.

Finalmente, o valor da fungao objetivo é avaliado em u;;. Cada solucao teste
u;; é comparada com seu correspondente na populacao corrente, no caso x;;. Se a
solucao teste ¢ melhor do que a solugao corrente x;;, a solu¢ao corrente ¢ eliminada e
seu lugar passa a ser ocupado por u;;. Caso contrario, a solugao teste é descartada
e a solugao corrente sobrevive, permanecendo na populagdo da préxima geragao,
representada por X;,;. O processo se repete até que algum critério de parada
definido seja satisfeito.

Como pode-se observar, o algoritmo de evolugao diferencial em sua versao ori-
ginal é bastante simples. Essa simplicidade torna-se evidente quando escrevemos as
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equagoes (7.3) e (7.4) na forma compacta a seguir:

T‘F ro.j — Ltrs.ji)s U <C\/:(52
Ui = {xt, i T (T — Ty y),  s€ 01 < 7 (7.5)

Tt s caso contrario
com 1,719,713 € {1,... N}, t=1,.. . tpax, 0 =1,...,N;ej=1,....n.

A selecao para sobrevivéncia pode ser descrita por:

Xe1s = {ut,i, se f(ug) < f(xeq) (76)

X¢i, caso contrario

As operagoes do algoritmo de evolugao diferencial béasico sao apresentadas na
forma de pseudocédigo no Algoritmo 1 a seguir.

Algorithm 1: Pseudocddigo do algoritmo de evolucao diferencial basico

1 t+1

2: Inicializar populacio X; = {x¢;; i = 1,4.., N}

3: while algum critério de parada nao for satisfeito do
4: fori=1até N do

5 Selecione aleatoriamente 71,79, 73 € {1,..., N}
6: Selecione aleatoriamente d; € {1,...,n}

7 for j =1 até ndo

8 if Z/{[O,l] <C Vv J = 0; then

9: Utij = Topy g+ F (Terayg — Tigs j)

10: else

11: U i 5= Tt i

12: end if

13: end for

14: end for
15:  for i =1 até N'do
16: if f(u;) < f(x¢;) then

17 Xit1,i < Ugg
18: else

19: Xitld $ Xt
20: end if

21: end for
22: t+—t+1
23: end while

A equagoes (7.5)-(7.6) descrevem todas as operagdes necessarias no algoritmo
de evolucao diferencial em sua versao béasica. E realmente impressionante que um
algoritmo tao simples apresente tantas caracteristicas computacionais desejaveis,
tais como robustez, versatilidade, eficiéncia e adaptabilidade. Nas préximas secoes,
tentaremos compreender o comportamento do algoritmo em alguns exemplos de
fungoes-objetivo de forma a elucidar seu mecanismo de funcionamento. Além disso,
discutiremos variantes do algoritmo bésico e aspectos avancados da evolucao dife-
rencial.
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7.3 Comportamento da Mutacao Diferencial

Nesta secao discutiremos o comportamento do algoritmo de evolucao diferencial,
buscando compreender os principios de funcionamento de seu mecanismo de busca.

O principio basico de funcionamento do algoritmo de evolucao diferencial é per-
turbar solugoes da populacao corrente gerando vetores mutantes. Essas perturbacoes
sao proporcionais a diferenca entre pares de solucoes escolhidas aleatoriamente na
populacao. Portanto, para entender melhor o comportamento do algoritmo convém
verificar a distribuicao dos possiveis vetores-diferenca em diversos instantes do pro-
cesso de otimizagao.

Vamos considerar uma populagao de tamanho N, supondo inicialmente que os
N vetores sejam distintos entre si. Existem ao todo N? combinacoes de diferencas
possiveis, das quais N sao nulas, pois correspondem a diferencas de um vetor com
ele mesmo. As N(N — 1) diferencas restantes sdo nao nulas: Além disso, essas
N(N — 1) diferencas apresentam simetria, porque cada diferenca (x;,, — X,) POS-
sui seu simétrico correspondente, bastando paradsso trocar os indices r5 e r3. Como
os indices sao escolhidos aleatoriamente com.distribuicao uniforme, a probabilidade
de selecionar uma dada diferenca e seu simétrico é a mesma. Fica claro que a
distribuicao de todos os vetores-diferenca possiveis de ser construidos com N ve-
tores distintos quaisquer apresenta média nula, uma vez que cada vetor possui seu
correspondente negativo e uma mesmarprobabilidade de ser selecionado.

Matematicamente, tem-se:

1 N. N
<AXt = m ZZ th Xt,] =0 (77)

=1 j7=1

Nesta secao, adotaremos como recurso de visualizagao o desenho da distribuicao
dos vetores-diferenca em um gréafico polar, considerando que todos tenham a mesma
origem em (p = 0,0 = 0)¢ O grafico polar nos ajuda a visualizar a distribui¢ao dos
vetores-diferenca de acordo com suas orientacoes e tamanhos.

7.3.1 Funcao convexa

O ponto fundamental para entender o funcionamento do algoritmo de evolugao di-
ferencial é perceber que a distribuicao dos vetores-diferenca depende da distribuicao
espactal dos individuos da populacao no problema em questao. A medida que a
populacao se distribui de acordo com o “contorno” da funcao, a distribuicao dos
vetores-diferenca também se ajusta a esse contorno.

As Figuras 7.2 a 7.4 ilustram essa propriedade do algoritmo em uma fungao
quadratica, cujas curvas de nivel correspondem a elipséides rotacionados de w/4 no
sentido anti-horario em relacdo aos eixos coordenados. Além disso, um dos eixos
desse elipséide é maior do que o outro, tornando o elipséide “alongado” numa dada
direcao.

Na primeira geragao, a populagao ¢ distribuida aleatoriamente com distribuicao
uniforme em uma regiao retangular que corresponde aos limites inferiores e superi-
ores de cada variavel. Neste primeiro momento, a populacao nao possui nenhuma
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Figura 7.2: Fungdo-objetivo quadratica. (a) Distribuicdo espacial da populagdo na geracio
t = 1. (b) Distribuicdo dos vetores-diferenca na geragdo t = 1.

Figura 7.3: Fung3o-objetivo quadratica. (a) Distribuicdo espacial da populagdo na geracdo
t.= 10. (b) Distribui¢gdo dos vetores-diferenca na geragdo ¢ = 10.

informagao sobre o'contorno da fungdo. A Figura 7.2-(a) ilustra a distribuigao es-
pacial inicial da_populagao e o gréafico na Figura 7.2-(b) mostra a distribuigao dos
vetores-diferenca correspondente. A distribuicao inicial dos vetores-diferenca nao é
polarizada €m nenhuma direcao, havendo vetores com varios tamanhos distintos e
apontando para diversas direcoes.

Esses vetores-diferenca sao usados na operacao de mutagao diferencial para per-
turbar individuos da populacao, produzindo a populacao mutante V;. Cada in-
dividuo x;; sofre recombinagao com seu mutante correspondente, produzindo uma
solucao teste u;;. Algumas solugoes teste serao piores do que as solucoes originais
e serao descartadas, porém, algumas solugoes teste serao melhores e substituirao as
solugoes originais. Nesse momento, a distribuicao espacial da populacao corrente
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Figura 7.4: Fungdo-objetivo quadratica. (a) Distribuicdo espacial da populagdo na geracio
t = 20. (b) Distribuicdo dos vetores-diferenca na geragéo ¢ = 20.

X, se altera. A tendéncia é que, ao longo das geracgoes, essa distribuicao espacial se
alinhe com o contorno da funcao.

A Figura 7.3 ilustra a distribuicao espacial da populagao e a distribuicao dos
vetores-diferenga 10 geragoes apos a distribuicao inicial. Observe que a distribuicao
dos vetores-diferenga agora estd mais alinhada com o eixo maior do elipséide, ou
seja, mais alinhada com a direcao mais faveravel para a minimizagao desta funcao-
objetivo quadratica. Outra caracteristica interessante é que os tamanhos de passo
estao menores do que na distribuigao da Figura 7.2-(b), devido a aglomeracao dos
individuos em torno do ponto de minimo:.

A Figura 7.4 ilustra a distribuicao espacial da populagao e a distribuicao dos
vetores diferenciais na geracao t = 20. A populacao estd agora mais préxima do
ponto de minimo e ocupa um-volume reduzido em relacao a distribuicao espacial
em t = 1. A distribuicao dos vetores-diferenca continua alinhada com os elipsdides
que formam as curvas de nivel da fungao, porém os tamanhos desses vetores estao
reduzidos, favorecendo uma busca bem mais local. Nesse momento, o algoritmo
converge para o minimo local.

A sequéncia de gréaficos nas Figuras 7.2 a 7.4 mostra que as direcoes e os tama-
nhos de passo dos vetores usados na perturbagao das solucoes se adaptam ao longo
do processao’de otimizacao. As orientacoes dos vetores-diferenca se alinham com a
direcao mais favoravel para a minimizacao e os tamanhos dos vetores-diferenca dimi-
nuem a medida que a populagao se aglomera em torno de algum ponto, favorecendo
uma busca cada vez mais local.

Esse exemplo ilustra o comportamento geral do algoritmo de evolucao diferencial
em funcoes convexas, mostrando claramente a adaptacao dos tamanhos de passo
e das direcoes das mutacoes. As secoes seguintes ilustram o comportamento do
algoritmo em uma funcao multimodal e em uma fung¢ao unimodal nao convexa.
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T2

Figura 7.5: Fun¢do-objetivo multimodal. (a) Distribuicdo espacial da populagdo na geracio
t = 1. (b) Distribuicdo dos vetores-diferenca na geragdo t = 1.

7.3.2 Funcgao multimodal

Na secao anterior vimos como o algoritmo de evolucao diferencial se comporta em
uma fun¢ao convexa. Contudo, cabe explorar o comportamento do algoritmo em
uma fun¢ao multimodal, com diversos minimeos locais. Em uma funcao multimo-
dal, a populagao tende a se distribuir em torno dos minimos locais. Nesse caso,
convém verificar como ficard a distribuigdo dos vetores-diferenca. Para explorar
essas questoes, usaremos a mesma metodologia usada anteriormente, mostrando a
distribuicao espacial da populacao e o grafico em coordenadas polares da distribuicao
de vetores-diferenca correspondente em instantes distintos da otimizacao.

As Figuras 7.5 a 7.7 mostram o resultado obtido para o caso da otimizacao de
uma funcao-objetivo multimodal.

Na primeira geracao, os vetores-diferenca apontam para quase todas as diregoes
e possuem diversos tamanhos devido a geracao aleatéria da populagao inicial. Apds
algumas geracoes, ver Figura 7.6, a populagao se concentra nas duas bacias de
atracao existentes'. Observe a distribuicao de vetores-diferenca correspondente na
Figura 7.6-(b). Pode-se notar dois grupos bem definidos de vetores. Essa distri-
buigaoe apresenta um conjunto de vetores de pequena amplitude, formados por pares
de solugoes que se localizam na mesma bacia de atracao. Os vetores desse conjunto
favorecem uma busca local em cada bacia de atracdo. A distribuicdo de vetores-
diferenga apresenta um segundo conjunto de vetores de maior amplitude, estes por
sua vez formados por pares de solucoes que se localizam cada uma em bacias distin-
tas. Além disso, as direcoes desses vetores-diferenca de maior amplitude se alinham
com a direcao que une as duas bacias de atracao. Esses vetores-diferenca favorecem
uma busca global, levando a perturbagoes que permitem “saltar” de uma bacia a
outra, além de gerar solucoes na regiao intermediaria entre as duas bacias.

Finalmente, na geracao t = 20, ver Figura 7.7, a populagao se concentra em

IEsta funcao apresenta trés bacias de maximo local e duas bacias de minimo local.
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Figura 7.6: Fun¢do-objetivo multimodal. (a) Distribuicdo espacial da populagdo na geracdo
t = 10. (b) Distribui¢do dos vetores-diferenca na geragdo ¢ = 10.

Figura 7.7: Funcdo-objetivo multimodal. (a) Distribuicdo espacial da populagdo na geracdo
t.= 20. (b) Distribui¢gdo dos vetores-diferenca na geragdo ¢t = 20.

uma unica bacia, aquela que apresenta melhores valores de fungao-objetivo. Os
vetores-diferencasautomaticamente diminuem de tamanho, favorecendo uma busca
local e mais refinada. A convergéncia para o minimo global da fun¢ao na regiao
considerada’¢é agora iminente.

Esse exemplo ilustra que, no caso de fun¢oes multimodais, a distribuicao espacial
da populagao se concentra em bacias de atracao distintas, causando a geracao de
grupos de vetores-diferenca bem definidos. Alguns conjuntos de vetores causam
perturbacoes que levam a saltos na direcao de uma bacia a outra, enquanto outros
grupos de vetores-diferenga causam perturbacoes pequenas, favorecendo uma busca
local em cada bacia de atracao. Apos algumas geracoes, a populacao se concentra
em uma unica bacia e a distribuicao de vetores-diferenca se reduz ao caso de uma
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funcao-objetivo convexa.

7.3.3 Funcao unimodal nao convexa

Vamos analisar agora o comportamento do algoritmo em uma fung¢ao unimodal nao
convexa. Usaremos a funcao a seguir, uma funcao-objetivo de teste conhecida como
funcao de Rosenbrock:

f(x) = (1 —z1)*+100(xy — 23)? (7.8)

Essa funcao-objetivo é unimodal e suas curvas de nivel formam conjuntos nao
convexos. Observando as curvas de nivel desta funcao, vemos que seu ponto de

Figura 7.8: Fungdo-objetivo unimodal nio convexa. (a) Distribuicdo espacial da populagdo
na geragdo t = 1. (b) Distribuicdo dos vetores-diferenca na geragcdo t = 1.

Figura 7.9: Fun¢3o-objetivo unimodal ndo convexa. (a) Distribuicdo espacial da populagdo
na geragdo t = 10. (b) Distribuicdo dos vetores-diferenca na geragdo t = 10.
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Figura 7.10: Fungdo-objetivo unimodal ndo convexa. (a) Distribuicdo espacial da populagio
na geragdo t = 20. (b) Distribuigdo dos vetores-diferenca na geragdo ¢t = 20.

minimo se localiza em um vale estreito e longo com curvatura na forma de uma
parabola. Essa regiao apresenta uma inclinacao pequena que dificulta a convergéncia
de métodos de otimizagao baseados em derivadas.

As Figuras 7.8 a 7.10 mostram o comportamento do algoritmo para essa fungao
nao convexa. Observe que apés algumas geracoes (¢ =10) a populagao se concen-
tra em torno do vale em curva da fungae. O gréfico da distribuicao de vetores-
diferenga apresenta caracteristicas interessantes. Observa-se dois grupos de vetores
em direcoes quase ortogonais, quase formando a figura da letra ‘x’. Os vetores-
diferenga em cada grupo sao formados por pares de vetores localizados em uma das
metades da curvatura em formato de parabola. Além disso, observa-se um grupo
de vetores com amplitude maior que representam perturbagoes as quais levam de
uma metade a outra da curvatura. O comportamento do algoritmo de evolucao
diferencial nesta funcao é similar ao comportamento do algoritmo em uma fungao
multimodal.

Quando a distribuicao espacial da populacao apresenta “formato” linear, como
no caso da funcao convexa, dizemos que ha uma forte correlacao linear entre as
variaveis nessa distribuicao espacial. O algoritmo de evolucao diferencial é capaz de
descobrir correlagoes lineares na distribuicao espacial da populacao e utilizar essa
informacao  para-produzir perturbacoes favoraveis. Entretanto, no caso de distri-
buicoes mais complexas do que uma reta, como a distribuicao espacial curva na Fi-
gura 7.10, o'algoritmo trata essa distribuicao como uma combinacao de distribuicoes
com correlacoes lineares. Dessa forma, o algoritmo trata fungoes nao convexas, que
causariam distribuicoes espaciais com formatos curvos mais complicados, como se
fossem fung¢oes multimodais, mesmo que a fun¢ao nao convexa em questao seja uni-
modal. Cada trecho aproximadamente convexo é enxergado pelo algoritmo como
uma bacia de atragao e gera um grupo de vetores-diferenca.

Na Figura 7.10-(a), pode-se perceber trés agrupamentos de individuos bem des-
tacados na distribuigdo espacial da populacdo. Na Figura 7.10-(b), que ilustra a
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distribuicao de vetores-diferenca correspondente, pode-se notar também trés grupos
de vetores-diferenca bem distintos. Cada grupo de vetores-diferenca esta alinhado
com a direcao que conecta dois agrupamentos distintos e gera perturbagoes que per-
mitem saltar de um grupo de pontos ao outro. O algoritmo se comporta como se
existissem trés bacias de atracao na fungao.

7.3.4 Rotagao e translagao

Uma das caracteristicas interessantes do operador de mutacao-diferencial é sua in-
variancia a rotacao e translacao do sistema de coordenadas. E facil verificar que
a mutacgao diferencial ¢ invariante a rotacao e translacao, ja que se trata de uma
operacao vetorial. O que importa na definicao dos vetores-diferenca sao as posicoes
relativas dos individuos da populagao, nao suas posicoes absolutas.

Figura 7.11: Invaridncia da mutacdo diferencial em relacdo a rota¢do do sistema de coorde-
nadas.

A propriedade de invariancia a rotagao é uma caracteristica desejavel em algo-
ritmos de otimizacao. Um algoritmo cujo desempenho nao depende da orientacao do
sistema de eoordenadas ¢ mais geral, uma vez que a orientagao ideal nao é conhecida
na pratica.

Embora a mutacao diferencial apresente essas caracteristicas desejaveis, a re-
combinacao discreta usada no algoritmo de evolucao diferencial classico nao possui
invariancia a rotagao. Observando a Figura 7.11, percebe-se claramente que os veto-
res teste produzidos pela recombinacao discreta variam com a rotacao do sistema de
coordenadas, exceto quando C' = 1, pois nesse caso nao ha recombinacao, somente
mutacao, e U ; = vy ;.
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7.4 Aspectos Avancados

7.4.1 Combinacoes degeneradas

Ao apresentarmos a equacao do operador de mutacao diferencial, ver (7.3), apenas
comentamos que os indices rq, 79, 3 sao sorteados aleatoriamente para cada i. En-
tretanto, ha uma probabilidade, mesmo que pequena, de que algum par dos indices
i,11,T9, 73 em (7.3) seja coincidente. Nesta secao discutimos esses casos degenerados
e procedimentos que podem ser adotados para evita-los.

As seguintes situagoes degeneradas podem ocorrer:

1. r9 = r3. Nesse caso, (7.3) se reduz a:
Vii = Xtry

e nao ha perturbacao aplicada ao vetor de-base. O vetor de base nao sofre
mutacao, causando a recombinacao de x4; com algum vetor escolhido aleato-
riamente da populacao.

2. r1 =1y ou r; = r3. Nesse caso a mutacao diferencial se reduz a um operador
de recombinacao aritmética®. Para r; = 75, temos:

Vii =X +F (X, = X)) = (1 4+ F)x¢pp — FXy

Ocorre uma recombinacao degenerada, €m que-a nova solugao é gerada ex-
ternamente ao segmento que une X;,q € X ,,, ver Figura 7.12. Para r; = 73,
ocorre uma recombinacao aritmética tradicional entre x;,, € X;,,:

Vii = Xeoy + F Xty — Xigp) = (1 = F)X¢py + FXy 1,
se F € [0, 1], ocorrendo cruzamentos degenerados para valores de F' > 1.

3. 2. =1r;. Uma perturbagao ¢ aplicada a x;; de acordo com:
Vii = Xei + F (Xepy — Xe03)

A solucao teste é o resultado da recombinagao da solucao x;; com sua versao
perturbada. Na pratica, o parametro C' passa a ter o significado de um
parametro de/ mutagao, controlando quantas varidveis de x;; serao pertur-

badas.

4.7 = ry ou i = r3. Nesse caso o vetor-diferenca estd na diregao que liga x;;
a algum outro vetor da populagao, x;,, ou X;,,. Essa combinacao nao é
necessariamente indesejavel.

2A recombinacio aritmética de dois vetores x, e X, ¢ definida pela combinacio convexa Ax, +
(1 — N)xp, para A € [0,1]. Por essa razao, a recombinagdo aritmética é também conhecida na
literatura como recombinacao convexa ou recombinagao intermedidria. Para o caso particular
A = 0.5, a recombinagao é denominada recombinagao média. No contexto de algoritmos genéticos,
a operacao de recombinacao é tradicionalmente denominada cruzamento.
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Figura 7.12: (a) Quando 71 = 79, ocorre uma recombinacdo degenerada, em que a nova
solucdo é gerada fora do segmento que une as duas solugdes recombinantes. (b) Quando
r1/= 13, ocorre uma recombinagdo aritmética tradicional. Nos exemplos acima, F' = 0.4.

Estas combinagoes degeneradas, mesmo que tenham baixa probabilidade de
ocorréncia, sao em geral indesejaveis e podem prejudicar o desempenho do algo-
ritmo. Por essa razao, recomenda-se adotar indices mutuamente distintos, isto é,
i # r1 # ro # 13, em implementacoes mais praticas do algoritmo de evolucao di-
ferencial. Uma maneira simples de garantir essa condicao é substituir a linha 5 no
Algoritmo 1 pelo cédigo no Algoritmo 2 a seguir.

Outra maneira de implementar a escolha de indices distintos é utilizar uma
rotina de permutacao aleatéria de um vetor de inteiros, se disponivel. Nesse caso,
pode-se utilizar essa rotina para gerar uma permutacao aleatoria do vetor de indices
(1,...,N). Em seguida, utilize os trés primeiros elementos do vetor resultante como
valores para os indices 1, 5 e r3. Esse procedimento assegura r; # ro # r3. Para
garantir a condi¢do i # 1y # 19 # r3, procure o indice ¢ no vetor resultante da
permutacao aleatoria e use os trés elementos seguintes como valores para os indices
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Algorithm 2: Pseudocddigo para a selecao de indices mutuamente distintos

1: repeat

2:  Selecione aleatoriamente r; € {1,..., N}
3: until r; #1

4: repeat

5. Selecione aleatoriamente o, € {1,..., N}
6: until 7o £ i Arg #£ 1y

7: repeat

8:  Selecione aleatoriamente r3 € {1,..., N}
9: until r3 £ i Ar3#ri Arg £y

r1, 79 € r3. Nesse caso, deve-se considerar uma contagem cireular para as posicoes
do vetor, isto é, ao se chegar a ultima posicao do vetor, a posi¢cao seguinte representa,
um retorno a primeira posicao.

7.4.2 Variacoes do algoritmo

O algoritmo de evolugao diferencial em sua versao basica utiliza selecao aleatdria
com probabilidade uniforme do vetor de base, um vetor-diferenca para a mutacao, e
recombinacgao discreta entre a solugao corrente e seu vetor mutante correspondente.
Entretanto, muitas variacoes desse esquema béasico sao possiveis. Nesta secao, co-
mentaremos sobre algumas dessas variagoes.

Com relacao ao vetor de base, este pode ser escolhido aleatoriamente entre os
individuos da populagao corrente com probabilidade uniforme ou com probabilidade
proporcional & qualidade de cada solucao®. Ao usar uma selecao com probabilidade
uniforme, de fato o algoritmo de evolucao diferencial esté eliminando a pressao sele-
tiva para a reproducao, uma vez que cada individuo possui a mesma probabilidade
de ser selecionado como vetor de base, portanto, cada individuo produz em média um
descendente. Essa forma de selecao corresponde a uma selecao por roleta estocastica
em que cada individuo ocupa uma area igual na roleta.

A selecao uniforme pode entretanto causar repeticao do vetor de base e fazer
com que algumas solugoes na populacao nao sejam usadas como vetor de base. Para
garantir a selecao de um vetor de base unico para cada individuo, pode-se usar
permutacao aleatéria de um vetor de indices (1,...,N). Dessa forma garante-se
que cada individuo da populacao sera selecionado uma tnica vez como vetor de base
na mutagao diferencial, portanto, cada individuo produz um tnico descendente, um
unico vetor mutante v, ;. Usando a analogia com a selecao por roleta, essa estratégia
de selecao dos vetores de base equivale a um giro de uma roleta com N ponteiros
igualmente espacados, ao invés de N giros de uma roleta com um ponteiro, como
na situacao anterior. Como cada individuo ocupa uma area igual na roleta, cada
individuo é selecionado uma tunica vez.

Pode-se ainda utilizar um mesmo vetor como vetor de base em todas as operagoes
de mutacao diferencial. A escolha mais comum é usar a melhor solu¢ao na populacao
como vetor de base. Assim, temos:

3Esquema de selecao proporcional & aptiddo muito utilizado em algoritmos genéticos.
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Vii = Xepest + F (Xerp — Xt pg) (7.9)

em que Xy pest representa o melhor individuo na populagao na geracao ¢.

Pode-se ainda adotar o vetor correspondente a média da distribuicao espacial
da populagao como vetor base. As perturbacoes geradas pela mutacao diferencial
sao aplicadas a média da populacao:

Vii = Xt,mean + F (Xt,rg - Xt,rg) (710)
com:
1 N
Xt,mean = N Z Xt,i (711)

i=1
Utilizar um tnico vetor de base significa adotar uma pressao seletiva forte na
reproducao, em contraste a auséncia de pressao seletiva daselecao uniforme. Em
geral, essa estratégia apresenta uma maior velocidade de convergéncia e uma rapida
reducao de diversidade, que podem levar a convergéncia prematura em alguns pro-
blemas, em particular em problemas em que a fungao-objetive ¢ multimodal. O al-
goritmo de evolugao diferencial ja possui uma pressao seletiva forte na sobrevivéncia
dos individuos, em que ocorre uma competicao deterministica entre o individuo x;;
e a solugao teste u;,. Portanto,se a pressao seletiva para reprodugao também
for forte, pode ocorrer uma rapida perda.de diversidade na populagao. Na versao
classica do algoritmo, a auséncia de pressao seletiva para a‘reproducao compensa
a pressao seletiva forte na etapa de sobrevivéncia de maneira similar ao que ocorre
com as estratégias evolutivas, ver Capitulo XX.
Outra possibilidade € gerar solugoes na diregao do melhor individuo para servi-
rem como vetores.de base. A equacao a seguir ilustra essa abordagem:

Vii = X + A (Xt pest — Xt,z')J_'_F (Xt,rs — Xtry) (7.12)

-~

Xt base

com A €0, 1]. Nesse caso, ocorre uma recombinacao aritmética entre x;; € X¢ pest. O
vetor de base corresponde a um ponto gerado aleatoriamente sobre o segmento que
liga X ; € X;pest- Issa forma de selecao do vetor de base apresenta menor pressao
seletiva do que em (7.9), embora haja uma polarizacao na dire¢ao da melhor solugao.

A mutagao diferencial pode ser generalizada para empregar mais vetores-diferenca
na criacao do vetor mutante:

d
Vii = Xgr + Z FpAxy . (7.13)
k=1

em que a perturbacao aplicada ao vetor de base é composta pela soma de d vetores-
diferenca da forma:

AX&]C = (Xtvrkal — Xt77"k+1+d) (714)

Por exemplo, usando o mesmo valor de Fy para todo k e d = 3, a equagao (7.13)
fica:
Vii =X + F (Xt — Xty + Xty — Xerg + Xty — Xtrr) (7.15)
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O uso de mais de um vetor-diferenca na mutacao diferencial aumenta a capa-
cidade de geracao de diversidade no algoritmo. Contudo, essa estratégia reduz a
capacidade de alinhamento dos vetores-diferenga com o contorno da funcao, em-
bora o alinhamento nao seja totalmente perdido. Além disso, fica cada vez mais
dificil garantir indices mutuamente distintos. O uso de mais vetores-diferenca au-
menta a busca global no algoritmo e prejudica a busca local, porque os tamanhos
de passo adaptados se somam produzindo perturbacoes de maior magnitude. Por
essa razao, o valor de F' deve ser menor para compensar o aumento no-tamanho das
perturbagoes.

Existe uma notacao sintética para representar as variacoes do algoritmo de
evolucao diferencial. Essa notagao padrao segue o formato DE/base/d/rec. O
termo usado no lugar de base indica a forma como o vetor:de base é selecionado, d
indica o nimero de vetores-diferenca usados, e o termo.usado no lugar de rec faz
referéncia ao operador de recombinagao utilizado.

Por exemplo, a versao classica do algoritmo de evolucao diferencial, ver Algo-
ritmo 1, pode ser representada pela notacao DE/rand/1/bin, em que rand indica
que o vetor base na mutacao diferencial é escolhido aleatoriamente com probabili-
dade uniforme, d = 1 indica que apenas um vetor-diferenca ¢usado, e bin indica
o método de recombinacao. O termo bin faz referéncia a distribuigao binomial,
pois a recombinacao discreta com probabilidade C' faz com que o ntimero de valores
herdados de v;; siga uma distribui¢ao binomial. A probabilidade de que p valores
sejam herdados do vetor mutante é dada por:

P{X =p} = (Z) CP(1 — O)Yr (7.16)

que corresponde a todas as combinacoes de p sucessos e n — p falhas, isto é, p
ocorréncias de Ujp 1) que foram menores do que C' e n — p ocorréncias de Ujp ;) que
foram maiores do que C'.

Existe uma forma alternativa de.implementagao da recombinagao discreta, que
produz uma distribuigdo exponencial do nimero de valores herdados da solugao
mutante. Na recombinagao discreta binomial uma realizagao de Uy1) ¢ obtida para
cada coordenada e o valor de w,; é copiado de vy ;; se Ujp1) < C para a coordenada
j, isto é, cada coordenada é testada de maneira independente. Na recombinacgao
discreta exponencial, indicada por exp na notacao padrao, uma posi¢ao no vetor
é sorteada aleatoriamente com probabilidade uniforme. A partir dessa posicao, os
valores da solugao teste sao herdados da solugao mutante enquanto U, < C. Na
primeira_ocorréncia de Uy > C, os valores para as coordenadas restantes sao
obtidos de x;« Observe que nesse caso a probabilidade de que p valores sejam
herdados do vetor mutante é dada por:

P{X =p}=CP(1-C)=CP—Crt! (7.17)

que corresponde a p ocorréncias sucessivas de Ujp;) que foram menores do que C' e
uma ocorréncia de Ujg 1) que foi maior do que C.

Na recombinacao discreta do tipo exponencial, as primeiras coordenadas do
vetor teste a partir da posicao sorteada possuem maior probabilidade de serem her-
dadas do vetor mutante do que as ultimas coordenadas. Em outras palavras, os
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valores das coordenadas em posigoes adjacentes tém maior probabilidade de perma-
necerem juntas no vetor teste do que os valores em posi¢oes nao adjacentes. Na
terminologia usada em algoritmos evolutivos, dizemos que esse operador apresenta
polarizacao posicional, ou seja, uma polarizagao na probabilidade de que algumas
posicoes do genotipo sejam escolhidas em detrimento de outras. Para contornar
a polarizacao posicional desse tipo de recombinacao, os indices das coordenadas
podem ser embaralhados aleatoriamente antes de aplicar a recombinacao.

Para concluir esta secao, a Tabela 7.1 apresenta alguns exemplos.de instancias
do algoritmo de evolucao diferencial, cada uma com sua notagao padrao correspon-
dente. Se o melhor individuo for usado como vetor de base, e utilizarmos trés vetores-
diferenga na mutagao diferencial, podemos referenciar o algoritmo de evolucao dife-
rencial correspondente como DE/best/3/bin. O algoritme de evolucao diferencial
que utiliza a abordagem de selegao do vetor de base em (7.12) e recombinagao dis-
creta exponencial pode ser representado pela notagaoDE/current-to-best/1/exp.

Notagao | Mutacao diferencial
DE/rand/1/bin | vi; = X, + F Xty — Xtirg)

DE/best/1/bin | Vi; = X¢pest + F (Xt g — Xt.ry)
DE/mean/1/bin | vi; = % Eff:l Xtk + F (Rpg™ Xt ry)

DE/rand-to-best/1/bin | vy, = Xip o A (Xepest — Xery) +
F (Xt = Xt,1)

DE/current-to-best/1/bin | v;; = X¢; + A (Xt pest — Xti) + F (Xepp — Xt rg)

DE/rand/2/bin. | v ; > Xtry + F1 (Xtry — Xtpy) +
F2 (Xtﬂ“s - Xt,rs)

Tabela 7:1: Algumas instancias do algoritmo de evolugao diferencial.

7.4.3 Variacao do parametro de escala

O parametro de escala F' do vetor-diferenca nao necessariamente precisa variar, pois
os tamanhos de passo sao autoadaptados na distribuicao de vetores-diferenca, con-
forme vimos afiteriormente. A medida que o algoritmo progride, e a populagao se
agrupa em torno de um ponto de minimo local, os tamanhos de passo automatica-
mente diminuem devido a proximidade das solugoes no dominio de busca. Dessa
forma, o parametro de escala pode ser mantido fixo no algoritmo de evolugao dife-
rencial sem comprometer seu desempenho significativamente.

Entretanto, variar o valor de F dentro de alguma faixa continua de valores
aumenta a diversidade de vetores-diferenca e de solucoes possiveis que podem ser
geradas com o operador. Além disso, variar o parametro de escala reduz as chances
de estagnacao do algoritmo. A estagnacao no algoritmo de evolucao diferencial pode
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ocorrer com a escolha de um valor fixo para F' em situacoes degeneradas, quando
a populagao esta presa numa dada distribuicao espacial que nao oferece vetores-
diferenga que permitam a geracao de solucoes melhores. Variando o valor de F', a
possibilidade de estagnacao diminui.

Uma maneira simples de variar o valor de F' é fazer:

F=U4p (7.18)

Tipicamente, adota-se Up5,1). Valores muito pequenos de F' prejudicam a con-
vergéncia pois reduzem muito o efeito da mutagao diferencial, causando perturbacoes
pequenas nos vetores de base. Por outro lado, valores de F' maiores do que 1 de-
saceleram a reducao natural dos tamanhos de passo, retardando a convergéncia do
algoritmo. Observe que F' pode variar em uma faixa relativamente pequena de va-
lores, uma vez que os tamanhos de passo sao adaptades no algoritmo de evolucao
diferencial de acordo com a distribuicao espacial da populac¢ao. Por exemplo, 2] in-
dica o valor 0.3 como um limite inferior confidvel. para F. Outros estudos empiricos
indicam um limite inferior para F' de 0.4 [?,?]¢ Até o momento, estudos empiricos
na literatura indicaram que nao ha beneficios em se utilizar wvalores superiores a 1
para F'.

Alguns autores estudaram o emprego de parametros de escala independentes
para cada variavel, fazendo a mutagao diferencial da forma:

Utig = Ttre,5 + FJ (wt,m,j - "Etﬂ"&j) (7'19)

ou, escrito na forma matricial:

Vt,i = Xt,T‘l + F (Xt,T‘Q — Xt,?“g) (720)
com:
Fl R 0

O-parametro de escala F; ¢ retirado de uma distribuicao aleatéria independente
para cada variavel. Contudo, essa escolha se mostrou desvantajosa, porque utilizar
valores independentes de F); descorrelaciona as componentes do vetor-diferenca, des-
truindo a correlagao linear entre as variaveis aprendida pelo operador de mutacao
diferencial e o alinhamento das orientacoes dos vetores-diferenca.

Entretanto, pequenas variacoes nos valores de I em torno de um valor central
representam pequenas variacoes de angulo nos vetores-diferencga e podem ser interes-
santes para aumentar a diversidade de solugoes geradas sem prejudicar gravemente
o alinhamento dos vetores-diferenca. Para implementar essa abordagem, pode-se
utilizar:

Fj = Fy +Z/[[—o¢,a]a j € {1, c ,n} (722)

ou ainda
P}:FO'f_J\/’[O,a}a je{lv--'vn} (723)

com o < 1 em ambos os casos. O valor de Fj é fixo para todo j, mas pode variar
para cada 7, usando por exemplo (7.18).
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7.4.4 QOutros operadores de recombinacao

Como discutido anteriormente, a recombinacao discreta, seja ela do tipo binomial
ou exponencial, nao é invariante a rotacao do sistema de coordenadas. Além disso,
como somente algumas coordenadas sao herdadas do vetor mutante, o vetor teste
produzido ¢ algum ponto obtido com passos ortogonais a partir da solugao mutante,
veja Figura 7.1 novamente.

A Figura 7.13 ilustra uma func¢do multimodal com varidveis correlacionadas de
tal forma que a bacia de atracao B, é alcancavel a partir da bacia‘de atragao By
na Figura por meio de um movimento correlacionado em ambas as coordenadas.
A recombinacao discreta pode causar movimentos ortogonais.€m que apenas uma
variavel é modificada. Um movimento em uma tnica coordenada pode nao alcangar
a bacia de atracao Bs e nao ser aceito. Dessa forma, a bacia By nao seria alcancavel, a
menos que um movimento seja executado em ambas as coordenadas simultaneamente
e na direcao adequada.

Figura 7.13: Fungdoe multimodal com varidveis correlacionadas.

Em uma funcao convexa com variaveis correlacionadas, como aquela ilustrada
na Figura 7.2, passos ortogonais diminuem a velocidade de convergéncia que poderia
ser obtida com passos correlacionados. Em problemas multimodais, ¢ interessante
que os movimentos sejam executados simultaneamente em muitas ou em todas as
variaveis. Por essa razao, em problemas convexos com variaveis correlacionadas
e em problemas multimodais, o algoritmo de evolucao diferencial usando recom-
binacao discreta apresenta melhor desempenho quando C é préoximo de 1. Para
valores proximos de 1, varios valores da solucao mutante sao aceitos simultanea-
mente, permitindo movimentos correlacionados.

Outra forma de contornar o problema, é substituir a recombinacao discreta
por outros operadores de recombinacao, incluindo operadores que executem passos
em varias ou em todas as coordenadas simultaneamente e que sejam invariantes a
rotacao do sistema de coordenadas.
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Um operador de recombinacao simples que satisfaz esses requisitos é a recom-
binacao aritmética, muito utilizada em algoritmos genéticos e estratégias evolutivas.
A solucao teste é obtida a partir de:

um = )\Xt,i + (]_ — )\)Vt,ia )\ c [0, ].] (724)

sempre que Ujp; < C. Dessa forma, o parametro C' passa a ter o significado de
um parametro de taxa de recombinacao da populacao atual X; com a populacao
mutante V;.

A equagao (7.24) pode ser combinada com (7.3) obtendo:

um = >\Xt,i + (1 — )\) [Xt,T‘l + F (Xt,T‘z — Xt,T‘3)] s )\ - [O, 1] (725)

que combina a mutacao diferencial e a recombina¢ao numa tnica equagao.
Novamente, podemos escrever a equacao para a geragao do vetor teste na forma
compacta a seguir:

(7.26)

Ui =

)

{)\XM + (1= A) X, + F (Xepy — Xegg)],  selpo) < C

Xty T F (Xt,rg - Xt,r3) ) caso contrario

em que a selegdo para sobrevivéncia é feita como antes, ver (7.6).

Além da recombinacao aritmética, outros operadores de recombinagao propostos
na literatura podem ser utilizados, veja [?] para.uma referéncia bastante ampla de
operadores de recombinacao para problemas de otimizacao numérica.

7.4.5 Esquema geral dos algoritmos de evolucgao diferencial

Vamos concluiresta secao com a apresentacao-de um esquema geral para as variacoes
do algoritmorde evolucao diferencial. Esse esquema geral é apresentado no Algoritmo
3.

Algorithm 3: Pseudocodigo geral para a familia de algoritmos de evolucao

diferencial
1. t+1

2: Inicializar populacao X; = {x¢;; i=1,..., N}
3: while algum critério de parada nao for satisfeito do

Gerar solu¢ao mutante usando v¢; = X¢ pase + ZZ:1 FrAxy
Adicionar v;; a populacao mutante V;

10:  end for

11:  Recombinar X; e V;, com parametro C', gerando U,

12:  Aplicar sele¢ao para sobrevivéncia entre X; e U

13: t+t+1

14: end while

4: for:=1 até N do

5: Selecionar vetor de base X pase {Selegao para reprodugao}

6: Selecionar conjunto de vetores-diferenca {Ax;x}, k=1,...,d
7 Selecionar fatores de escala Fy, k=1,...,d

8:

9:
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Na linha 5 do Algoritmo 3, ocorre a selecao do vetor de base, que representa
a selecao para reproducao no algoritmo de evolugao diferencial. Nas duas linhas
seguintes, sao selecionados d vetores-diferenca e os valores para os parametros de
escala de cada vetor-diferenca, que serao usados na geragao do vetor mutante na
linha 8.

O lago nas linhas 4 a 10 esta relacionado somente a operacao de mutacao di-
ferencial para producao da populacao mutante V;. Apds a operacao de mutacao
diferencial, a recombinacao é executada na linha 11. Finalmente, deve-se definir um
mecanismo de selecao para sobrevivéncia entre X; e U, formando-a populagao X;
da proxima geracgao.

Apresentado dessa maneira, podemos observar que a mutacao diferencial é um
operador de busca que tem um papel primario no algoritmo, enquanto a recom-
binacao tem um papel secundario.

O algoritmo de evolugao diferencial bésico apresentado no Algoritmo 1 e as
variacoes discutidas neste capitulo podem ser vistos como instancias particulares do
Algoritmo 3, mais geral.

7.5 Consideracoes finais

Este capitulo apresentou os algoritmos baseados em evolugao diferencial para oti-
mizacao de fungoes continuas. Ultimamente, a evolucao diferencial tem recebido
bastante destaque no contexto da otimizacao naolinear com variaveis continuas, de-
vido as suas caracteristicas de versatilidade, robustez e autoadaptagao, colocando-o
entre os algoritmos evolutivos mais eficientes nesse contexto.

O algoritmo de evolugdo diferencial possui muitas qualidades desejaveis em al-
goritmos de otimizagao de propdsito geral: (i) capacidade de adaptar-se & estrutura
da funcao, aprendendo correlacoes lineares entre as variaveis do problema a par-
tir da distribuicao. espacial ‘da populacao; (ii) invariancia a rotagdo e translagao
do sistema de coordenadas; (iii) pouces parametros de controle a serem ajustados,
sendo que o parametro de escala nao precisa ser necessariamente ajustado, uma vez
que‘os tamanhos de passo da mutacao sao autoadaptados; e (iv) simplicidade de
implementagcao.

Embora o algoritmo de evolucao diferencial tenha sido desenvolvido para tratar
problemas de otimizacao nao linear continua, pode-se encontrar na literatura, em
especial nos ultimos anos, alguns trabalhos que visam adaptar o algoritmo para
problemas de otimizacao combinatéria. Por exemplo, [?] apresenta uma versao do
algoritmo de evolucao diferencial para problemas de planejamento e escalonamento
da produgao. O leitor interessado também pode consultar o recente livro editado por
[?], que discute varias abordagens de utilizacao da evolucao diferencial em problemas
de otimizacao baseados em vetores de permutacoes.



