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Otimização Evolutiva

Nos caṕıtulos anteriores, estudamos estratégias de otimização para a busca do ponto
de mı́nimo em problemas de otimização com e sem restrições. Os métodos tratados
no caṕıtulo ??, embora poderosos, baseiam-se em algumas premissas fundamentais:
(i) unimodalidade, (ii) convexidade (ou quase-convexidade) das funções, e (iii) dife-
renciabilidade da função objetivo e das restrições. Embora as técnicas apresentadas
até agora funcionem muito bem dentro destas condições, a violação destas pode
comprometer seriamente as caracteŕısticas de convergência de métodos baseados
em informações locais de decrescimento da função objetivo, ou seja, estratégias de
direções de busca e de exclusão de semi-espaços (ver Caṕıtulo ??). Problemas multi-
modais, multi-escala e não-diferenciáveis tendem a aparecer com certa frequência em
várias situações práticas, e requerem uma abordagem diferente para seu tratamento
e solução.

Conforme introduzido no caṕıtulo inicial deste livro, uma classe de métodos
de otimização frequentemente utilizada para a solução de problemas apresentando
as caracteŕısticas discutidas acima são os métodos de populações, nos quais uma
população de soluções-candidato (em contraste com a solução-candidato única uti-
lizada até agora) é utilizada para amostrar iterativamente o espaço de busca, de
forma a estimar a localização do ponto de ótimo global1.

Esta amostragem por múltiplos pontos, juntamente com caracteŕısticas esto-
cásticas inerentes à maioria destes métodos, permite que métodos de populações
escapem de bacias de atração definidas por mı́nimos locais de desempenho mais
pobre em favor de outras regiões mais promissoras do espaço de soluções. Além
disto, por dispensarem o uso de gradientes ou sub-gradientes das funções envolvidas,
estes métodos são apropriados para a otimização de problemas onde não se possa
garantir a diferenciabilidade das funções envolvidas.

Dentre os métodos de populações mais utilizados, uma famı́lia de algoritmos
em particular ocupa uma posição de grande destaque. Os chamados algoritmos
evolutivos são técnicas baseadas em processos biológicos, mais especificamente nas
dinâmicas que regem a evolução dos organismos vivos. Os processos naturais res-

1É frequentemente imposśıvel determinar se um dado ponto é ou não o ótimo global de um
dado problema, particularmente, mas não exclusivamente, quando modelos do tipo caixa-preta são
utilizados. Uma afirmação mais honesta é a de que métodos de populações são em geral capazes
de encontrar bons ótimos locais, que podem ou não ser globais.

1
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ponsáveis pelo desenvolvimento de formas e processos biológicos tão finamente adap-
tados ao ambiente representam uma poderosa fonte de inspiração para técnicas de
otimização, que é utilizada para o desenvolvimento de toda uma classe de métodos
de populações que será descrita nos caṕıtulos finais deste livro.

Este caṕıtulo apresenta uma introdução a estes processos, e à biologia como fonte
de metáforas úteis ao desenvolvimento de métodos computacionais para a solução
de problemas. Por se tratar de uma abordagem diferente das já apresentadas neste
livro, o caṕıtulo se inicia com uma introdução a história do pensamento evolutivo,
tanto no contexto de ciências biológicas quanto como inspiração para algoritmos de
otimização. Após esta breve introdução, o caṕıtulo prossegue com a descrição de
um sistema evolutivo simples, e finalmente com a tradução dos conceitos desenvol-
vidos em um algoritmo evolutivo genérico. Os algoritmos que serão discutidos nos
próximos caṕıtulos seguem essa estratégia geral.

5.1 Evolução por Seleção Natural

Nada na biologia faz sentido, exceto à luz da evolução.

Theodosius Dobzhansky (1900–1975),

geneticista e biólogo evolutivo.

No contexto da biologia moderna, o termo evolução se refere em geral à mudança
gradual da composição genética média de uma determinada população de organis-
mos, ao longo de sucessivas gerações, ou, nas palavras de Douglas Futuyma [1],
“evolução biológica (ou evolução orgânica) é a mudança nas propriedades das po-
pulações dos organismos que transcendem o peŕıodo de vida de um único indiv́ıduo”.
Enquanto que mudanças entre duas gerações sucessivas são, em geral, pequenas, o
acúmulo destas ao longo de centenas ou milhares de gerações pode resultar em gran-
des alterações morfológicas e metabólicas na população em questão e que, dadas
certas condições, resultar na diferenciação de uma nova espécie.

As origens do pensamento evolutivo remontam ao peŕıodo grego clássico, quando
ideias a respeito da transmutação de espécies foram concebidas pelo filósofo Anaxi-
mandro de Mileto (610 - 546 A.C.)2, considerado como um dos primeiros cientistas
emṕıricos e um dos primeiros pensadores a propor causas f́ısicas, em oposição a
mı́sticas, para a explicação de fenômenos naturais.

Apesar deste e outros flertes iniciais com ideias evolutivas3, foi apenas na Ingla-
terra da segunda metade do século XVIII que conceitos relacionados a alguma forma
de evolução orgânica começaram a ser seriamente discutidos nos ćırculos cient́ıficos.
Pensadores como Maupertuis, Diderot, Buffon, Burnett e Goethe discutiram, com
variados graus de seriedade, ideias como geração espontânea de vida a partir de
matéria inanimada e criação cont́ınua de seres vivos, em contraste às ideias então
vigentes de criação única; e o conceito de que novas espécies poderiam surgir a partir

2O que reforça a observação, repetida em tom humoŕıstico, de que qualquer ideia supostamente
original da era moderna já foi proposta por algum pensador grego há mais de 2500 anos.

3Para uma visão mais geral da história das ideias evolutivas, ver referências [2–4].
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do “desdobramento”4 de potencialidades latentes em outras espécies [1]. Ainda em
1796 Erasmus Darwin, em seu livro Zoönomia [5], discutia ideias como descendência
comum, seleção sexual e reprodução diferenciada dos mais aptos, se adiantando a
diversos conceitos propostos mais tarde por Jean-Baptiste Lamarck. No mesmo ano,
Georges Cuivier provou pela primeira vez a realidade da extinção de espécies, ao
apresentar seu estudo comparativo da anatomia de elefantes com a de fósseis de
animais similares, como mastodontes e mamutes encontrados na Europa, e demons-
trando conclusivamente que se tratavam de diferentes espécies.

O ińıcio do século XIX trouxe uma efervescência ainda maior em torno de tópicos
relacionados à evolução dos seres vivos. Em 1809, Lamarck publicou sua obra Phi-
losophie Zoologique [6] onde propunha, entre outras ideias, que fatores ambientais
seriam responsáveis por mudanças na estrutura dos seres vivos; e que caracteŕısticas
úteis seriam preservadas e desenvolvidas pelos organismos, e caracteŕısticas inúteis
ou deletérias seriam descartadas. Embora na maioria dos casos os mecanismos pro-
postos por Lamarck para tais fenômenos tenham sido posteriormente refutados, seu
trabalho representa um divisor de águas na história do pensamento evolutivo, tendo
sido, nas palavras de Douglas Futuyma, “o primeiro defensor da evolução a não
adotar soluções de compromisso” [1].

O livro de Lamarck elevou a ideia de evolução dos seres vivos ao status de
tópico de discussão nos ćırculos cient́ıficos da Inglaterra Vitoriana. Ideias a res-
peito de seleção natural e evolução humana foram propostas em 1813 por William
Wells; posteriormente, Patrick Matthew discutiu os conceitos de especiação e seleção
natural em um obscuro livro sobre madeiras de uso naval, em 1831 [7].

Em dezembro deste mesmo ano, Charles Robert Darwin partiu para uma jor-
nada de cinco anos como naturalista de bordo do navio HMS Beagle. Durante suas
viagens, Darwin recolheu milhares de espécimes animais e vegetais, incluindo fósseis,
e coletou notas sobre anatomia e comportamento de animais e plantas ao redor do
mundo. Após retornar à Inglaterra, empenhou-se em catalogar e em publicar seu
diário de viagens [8]. Foi durante este peŕıodo pós-viagem que Darwin, influenciado
pelo Ensaio Sobre o Prinćıpio Populacional [9] de Thomas Malthus e por suas dis-
cussões com anatomistas britânicos, começou a vislumbrar os prinćıpios da luta pela
existência e da sobrevivência do mais apto, resumidas em seu prinćıpio de seleção
natural. Ciente das implicações de suas descobertas, Darwin trabalhou cuidado-
samente no quarto de século após seu retorno, acumulando um grande volume de
evidência em suporte a suas hipótese de evolução por seleção natural. Escreveu em
1844 um ensaio não publicado sobre seleção natural [10], e ainda estava trabalhando
na elaboração de seu livro definitivo sobre o tema quando recebeu, em 1858, um
manuscrito do jovem naturalista britânico Alfred Russel Wallace [11].

Em seu manuscrito, Wallace descrevia conclusões obtidas após anos de estudos
na Amazônia e nos arquipélagos da Malásia, a respeito dos mecanismos de seleção
natural e sua importância na derivação de novas espécies a partir das existentes.
Aconselhado por Charles Lyell e Joseph Hooker, Darwin apresentou à Linnean So-
ciety de Londres o manuscrito de Wallace juntamente com partes de seu ensaio de

4A própria palavra evolução, do latim evolutio, que significa desenrolar ou desdobrar um per-
gaminho, contém um pouco deste conceito.
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18445. Mas foi apenas no final de 1859, após a publicação de Sobre a Origem das
Espécies por Meio da Seleção Natural, ou a Preservação de Raças6 Favorecidas na
Luta pela Vida [13] , abreviado para seu nome mais conhecido - A Origem das
Espécies - após sua sétima edição em 1882, que a comunidade cient́ıfica finalmente
teve acesso ao imenso corpo de evidência reunido por Darwin em favor da teoria da
evolução.

O final do século XIX e ińıcio do século XX testemunharam mudanças na atitude
da comunidade cient́ıfica internacional em relação às ideias evolutivas de Darwin,
Wallace e outros. A redescoberta dos trabalhos do pai da genética, Gregor Men-
del, sobre a herança discreta de caracteŕısticas, foi inicialmente interpretada como
uma contradição às ideias de variação cont́ınua dos seres vivos, descrita por Darwin
como parte de sua teoria. Coube ao nascente campo da genética de populações,
desenvolvido principalmente por Ronald Fisher [14], J. B. S. Haldane [15] e Sewall
Wright [16], reconciliar os fatos da evolução com os da genética Mendeliana, demons-
trando não apenas a compatibilidade destas ideias como sua ı́ntima correlação na
geração dos fenômenos observados no mundo natural. Este casamento da genética
com a evolução veio a ser posteriormente conhecido como moderna śıntese evo-
lutiva [17]. A descoberta da molécula de DNA como agente da hereditariedade,
publicada por Osvald Avery em 1944 [18], e a identificação de sua estrutura por
James Watson e Francis Crick em 1953 [19, 20] possibilitaram a análise genética
comparativa de organismos, que vem, nas últimas décadas, fornecendo importantes
dados sobre o passado evolutivo e os ńıveis de parentesco das mais diversas espécies
de organismos que habitam a Terra.7

5.2 Otimização evolutiva: uma breve história

Pode-se considerar que o campo da computação evolutiva tem suas origens em me-
ados da década de 1950, nos experimentos sobre simbiogênese e evolução artificial
realizados pelo matemático ı́talo-norueguês Nils Barricelli [22,23], e nos trabalhos do
geneticista britânico Alex Fraser sobre a simulação de processos evolutivos [24, 25].
Estes trabalhos pioneiros foram seguidos, no final dos anos 1950 e ao longo da década
de 1960, por um número crescente de estudos no campo de biologia computacional,
realizados por pesquisadores como o próprio Alex Fraser [26], Jack L. Crosby [27,28],
Richard Friedberg [29, 30], e Hans Bremermann [31–33].

Juntamente com este progresso na simulação dos sistemas biológicos, foram fei-
tas algumas tentativas de empregar estes conceitos de evolução computacional para
a solução de problemas matemáticos. Os trabalhos de Friedberg, por exemplo, tra-
tavam, entre outras coisas, da tentativa de gerar programas computacionais simples,

5Darwin e Wallace são considerados hoje os co-descobridores da evolução por seleção natural.
6Citando Richard Dawkins [12]: “No subt́ıtulo de A Origem das Espécies, a frase, frequente-

mente mal-interpretada, preservação de raças favorecidas definitivamente não se refere a raças no
sentido coloquial utilizado atualmente. Darwin escrevia em uma época anterior à classificação e
compreensão adequada dos genes, mas, em termos modernos, o significado das raças favorecidas

seria algo como portadores de genes favorecidos”.
7Para o leitor mais interessado na evolução biológica, os livros de divulgação cient́ıfica do biólogo

britânico Richard Dawkins [12, 21] são em geral uma ótima referência sobre o tema.
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como um somador binário, a partir da evolução simulada de sequências de bits. Os
trabalhos de Bremermann, em particular, foram pioneiros na aplicação de prinćıpios
de evolução artificial para a solução de problemas de programação linear. Em seu
artigo de 1962 intitulado “Optimization through evolution and recombination” [31],
Bremermann sugere um otimizador evolutivo contendo elementos de mutação e cru-
zamento, o que torna este trabalho um dos mais, se não o mais, antigos registros
de uma famı́lia de técnicas conhecidas atualmente como “Algoritmos Genéticos”
(AGs).

Ainda na década de 1960, os pesquisadores alemães Ingo Rechenberg, Hans Paul
Schwefel e Peter Bienert conceberam um sistema evolutivo para a otimização de for-
mas aerodinâmicas, no que pode ser considerada a primeira aplicação de prinćıpios
biológicos à solução de problemas de projeto em engenharia [34–36]. Embora o
método, baseado em mutações e no prinćıpio de sobrevivência do mais apto, fosse
utilizado inicialmente apenas para otimização experimental - isto é, para a variação
de parâmetros em um modelo f́ısico, sem o uso de computadores - sua capacidade
para a geração de configurações ótimas em diversos problemas levou ao desenvolvi-
mento de sua versão computacional no ińıcio da década de 1970, quando o método
de Rechenberg e Schwefel - que ficou conhecido pelo nome de “Estratégia Evolutiva”
(EE) - começou a ganhar popularidade como uma ferramenta de projeto eficiente
para a solução de problemas complexos de engenharia.

Enquanto Rechenberg, Schwefel e Bienert desenvolviam suas pesquisas na Ale-
manha, Lawrence J. Fogel desenvolvia, nos Estados Unidos, técnicas para a geração
de inteligência artificial a partir da evolução de máquinas de estados finitos [37,38].
Em outras palavras, ao invés de tentar modelar o produto final da evolução, neste
caso neurônios e padrões de conexões nervosas, Fogel propôs a utilização dos próprios
mecanismos evolutivos para se alcançar máquinas capazes de comportamento inte-
ligente. As técnicas desenvolvidas por Fogel, baseadas também no uso de mutações
em uma população de soluções sujeita a uma pressão seletiva, foram batizadas como
“Programação Evolutiva” (PE).

As duas décadas seguintes representaram um desenvolvimento ainda maior das
técnicas evolutivas para otimização. Os trabalhos de John Holland no ińıcio dos
anos 1970 expandiram e popularizaram os algoritmos genéticos [39], propondo, en-
tre outros conceitos, bases teóricas para a análise do comportamento e capacidade
adaptativa desta classe de algoritmos na forma da hipótese dos blocos de construção,
que sugere que o bom funcionamento dos algoritmos genéticos está associado à ca-
pacidade destes de gerar e manter boas soluções parciais para certas classes de
problemas. Trabalhos utilizando programação evolutiva também se multiplicaram,
particularmente no grupo de Donald Dearholt, onde a PE foi expandida para tra-
tar de problemas gerais de otimização e reconhecimento de padrões, entre outros.
E as ideias originais da estratégia evolutiva foram expandidas e aplicadas a um
número crescente de problemas de engenharia pelos grupos de Schwefel e outros na
Alemanha Ocidental. Os anos 1980 viram a consolidação destas técnicas como ferra-
mentas de solução de uma gama cada vez maior de problemas, com o aparecimento
das primeiras conferências especializadas em algoritmos evolutivos, como a primeira
Conferência Internacional em Algoritmos Genéticos (ICGA’85) e o estabelecimento,
por parte da comunidade de pesquisa em Estratégias Evolutivas, da primeira Paralell
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Problem Solving from Nature (PPSN’90). O ano de 1989 trouxe ainda a publicação,
por David E. Goldberg, do livro Genetic Algorithms in Search, Optimization, and
Machine Learning [40], considerado até hoje como o mais influente na área de oti-
mização utilizando AGs. Foi também nesta década que teve ińıcio uma tendência de
unificação das três grandes famı́lias de técnicas baseadas na evolução de soluções -
algoritmos genéticos, estratégias evolutivas e programação evolutiva - sob a definição
de algoritmos evolutivos, o que resultou, na primeira metade da década de 1990, na
criação do primeiro periódico cient́ıfico internacional dedicado exclusivamente a este
campo: o Evolutionary Computation, publicado pela MIT Press.

Uma quarta vertente no campo de algoritmos evolutivos para otimização surgiu
em meados da década de 1990, a partir dos trabalhos de Kenneth Price e Rainer
Storn para a solução de uma classe de problemas de regressão polinomial encontrada
comumente na área de projeto de filtros eletrônicos [41]. O algoritmo de Storn e
Price, batizado de “evolução diferencial” (ED) [42], foi criado especificamente para a
otimização de problemas com variáveis cont́ınuas, e utiliza a diferenças entre vetores
da população para implementar um procedimento de geração de novas soluções
conhecido como mutação diferencial. A boa performance de otimizadores baseados
em ED em um crescente número de problemas [43] nos últimos 14 anos tem atráıdo
cada vez mais interesse para esta famı́lia de técnicas de otimização.

Atualmente, o campo de otimização evolutiva encontra-se num estágio de ma-
turação: os dois principais periódicos cient́ıficos dedicados a esta área, Evolutionary
Computation e IEEE Transactions on Evolutionary Computation, apresentam um
grande volume de trabalhos, tanto no campo de desenvolvimento teórico quanto
no de aplicações e avaliações emṕıricas. Além disto, quatro grandes conferências:
IEEE Congress on Evolutionary Computation (CEC); Parallel Problem Solving from
Nature (PPSN); Genetic and Evolutionary Computation Conference (GECCO); e
Foundations of Genetic Algorithms (FOGA), atestam para o grande interesse nesta
linha de pesquisa apresentado pela comunidade cient́ıfica. O leitor interessado pode
encontrar maiores detalhes sobre a história e os rumos atuais da pesquisa em algo-
ritmos evolutivos em diversas referências dispońıveis na literatura [44, 45].

5.3 Estrutura Geral de Algoritmos Evolutivos

Conforme visto na seção anterior, alguns autores têm relacionado os mecanismos
do processo evolutivo com ideias oriundas da Ciência da Computação, buscando
inspiração na abordagem lógica e procedural de linguagens de computador para
descrever mecanismos da evolução a partir de um ponto de vista algoŕıtmico. O
filósofo norte-americano Daniel Dennett propõe, em seu livro A Perigosa Ideia de
Darwin [46], a tese de que Charles Darwin, ao descrever suas ideias de origem das
espécies por meio de seleção natural, definiu uma classe de algoritmos caracterizados
pelos seguintes componentes:

1. Reprodução com hereditariedade;

2. Variação dos descendentes em relação aos progenitores;

3. Um mecanismo de pressão seletiva.
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Estes prinćıpios, agindo sobre uma população de indiv́ıduos, levariam fatalmente
a um processo evolutivo, como já descrito pelo próprio Darwin [13]:

“Como o número de indiv́ıduos nascidos, para cada espécie, é muito
maior do que o número dos que poderiam possivelmente sobreviver; e
como, por consequência, a luta pela existência se renova a cada instante;
segue-se que todo o ser que varia de maneira que lhe confira alguma
vantagem, ainda que pequena, tem maior probabilidade de sobreviver,
sendo consequentemente beneficiado pelas forças da seleção natural. As-
sim sendo, e em virtude do poderoso prinćıpio da hereditariedade, tem-se
que toda a variedade positivamente selecionada tenderá a propagar a sua
nova forma modificada.8”

Esta generalização, embora simples, sugere um poderoso processo de adaptação
às condições ditadas pela componente de pressão seletiva, sejam estas condições
naturais ou artificiais. Os dois primeiros itens dos sistemas evolutivos definidos
anteriormente podem ser descritos coloquialmente como “geração de descendentes
similares, mas não idênticos, aos progenitores”. A razão destes requerimentos é de
fácil compreensão: sistemas onde os descendentes fossem idênticos aos pais, e con-
sequentemente entre si, não forneceriam diferenças mensuráveis de sucesso entre os
indiv́ıduos, o que anularia o mecanismo de seleção. Similarmente, grupos onde os
descendentes não herdassem as caracteŕısticas de seus progenitores não possibilita-
riam o acúmulo de caracteŕısticas favoráveis ao longo do tempo, novamente anulando
os efeitos da pressão seletiva.

5.3.1 Um Sistema Evolutivo

Para compreender o funcionamento destes mecanismos evolutivos em um ambiente
computacional, vamos imaginar um exemplo simples, consistindo de uma população
estável de organismos sujeitos à introdução de um novo predador em seu ambiente.
Ao estudarmos a dinâmica evolutiva desta população, poderemos vislumbrar cer-
tos aspectos de sistemas evolutivos que os tornam capazes de resolver complexos
problemas de engenharia.

Considere uma população estável de cerca de 200 lagartos, vivendo, por um
longo tempo, em uma determinada ilha onde não há predadores naturais. Vamos
considerar, para fins de simplicidade, que a cor da pele destes lagartos seja deter-
minada por um cromossomo composto por três genes, cada um expressando um
determinado tipo de pigmento - vermelho, verde ou azul. Lembrando que o código
genético é composto por sequências de 4 tipos de nucleot́ıdeos9, é fácil pensar em
cada gene de cor sendo composto por uma sequência de 4 letras ou, equivalente-
mente, 8 bits, capazes de representar 256 estados, ou ńıveis de intensidade, para
cada pigmento.

8“As many more individuals of each species are born than can possibly survive; and as, conse-

quently, there is a frequently recurring struggle for existence, it follows that any being, if it vary

however slightly in any manner profitable to itself, under the complex and sometimes varying condi-

tions of life, will have a better chance of surviving, and thus be naturally selected. From the strong

principle of inheritance, any selected variety will tend to propagate its new and modified form.”
9
Adenosina, Guanina, Timina e Citosina.
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Figura 5.1: Codificação dos genes responsáveis pela cor de pele em uma população
fict́ıcia de lagartos. A cor de um determinado indiv́ıduo é definida pelo vetor de
componentes expressas, ilustrado na coluna mais à direita.

Vamos considerar, novamente para fins de simplicidade, que esta espécie de
lagartos possua as seguintes caracteŕısticas:

• Haplóide: cada indiv́ıduo possui apenas uma cópia do cromossomo que codifica
a cor de pele;

• Sexuada: a reprodução se dá pela combinação de dois indiv́ıduos;

• Hermafrodita: sem distinção entre machos e fêmeas, todos os indiv́ıduos são
compat́ıveis para cruzamento.

Podemos agora definir certas caracteŕısticas ambientais e comportamentais, na
forma de regras simples, para a caracterização da dinâmica populacional desta
espécie:

1. De todos os lagartos nascidos, apenas 70% sobrevivem até a idade adulta. Os
demais morrem por causas aleatórias, como acidentes, doenças, etc.

2. Todos os lagartos que chegam à idade adulta são capazes de se reproduzir, e o
fazem através da escolha aleatória de parceiros. A reprodução resulta em um
número de filhotes tal que o tamanho da população permanece estável.

3. Todos os adultos desta espécie morrem após a temporada de acasalamento e
postura de ovos.

4. Esta população está sujeita a mutações genéticas eventuais. Tais mutações
ocorrem com uma frequência média de 1 mutação para cada 100 nucleot́ıdeos.

Nestas condições, isto é, na ausência de uma componente de pressão seletiva, a
distribuição de cores na população tende a flutuar de forma relativamente aleatória.
De fato, se simularmos a dinâmica desta população ao longo de algumas gerações,
vemos que a intensidade de cada componente de cor apresenta grande variação na
população, conforme ilustrado pelos pontos coloridos na Figura 5.2. A intensidade
média de cada componente, representada pelos ćırculos pretos, tende a variar de
forma mais ou menos aleatória ao redor do valor esperado para uma distribuição
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Figura 5.2: Valores expressos das componentes de cor para uma população sem
pressão seletiva. Pontos coloridos indicam a ocorrência de pelo menos uma instância
de um dado valor, e ćırculos pretos representam a média das componentes em cada
geração.

uniforme, embora pequenos desvios possam ocorrer devido a um fenômeno conhecido
como deriva genética [1].

Antes de passarmos aos efeitos que um predador introduziria neste ambiente,
vamos parar por um instante e refletir sobre as seguintes questões: como é simulada
a reprodução nesta população? E a mutação? Como traduzir estas ideias biológicas
em termos computacionais? Embora existam muitas respostas posśıveis para estas
questões - com variados graus de fidelidade aos modelos biológicos naturais - vamos
nos ater aqui às mais simples. Uma abordagem mais detalhada do cruzamento e
mutação em sistemas evolutivos artificiais - onde estes fenômenos são conhecidos
pelo nome operadores genéticos - será dada no Caṕıtulo ??.

Na natureza, a reprodução sexuada, isto é, pelo cruzamento de dois indiv́ıduos,
representa a geração de novos seres a partir da mistura da informação genética dos
progenitores. Uma forma simples de implementar esta ideia consiste em recombinar
porções dos genes de nossos organismos artificiais, conforme ilustrado na Figura 5.3.
Observe que porções dos genes relativos a cada componente de cor são misturados,
dando origem a novos indiv́ıduos portadores de parte dos genes de cada um dos pais.

Assim como o cruzamento, a mutação também é um fenômeno facilmente im-
plementável em um sistema evolutivo artificial. Na natureza, diz-se que ocorreu
uma mutação quando um determinado nucleot́ıdeo da cadeia de DNA é substitúıdo
por outro, seja devido a erros de cópia ou pela ação de agentes mutagênicos. Em
nossa população de lagartos digitais, a mutação ocorre de maneira análoga, através
da substituição aleatória de um determinado nucleot́ıdeo por outro. Como exemplo,
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Figura 5.3: Geração de um novo indiv́ıduo (D) a partir do cruzamento de dois
progenitores (P1 e P2). Os genes do descendente são formados a partir da mistura
da informação genética de seus antepassados. O indiv́ıduo-filho ainda pode estar
sujeito a mutações, como, por exemplo, a substituição do primeiro nucleot́ıdeo do
gene que codifica a cor verde.

basta imaginar o primeiro A do gene verde do indiv́ıduo-filho ilustrado na Figura
5.3 sendo substitúıdo por um G. Nas simulações desta seção, consideramos que a
probabilidade de um dado nucleot́ıdeo sofrer mutação é de cerca de 1%. Embora
esta taxa seja certamente maior que as encontradas na natureza, ela é suficiente
para tornar significativos os efeitos deste fenômeno na dinâmica evolutiva de nos-
sos organismos simulados, sem contudo destruir a caracteŕıstica de hereditariedade
necessária ao processo.

Feitas estas considerações, imaginemos agora que uma nova espécie de predador
seja introduzida ao ambiente, e que este predador se utilize de visão cromática
para localizar suas presas. Com isto, acrescenta-se a este sistema uma componente
de pressão evolutiva, pois torna-se mais vantajoso para um determinado indiv́ıduo
possuir uma coloração similar à do ambiente, de forma a escapar da detecção pelo
predador. Se considerarmos como medida da camuflagem de um certo indiv́ıduo
a diferença entre a sua cor e a cor média de seu ambiente (podemos chamar esta
medida de contraste), torna-se fácil modelar a ação do predador na população na
forma de uma outra regra simples:

5. De todos os lagartos nascidos, os 20% menos camuflados, ou seja, com maior
contraste em relação ao ambiente, são devorados por predadores antes de che-
garem à idade adulta.

Neste cenário, podemos representar o contraste como a distância Euclidiana
entre o vetor de cor do indiv́ıduo e o vetor de cor média do ambiente:

f (pppi) = ‖ccci − cccam‖ (5.1)
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onde ccci é o vetor de componentes de cor do indiv́ıduo pppi, conforme ilustrado na
Figura 5.1, e cccam representa a cor média do ambiente. Nesta definição, indiv́ıduos
que apresentem menores valores de f , ou seja, de contraste, terão uma vantagem
evolutiva sobre aqueles com maiores valores desta medida. Se relembrarmos as
conjecturas da teoria evolutiva mencionadas no ińıcio desta seção, o efeito esperado
da introdução desta pressão evolutiva deverá ser tal que “a variedade positivamente
selecionada tenderá a propagar a sua nova forma modificada”. Em outras palavras,
valores das componentes de cor que resultem em indiv́ıduos de menor contraste
tenderão a se propagar e se estabelecer na população ao longo do tempo.

Os efeitos desta mudança no ambiente após a geração 25 da população são
ilustrados nas Figuras 5.4–5.6. A Figura 5.4 ilustra as frequências de ocorrência de
cada componente de cor antes e depois da introdução do predador, observando que as
primeiras 25 gerações são idênticas às ilustradas na Figura 5.2. É interessante notar
que, de acordo com o previsto, houve uma redução significativa na ocorrência de boa
parte dos valores posśıveis para cada uma das componentes de cor, com as variações
mais vantajosas dominando completamente o espaço genético da população. O
efeito desta mudança na composição genética média dos indiv́ıduos pode ser vista
na Figura 5.5, na forma de uma redução gradativa dos contrastes médio e mı́nimo
da população ao longo das gerações que se seguem à introdução do predador.

Figura 5.4: Evolução das componentes de cor na população. Após a introdução do
predador (linha pontilhada), nota-se uma acentuada tendência de preservação das
componentes mais favorecidas em detrimento das menos eficazes.

Por fim, a Figura 5.6 ilustra este processo evolutivo a partir de indiv́ıduos re-
presentativos da população em diferentes momentos. Em um primeiro momento
(geração 25), anterior à pressão evolutiva introduzida pelo predador, vê-se que, em-
bora hajam indiv́ıduos capazes de se camuflar, também ocorrem indiv́ıduos com alto
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Figura 5.5: Evolução da capacidade de camuflagem da população, representada
através de uma medida de contraste. A presença de um predador após a geração
25, destacada pela linha pontilhada, introduz uma componente de pressão seletiva
que gradualmente leva a população a evoluir uma melhor camuflagem, ou seja, um
menor contraste. Nas gerações finais deste processo, nota-se que a capacidade de
camuflagem média dos indiv́ıduos se torna bastante similar à do melhor indiv́ıduo,
indicando que os valores genéticos que possibilitam esta caracteŕıstica são compar-
tilhados por boa parte da população.

contraste em relação ao ambiente de fundo. À medida em que o predador, através
da eliminação dos menos aptos, vai exercendo uma pressão seletiva em favor dos
indiv́ıduos de menor contraste, observa-se que a população vai se tornando progres-
sivamente mais dif́ıcil de distinguir em relação ao fundo. Considerando que a visão
cromática dos seres humanos está entre as mais desenvolvidas do reino animal, o fato
de que a maioria de nós tem dificuldade de observar os lagartos nas gerações mais
avançadas torna fácil a extrapolação para um predador enfrentando uma crescente
dificuldade em encontrar suas presas.

5.3.2 Algoritmos evolutivos

Após examinarmos o exemplo da seção anterior, estamos agora prontos para exa-
minar as questões centrais relacionadas à implementação e uso de algoritmos evo-
lutivos para otimização. Muitas já foram tratadas de forma impĺıcita na evolução
da população de lagartos fict́ıcios, e serão discutidas aqui de forma um pouco mais
detalhada.

Como apresentado no ińıcio desta seção, tem-se que sistemas evolutivos, sejam
eles naturais ou não, são compostos por três componentes básicos: hereditariedade,
variação e pressão seletiva agindo sobre uma dada população. Além disto, vimos
no exemplo anterior que a aplicação da pressão seletiva em um sistema evolutivo
resulta no deslocamento de uma determinada medida de desempenho na direção das
caracteŕısticas positivamente selecionadas.

A partir destas considerações, a analogia entre a dinâmica de sistemas evolutivos
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(a) Geração 25 (b) Geração 50

(c) Geração 75 (d) Geração 100

Figura 5.6: Indiv́ıduos amostrados aleatoriamente em diferentes momentos de
tempo. Os indiv́ıduos da geração 25 (a) representam a população antes da in-
trodução do predador. É interessante notar a progressiva melhora na capacidade de
camuflagem dos lagartos à medida em que as gerações vão passando, o que ilustra
bem o efeito da pressão evolutiva nesta população.
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e o processo de otimização discutido nos caṕıtulos anteriores torna-se clara, com a
pressão evolutiva representada por uma função-objetivo a ser minimizada, ou, de
maneira mais geral, por alguma métrica que permita uma comparação quantitativa
do desempenho dos diferentes indiv́ıduos; e a população de indiv́ıduos represen-
tando soluções candidatas para o problema. Enquanto que diferentes abordagens de
otimização baseadas em ideias evolutivas serão tratadas em detalhe nos caṕıtulos
seguintes, podemos desde já definir uma estrutura genérica para um algoritmo evo-
lutivo de otimização, como a ilustrada pelo Algoritmo 1.

Algorithm 1: Estrutura Genérica para Algoritmos Evolutivos

Entrada: Tamanho da população (µ), Espaço de busca (X ), Funções
objetivo e de restrição (f (·), g (·), h (·)), Critérios de parada (Q)

Sáıda: Estimativa(s) da solução ótima (xxx∗) na população final.
1 ińıcio

2 P (0) ← Inicializar população(µ,X );
3 t← 0;
4 enquanto ¬Q faça

5 Φ(t) ← Avaliar
(

P (t) , f (·) , g (·) ,h (·)
)

;

6 S(t) ← Selecionar
(

P (t) ,Φ(t)
)

;

7 V (t) ← Modificar
(

S(t)
)

;

8 P (t+1) ← Atualizar População
(

P (t) , V (t)
)

;
9 t← t + 1;

10 fim

11 fim

Algoritmos evolutivos implementam estas componentes de formas diferentes e,
em alguns casos, em momentos distintos de cada iteração (ou geração, no jargão de
algoritmos evolutivos). Independentemente da implementação escolhida para cada
um destes passos, entretanto, um dado algoritmo evolutivo deve abordar, antes de
mais nada, as seguintes questões:

Representação

A primeira questão fundamental na implementação de qualquer algoritmo de oti-
mização evolutivo é a questão da representação, ou codificação do espaço de variáveis.
No exemplo de sistema evolutivo, utilizamos uma representação através do alfa-
beto discreto {A,C,G, T}, com cada uma destas letras sendo traduzida para um
número inteiro através de seu equivalente binário. Porém, embora a natureza opere
desta forma, nada impede que outras representações sejam utilizadas. A codificação
binária das variáveis é uma das mais frequentes na literatura de técnicas evolutivas,
devido principalmente a seu amplo uso em algoritmos genéticos. Já em várias áreas
de otimização aplicada a engenharia, é comum encontrar algoritmos evolutivos de
codificação real, onde os valores das variáveis do problema são utilizados diretamente
pelos métodos evolutivos, sem a necessidade de codificações intermediárias.
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Avaliação da Qualidade

Assim como nos métodos baseados em direções de busca, explorados nos caṕıtulos
anteriores, técnicas evolutivas também necessitam de funções capazes de atribuir
valores numéricos de qualidade às soluções-candidato geradas ao longo do processo de
otimização. Algumas técnicas espećıficas, como por exemplo o operador de seleção
por roleta (Seção ??), exigem que todos os valores de desempenho das diferentes
soluções sejam positivos, o que frequentemente exige modificações nas rotinas de
avaliação da função objetivo, ou pseudo-objetivo, no caso de problemas restritos
tratados pelas técnicas de penalização discutidas na Seção ??. Em boa parte dos
casos, entretanto, é posśıvel utilizar diretamente a função objetivo como medida do
sucesso evolutivo de um dado indiv́ıduo.

Seleção

Outro aspecto crucial para o bom funcionamento de um algoritmo evolutivo é a
definição dos mecanismos de seleção. Enquanto que no exemplo foi utilizado apenas
um mecanismo muito simples, definido pela eliminação determińıstica dos 20% me-
nos aptos, ou, equivalentemente, pela sobrevivência dos 80% melhores, há formas
muito mais sofisticadas de se implementar a pressão seletiva para métodos de oti-
mização. Estes métodos em geral se dividem entre seleção para reprodução, ou seja,
quais indiv́ıduos serão utilizados para a geração de novas soluções; e seleção para
sobrevivência, através da qual são escolhidas as soluções que comporão a população
na próxima geração. Diferentes operadores de seleção são descritos nos caṕıtulos
seguintes, e cada um possui suas próprias caracteŕısticas e limitações.

Operadores de Variação

Os operadores de variação representam diferentes mecanismos de exploração do
espaço de soluções pela população de um algoritmo evolutivo. Se relembrarmos
o exemplo utilizado neste caṕıtulo, foram utilizados dois operadores: cruzamento,
no qual a informação genética de dois indiv́ıduos é combinada para a geração de uma
nova solução; e mutação, onde parte desta informação é intencional e aleatoriamente
modificada. De um outro ponto de vista, é posśıvel enxergar estes dois operadores
como representando, respectivamente, a combinação de informação existente e a ex-
ploração de novas combinações possivelmente inéditas na população. Entretanto,
assim como no caso da representação, algoritmos evolutivos podem apresentar ou-
tros operadores que não necessariamente possuem paralelos na natureza, como por
exemplo o cruzamento com mais de dois progenitores explorado nas estratégias evo-
lutivas (Seção ??), ou operadores de busca local.
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