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Capitulo 5

Otimizacao Evolutiva

Nos capitulos anteriores, estudamos estratégias de otimizagao para a busca do ponto
de minimo em problemas de otimizacao com e sem.restricoes. Os métodos tratados
no capitulo 77, embora poderosos, baseiam-se em algumas premissas fundamentais:
(1) unimodalidade, (ii) convexidade (ou quasesconvexidade) das fungoes, e (iii) dife-
renciabilidade da fungao objetivo e das restricoes. Embora as técnicas apresentadas
até agora funcionem muito bem dentro destas condigdes, a violagao destas pode
comprometer seriamente as caracteristicas de convergencia de métodos baseados
em informagoes locais de decrescimento da funcao objetivo, ou seja, estratégias de
direcoes de busca e de exclusao de semi-espagos (ver Capitulo 27). Problemas multi-
modais, multi-escala e nao-diferencidveis tendem aaparecer com certa frequéncia em
varias situacoes praticas, e requerem uma aberdagem diferente para seu tratamento
e solucao.

Conforme introduzido no capitulo inicial deste livro, uma classe de métodos
de otimizacao frequentemente utilizada para a solugao de problemas apresentando
as caracteristicas discutidas acima sao os métodos de populagoes, nos quais uma
populagao de solugoes-candidato (em contraste com a solugao-candidato tinica uti-
lizada até agora) é utilizada para amestrar iterativamente o espaco de busca, de
forma a estimar a localizacao do ponto de étimo global.

Esta amostragem por miltiplos pontos, juntamente com caracteristicas esto-
casticas inerentes a maioria destes métodos, permite que métodos de populagoes
escapem de bacias de atragdo definidas por minimos locais de desempenho mais
pobre em favor de outras regidoes mais promissoras do espaco de solugoes. Além
disto, por dispensarem o uso de gradientes ou sub-gradientes das fungoes envolvidas,
estes métodos sao apropriados para a otimizacao de problemas onde nao se possa
garantir a diferenciabilidade das fungoes envolvidas.

Dentre os métodos de populagoes mais utilizados, uma familia de algoritmos
em particular ocupa uma posi¢ao de grande destaque. Os chamados algoritmos
evolutivos sao técnicas baseadas em processos bioldgicos, mais especificamente nas
dinamicas que regem a evolucao dos organismos vivos. Os processos naturais res-

5 frequentemente impossivel determinar se um dado ponto é ou nao o étimo global de um
dado problema, particularmente, mas nao exclusivamente, quando modelos do tipo caiza-preta sao
utilizados. Uma afirmacao mais honesta é a de que métodos de populagoes sao em geral capazes
de encontrar bons étimos locais, que podem ou nao ser globais.
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ponsaveis pelo desenvolvimento de formas e processos biolégicos tao finamente adap-
tados ao ambiente representam uma poderosa fonte de inspiracao para técnicas de
otimizacao, que é utilizada para o desenvolvimento de toda uma classe de métodos
de populacoes que sera descrita nos capitulos finais deste livro.

Este capitulo apresenta uma introducao a estes processos, e a biologia como fonte
de metaforas uteis ao desenvolvimento de métodos computacionais para a solugao
de problemas. Por se tratar de uma abordagem diferente das ja apresentadas neste
livro, o capitulo se inicia com uma introdugao a histéria do pensamento evolutivo,
tanto no contexto de ciéncias biolégicas quanto como inspiracao para algoritmos de
otimizacao. Apds esta breve introducao, o capitulo prossegue ¢om a descricao de
um sistema evolutivo simples, e finalmente com a traducgao des conceitos desenvol-
vidos em um algoritmo evolutivo genérico. Os algoritmos que serao discutidos nos
proximos capitulos seguem essa estratégia geral.

5.1 Evolucao por Selecao Natural

Nada na biologia faz sentido, exceto a luz da evolugdo.

Theodosius Dobzhansky (1900-1975),
geneticista e bidlogo evolutivo.

No contexto da biologia moderna, o termo_evolugdo se refere em geral a mudanga
gradual da composicao genética média de uma determinada populagao de organis-
mos, ao longo de sucessivas geragoes, ou, nas palavras de Douglas Futuyma [1],
“evolugdo bioldgica (ou evolugao organica) é a mudanca nas propriedades das po-
pulagoes dos organismos que transcendem o periodo de vida de um unico individuo”.
Enquanto que mudancas entre duas geracoes sucessivas sao, em geral, pequenas, o
acumulo destas ao longo de centenas ou milhares de geracoes pode resultar em gran-
des alteragoes morfolégicas e metabdlicas na populacao em questao e que, dadas
certas condigoes, resultar na diferenciacao de uma nova espécie.

As origens do pensamento evolutivo remontam ao periodo grego classico, quando
ideias a respeito da transmutacao de espécies foram concebidas pelo filésofo Anaxi-
mandro de Mileto (610 - 546 A.C.)?, considerado como um dos primeiros cientistas
empiricos e um dos primeiros pensadores a propor causas fisicas, em oposicao a
misticas, para a explicacao de fenémenos naturais.

Apesar deste e outros flertes iniciais com ideias evolutivas®, foi apenas na Ingla-
terra da segunda metade do século XVIII que conceitos relacionados a alguma forma
de evolugao.organica comecaram a ser seriamente discutidos nos circulos cientificos.
Pensadores como Maupertuis, Diderot, Buffon, Burnett e Goethe discutiram, com
variados graus de seriedade, ideias como geracao espontanea de vida a partir de
matéria inanimada e criacao continua de seres vivos, em contraste as ideias entao
vigentes de criacao tnica; e o conceito de que novas espécies poderiam surgir a partir

20 que reforca a observacao, repetida em tom humoristico, de que qualquer ideia supostamente
original da era moderna ja foi proposta por algum pensador grego ha mais de 2500 anos.
3Para uma visdo mais geral da histéria das ideias evolutivas, ver referéncias [2-4].
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do “desdobramento”? de potencialidades latentes em outras espécies [1]. Ainda em
1796 Erasmus Darwin, em seu livro Zodnomia [5], discutia ideias como descendéncia
comum, selecao sexual e reproducgao diferenciada dos mais aptos, se adiantando a
diversos conceitos propostos mais tarde por Jean-Baptiste Lamarck. No mesmo ano,
Georges Cuivier provou pela primeira vez a realidade da extingao de espécies, ao
apresentar seu estudo comparativo da anatomia de elefantes com a de fésseis de
animais similares, como mastodontes e mamutes encontrados na Europa, e demons-
trando conclusivamente que se tratavam de diferentes espécies.

O inicio do século XIX trouxe uma efervescéncia ainda maior em-torno de tépicos
relacionados a evolucao dos seres vivos. Em 1809, Lamarck publicou sua obra Phi-
losophie Zoologique [6] onde propunha, entre outras ideias, gue fatores ambientais
seriam responsaveis por mudancas na estrutura dos seres vivos; e que caracteristicas
uteis seriam preservadas e desenvolvidas pelos organismos, e caracteristicas intteis
ou deletérias seriam descartadas. Embora na maioria‘dos casos' os mecanismos pro-
postos por Lamarck para tais fenomenos tenham sido posteriormente refutados, seu
trabalho representa um divisor de dguas na histdria do pensamento evolutivo, tendo
sido, nas palavras de Douglas Futuyma, “ofprimeiro defensor da evolucao a nao
adotar solugoes de compromisso” [1].

O livro de Lamarck elevou a ideia de evolucao dos seres vivos ao status de
topico de discussao nos circulos cientificos da Inglaterra Vitoriana. Ideias a res-
peito de selecao natural e evolucao humana foram propostas em 1813 por William
Wells; posteriormente, Patrick Matthew discutiu os conceitos de especiacao e selecao
natural em um obscuro livro sobre madeiras de uso-naval, em 1831 [7].

Em dezembro deste mesmo ano, Charles Robert Darwin partiu para uma jor-
nada de cinco anos como naturalista de bordo do navio HMS Beagle. Durante suas
viagens, Darwin regolheu milhares de espécimes animais e vegetais, incluindo fésseis,
e coletou notas sobre anatomia e comportamento de animais e plantas ao redor do
mundo. Apds retornar a Inglaterra, empenhou-se em catalogar e em publicar seu
didrio de viagens [8].. Foi durante este perfodo pds-viagem que Darwin, influenciado
pelo Ensaio Sobre o Principio Populacional [9] de Thomas Malthus e por suas dis-
cussoes com-anatomistas britanicos, comegou a vislumbrar os principios da luta pela
existéncia e da sebrevivencia do.mais apto, resumidas em seu principio de selecao
natural. Ciente das implicagoes de suas descobertas, Darwin trabalhou cuidado-
samente no quarto de século apds seu retorno, acumulando um grande volume de
evidéncia em suporte a suas hipotese de evolugao por selecao natural. Escreveu em
1844 um ensaio nao publicado sobre sele¢ao natural [10], e ainda estava trabalhando
na elaboracao de seu livro definitivo sobre o tema quando recebeu, em 1858, um
manuscrito do jovem naturalista britanico Alfred Russel Wallace [11].

Em seu manuscrito, Wallace descrevia conclusoes obtidas apés anos de estudos
na Amazonia e nos arquipélagos da Maldsia, a respeito dos mecanismos de selecao
natural e sua importancia na derivacao de novas espécies a partir das existentes.
Aconselhado por Charles Lyell e Joseph Hooker, Darwin apresentou a Linnean So-
ciety de Londres o manuscrito de Wallace juntamente com partes de seu ensaio de

4A prépria palavra evolucdo, do latim evolutio, que significa desenrolar ou desdobrar um per-
aminho, contém um pouco deste conceito.
)
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18445. Mas foi apenas no final de 1859, apds a publicacao de Sobre a Origem das
FEspécies por Meio da Selecao Natural, ou a Preservagio de Racas® Favorecidas na
Luta pela Vida [13] , abreviado para seu nome mais conhecido - A Origem das
Espécies - apés sua sétima edicao em 1882, que a comunidade cientifica finalmente
teve acesso ao imenso corpo de evidéncia reunido por Darwin em favor da teoria da
evolugao.

O final do século XIX e inicio do século XX testemunharam mudancas na atitude
da comunidade cientifica internacional em relacao as ideias evolutivas de Darwin,
Wallace e outros. A redescoberta dos trabalhos do pai da genética, Gregor Men-
del, sobre a heranca discreta de caracteristicas, foi inicialmente dnterpretada como
uma contradicao as ideias de variacao continua dos seres vivos; descrita por Darwin
como parte de sua teoria. Coube ao nascente campo da<genética de populacoes,
desenvolvido principalmente por Ronald Fisher [14], J..B. S.:\Haldane [15] e Sewall
Wright [16], reconciliar os fatos da evolugao com os dagenética Mendeliana, demons-
trando nao apenas a compatibilidade destas ideias como sua intima correlacao na
geracao dos fenomenos observados no mundo natural. Este casamento da genética
com a evolucao veio a ser posteriormente conhecido como moderna sintese evo-
lutiva [17]. A descoberta da molécula de DNA como agente'da hereditariedade,
publicada por Osvald Avery em 1944 [18], e a identificagdo de sua estrutura por
James Watson e Francis Crick em 1953 [19, 20] possibilitaram a andlise genética
comparativa de organismos, que vem, nas ultimas décadas, fornecendo importantes
dados sobre o passado evolutivo e os' niveis de parentesco das mais diversas espécies
de organismos que habitam a Terra.”

5.2 Otimizacao evolutiva: uma breve historia

Pode-se considerar que o campo.da computacao evolutiva tem suas origens em me-
ados da década de 1950, nos experimentos sobre simbiogénese e evolugao artificial
realizados pelo matemético {talo-noruegues Nils Barricelli [22,23], e nos trabalhos do
geneticista britanico Alex Fraser sobre a simulagao de processos evolutivos [24,25].
Estes trabalhos pioneiros foram seguidos, no final dos anos 1950 e ao longo da década
de 1960, por um numero crescente de estudos no campo de biologia computacional,
realizados por pesquisadores como o préprio Alex Fraser [26], Jack L. Crosby [27,28],
Richard Friedberg [29, 30], e Hans Bremermann [31-33].

Juntamente com este progresso na simulacao dos sistemas biolégicos, foram fei-
tas algumas tentativas de empregar estes conceitos de evolucao computacional para
a solucao de problemas matematicos. Os trabalhos de Friedberg, por exemplo, tra-
tavam, entre outras coisas, da tentativa de gerar programas computacionais simples,

5Darwin e Wallace sdo considerados hoje os co-descobridores da evolucao por selecdo natural.

6Citando Richard Dawkins [12]: “No subtitulo de A Origem das Espécies, a frase, frequente-
mente mal-interpretada, preservacao de racas favorecidas definitivamente nao se refere a racas no
sentido coloquial utilizado atualmente. Darwin escrevia em uma época anterior a classificacao e
compreensao adequada dos genes, mas, em termos modernos, o significado das racas favorecidas
seria algo como portadores de genes favorecidos” .

"Para o leitor mais interessado na evolucao biolégica, os livros de divulgacio cientifica do bidlogo
britanico Richard Dawkins [12,21] sdo em geral uma 6tima referéncia sobre o tema.
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como um somador bindrio, a partir da evolucao simulada de sequéncias de bits. Os
trabalhos de Bremermann, em particular, foram pioneiros na aplicacao de principios
de evolucao artificial para a solucao de problemas de programacao linear. Em seu
artigo de 1962 intitulado “Optimization through evolution and recombination” [31],
Bremermann sugere um otimizador evolutivo contendo elementos de mutagao e cru-
zamento, o que torna este trabalho um dos mais, se nao o mais, antigos registros
de uma familia de técnicas conhecidas atualmente como “Algoritmos Genéticos”
(AGs).

Ainda na década de 1960, os pesquisadores alemaes Ingo Rechenberg, Hans Paul
Schwefel e Peter Bienert conceberam um sistema evolutivo para a‘otimizacao de for-
mas aerodinamicas, no que pode ser considerada a primeira aplicacao de principios
biolégicos a solugdo de problemas de projeto em engenharia [34-36]. Embora o
método, baseado em mutagoes e no principio de sobreyvivéncia do mais apto, fosse
utilizado inicialmente apenas para otimizacao experimental.- isto é, para a variacao
de parametros em um modelo fisico, sem o uso de computadores - sua capacidade
para a geracao de configuracoes étimas em diversos problemas levou ao desenvolvi-
mento de sua versao computacional no inicio'da década de 1970, quando o método
de Rechenberg e Schwefel - que ficou conhecido pelo nome de “Estratégia Evolutiva”
(EE) - comegou a ganhar popularidade como uma ferramenta de projeto eficiente
para a solucao de problemas complexos de engenharia.

Enquanto Rechenberg, Schwefel e Bienert desenvolviam suas pesquisas na Ale-
manha, Lawrence J. Fogel desenvolvia, nos Estados Unidos, técnicas para a geragao
de inteligéncia artificial a partir da evolugao de méquinas de estados finitos [37,38].
Em outras palavras, ao invés de tentar modelar o produto final da evolucao, neste
caso neuronios e padroes de conexdes nervosas, Fogel propos a utilizagao dos proprios
mecanismos evolutivos para se alcancar maquinas capazes de comportamento inte-
ligente. As técnicas desenvolvidas por Fogel, baseadas também no uso de mutacoes
em uma populagao de solucgdes sujeita a uma pressao seletiva, foram batizadas como
“Programagao Evolutiva” (PE).

As duas décadas seguintes representaram um desenvolvimento ainda maior das
técnicas evolutivas para otimizacao. Os trabalhos de John Holland no inicio dos
anos 1970 expandiram e popularizaram os algoritmos genéticos [39], propondo, en-
tre outros conceitos, bases tedricas para a andlise do comportamento e capacidade
adaptativa desta classe de algoritmos na forma da hipdtese dos blocos de construgao,
que sugere que o bom funcionamento dos algoritmos genéticos esta associado a ca-
pacidade destes de gerar e manter boas solucoes parciais para certas classes de
problemas. Trabalhos utilizando programacao evolutiva também se multiplicaram,
particularmenteno grupo de Donald Dearholt, onde a PE foi expandida para tra-
tar de problemas gerais de otimizacao e reconhecimento de padroes, entre outros.
E as ideias originais da estratégia evolutiva foram expandidas e aplicadas a um
numero crescente de problemas de engenharia pelos grupos de Schwefel e outros na
Alemanha Ocidental. Os anos 1980 viram a consolidacao destas técnicas como ferra-
mentas de solu¢ao de uma gama cada vez maior de problemas, com o aparecimento
das primeiras conferéncias especializadas em algoritmos evolutivos, como a primeira
Conferéncia Internacional em Algoritmos Genéticos (ICGA’85) e o estabelecimento,
por parte da comunidade de pesquisa em Estratégias Evolutivas, da primeira Paralell
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Problem Solving from Nature (PPSN’90). O ano de 1989 trouxe ainda a publicacao,
por David E. Goldberg, do livro Genetic Algorithms in Search, Optimization, and
Machine Learning [40], considerado até hoje como o mais influente na drea de oti-
mizagao utilizando AGs. Foi também nesta década que teve inicio uma tendéncia de
unificagao das trés grandes familias de técnicas baseadas na evolucao de solugoes -
algoritmos genéticos, estratégias evolutivas e programacao evolutiva - sob a defini¢ao
de algoritmos evolutivos, o que resultou, na primeira metade da década de 1990, na
criacao do primeiro periédico cientifico internacional dedicado exclusivamente a este
campo: o Fvolutionary Computation, publicado pela MIT Press.

Uma quarta vertente no campo de algoritmos evolutivos para otimizagao surgiu
em meados da década de 1990, a partir dos trabalhos de Kenneth Price e Rainer
Storn para a solucao de uma classe de problemas de regressao polinomial encontrada
comumente na drea de projeto de filtros eletronicos [44]. O algoritmo de Storn e
Price, batizado de “evolugao diferencial” (ED) [42], foi'criade especificamente para a
otimizacao de problemas com variaveis continuas, e utiliza a diferencgas entre vetores
da populagao para implementar um procedimento de geracao de novas solugoes
conhecido como mutag¢ao diferencial. A boa performance de otimizadores baseados
em ED em um crescente nimero de problemas [43| nos dltimos'14 anos tem atraido
cada vez mais interesse para esta familia de técnicas de etimizacao.

Atualmente, o campo de otimizacao evolutiva encontra-se num estagio de ma-
turacgao: os dois principais periddicos cientificos dedicados a esta‘area, Fvolutionary
Computation e IEEE Transactions on Evelutionary Computation, apresentam um
grande volume de trabalhos, tanto no campo de desenvolvimento tedrico quanto
no de aplicacoes e avaliagoes empiricas. Além disto, quatro grandes conferéncias:
IEEFE Congress on Evolutionary Computation (CEC); Parallel Problem Solving from
Nature (PPSN); Genetic and Evolutionary Computation Conference (GECCO); e
Foundations of Genetic Algorithms (FOGA), atestam para o grande interesse nesta
linha de pesquisa apresentado pela comunidade cientifica. O leitor interessado pode
encontrar maiores detalhes sobre a histéria e os rumos atuais da pesquisa em algo-
ritmos evolutivos em diversas referéncias disponiveis na literatura [44,45].

5.3 Estrutura Geral de Algoritmos Evolutivos

Conforme visto na secao anterior, alguns autores tém relacionado os mecanismos
do processo evolutivo com ideias oriundas da Ciéncia da Computacao, buscando
inspiragao na abordagem légica e procedural de linguagens de computador para
descrever mecanismos da evolucao a partir de um ponto de vista algoritmico. O
filésofo norte-americano Daniel Dennett propoe, em seu livto A Perigosa Ideia de
Darwin [46], a tese de que Charles Darwin, ao descrever suas ideias de origem das
espécies por meio de selegao natural, definiu uma classe de algoritmos caracterizados
pelos seguintes componentes:

1. Reprodugao com hereditariedade;
2. Variacdao dos descendentes em relacao aos progenitores;

3. Um mecanismo de pressao seletiva.
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Estes principios, agindo sobre uma populacao de individuos, levariam fatalmente
a um processo evolutivo, como ja descrito pelo préprio Darwin [13]:

“Como o numero de individuos nascidos, para cada espécie, é muito
maior do que o numero dos que poderiam possivelmente sobreviver; e
como, por consequéncia, a luta pela existéncia se renova a cada instante;
seque-se que todo o ser que varia de maneira que lhe confira alguma
vantagem, ainda que pequena, tem maior probabilidade de sobreviver,
sendo consequentemente beneficiado pelas forcas da sele¢ao natural. As-
sim sendo, e em virtude do poderoso principio da hereditariedade, tem-se
que toda a variedade positivamente selecionada tenderd apropagar a sua
nova forma modificada.®”

Esta generalizacao, embora simples, sugere um podéroso processo de adaptacao
as condicoes ditadas pela componente de pressao seletiva;.sejam estas condigoes
naturais ou artificiais. Os dois primeiros itens dos sistemas evolutivos definidos
anteriormente podem ser descritos coloquialmente como “geracao de descendentes
similares, mas nao idénticos, aos progenitores”. A razao destes requerimentos é de
facil compreensao: sistemas onde os descendentes fossem idénticos aos pais, e con-
sequentemente entre si, nao forneceriam diferencas mensuraveis de sucesso entre os
individuos, o que anularia o mecanismo de selecao. Similarmente, grupos onde os
descendentes nao herdassem as caracteristicas de seus progenitores nao possibilita-
riam o acumulo de caracteristicas favoraveis ao longo do tempo, novamente anulando
os efeitos da pressao seletiva.

5.3.1 Um Sistema Evolutivo

Para compreender o funcionamento destes mecanismos evolutivos em um ambiente
computacional, vamos imaginar-um exemplo simples, consistindo de uma populagao
estavel de organismos sujeitos a introducao de um novo predador em seu ambiente.
Ao estudarmos a dinamica evolutiva desta populagao, poderemos vislumbrar cer-
tos aspectos de sistemas evolutivos que os tornam capazes de resolver complexos
problemas de engenharia.

Considere uma populacao estavel de cerca de 200 lagartos, vivendo, por um
longo tempo, em uma determinada ilha onde nao hé predadores naturais. Vamos
considerar, para fins de simplicidade, que a cor da pele destes lagartos seja deter-
minada por um cromossomo composto por trés genes, cada um expressando um
determinado tipo de pigmento - vermelho, verde ou azul. Lembrando que o codigo
genético é composto por sequéncias de 4 tipos de nucleotideos®, é facil pensar em
cada gene de cor sendo composto por uma sequéncia de 4 letras ou, equivalente-
mente, 8 bits, capazes de representar 256 estados, ou niveis de intensidade, para
cada pigmento.

8« As many more individuals of each species are born than can possibly survive; and as, conse-
quently, there is a frequently recurring struggle for existence, it follows that any being, if it vary
however slightly in any manner profitable to itself, under the complex and sometimes varying condi-
tions of life, will have a better chance of surviving, and thus be naturally selected. From the strong
principle of inheritance, any selected variety will tend to propagate its new and modified form.”

9 Adenosina, Guanina, Timina e Citosina.
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Representagao Valor
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Figura 5.1: Codificacao dos genes responsaveis pela cor de pele’em uma populagao
ficticia de lagartos. A cor de um determinado individuo é-definida pelo vetor de
componentes expressas, ilustrado na coluna mais a direita.

Vamos considerar, novamente para fins de simplicidade, que esta espécie de
lagartos possua as seguintes caracteristicas:

e Hapldide: cada individuo possui apenas uma e¢dpia do'cromossomo que codifica
a cor de pele;

e Sexuada: a reproducao se d& pela combinacao de dois individuos;

e Hermafrodita: sem distincao entre machos e fémeas, todos os individuos sao
compativeis para cruzamento.

Podemos agora definir certas caracterfsticas ambientais e comportamentais, na
forma de regras simples, para a caracterizacao da dinamica populacional desta
espécie:

1. De todos os lagartos nascidos, apenas 70% sobrevivem até a idade adulta. Os
demais morrem por causas aleatérias, como acidentes, doencas, etc.

2. Todos os lagartos que chegam a idade adulta sao capazes de se reproduzir, e o
fazem através da escolha aleatéria de parceiros. A reproducao resulta em um
nimero de filhotes tal que o tamanho da populacao permanece estavel.

3. Todos os adultos desta espécie morrem apds a temporada de acasalamento e
postura de ovos.

4. Esta populacao esta sujeita a mutacoes genéticas eventuais. Tais mutagoes
ocorrem com uma frequéncia média de 1 mutacao para cada 100 nucleotideos.

Nestas condigoes, isto €, na auséncia de uma componente de pressao seletiva, a
distribuicao de cores na populacao tende a flutuar de forma relativamente aleatéria.
De fato, se simularmos a dinamica desta populagao ao longo de algumas geragoes,
vemos que a intensidade de cada componente de cor apresenta grande variacao na
populagao, conforme ilustrado pelos pontos coloridos na Figura 5.2. A intensidade
média de cada componente, representada pelos circulos pretos, tende a variar de
forma mais ou menos aleatéria ao redor do valor esperado para uma distribuicao
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Figura 5.2: Valores expressos das.componentes de cor para uma populacao sem
pressao seletiva. Pontos coloridos indicam.a ocorréncia de pelo menos uma instancia
de um dado valor, e circulos pretos representam. a média das‘componentes em cada
geracao.

uniforme, embora pequenos desvios possam ocorrer devido a um fenémeno conhecido
como deriva genética [1].

Antes de passarmos aos efeitos que um predador introduziria neste ambiente,
vamos parar por um instante e refletir sobre as seguintes questoes: como é simulada
a reproducao nesta populacao? E a mutacao? Como traduzir estas ideias biologicas
em termos computacionais? Embora existam muitas respostas possiveis para estas
questoes - com variados graus de fidelidade aos modelos biolégicos naturais - vamos
nos ater aqui as mais simples:” Uma abordagem mais detalhada do cruzamento e
mutacao em sistemas evolutivos artificiais - onde estes fenomenos sao conhecidos
pelo nome operadores genéticos - sera dada no Capitulo ?77?.

Na natureza, a reproducao sexuada, isto é, pelo cruzamento de dois individuos,
representa a geracao de novos seres a partir da mistura da informacao genética dos
progenitores. Uma forma simples de implementar esta ideia consiste em recombinar
porgoes dos genes de nossos organismos artificiais, conforme ilustrado na Figura 5.3.
Observe que porcoes dos genes relativos a cada componente de cor sao misturados,
dando origem a novos individuos portadores de parte dos genes de cada um dos pais.

Assim como o cruzamento, a mutagao também é um fenomeno facilmente im-
plementdvel em um sistema evolutivo artificial. Na natureza, diz-se que ocorreu
uma mutagao quando um determinado nucleotideo da cadeia de DNA é substituido
por outro, seja devido a erros de cépia ou pela acao de agentes mutageénicos. Em
nossa populacao de lagartos digitais, a mutacao ocorre de maneira analoga, através
da substituicao aleatéria de um determinado nucleotideo por outro. Como exemplo,
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Figura 5.3: Geracdo de um novo individuo (D) a partir do cruzamento de dois
progenitores (P1 e P2). Os genes do descendente sao formados a partir da mistura
da informacao genética de seus antepassados. O individuo-filho ainda pode estar
sujeito a mutacoes, como, por exemplo, a substituicao do primeiro nucleotideo do
gene que codifica a cor verde.

basta imaginar o primeiro A do gene verde do individuo-filho ilustrado na Figura
5.3 sendo substituido por um G. Nas simulacoes desta secao, consideramos que a
probabilidade de um dado nucleotideo sofrer mutacao é de cerca de 1%. Embora
esta taxa seja certamente maior que as encontradas na natureza, ela é suficiente
para tornar significativos os efeitos deste fenomeno na dinamica evolutiva de nos-
sos organismos simulados, sem contudo destruir a caracteristica de hereditariedade
necessaria a0 processo.

Feitas estas consideragdes, imaginemos agora que uma nova espécie de predador
seja introduzida ao ambiente, e que este predador se utilize de visao cromatica
para localizar suas presas. Com isto, acrescenta-se a este sistema uma componente
de‘pressao evolutiva, pois torna-se mais vantajoso para um determinado individuo
possuir uma coloragao similar a do ambiente, de forma a escapar da deteccao pelo
predador. Se considerarmos como medida da camuflagem de um certo individuo
a diferenca entre a sua cor e a cor média de seu ambiente (podemos chamar esta
medida de contraste), torna-se facil modelar a agdo do predador na populagdo na
forma de uma outra regra simples:

5. De todes os lagartos nascidos, os 20% menos camuflados, ou seja, com maior
contraste em relacao ao ambiente, sao devorados por predadores antes de che-
garem a idade adulta.

Neste cenario, podemos representar o contraste como a distancia Euclidiana
entre o vetor de cor do individuo e o vetor de cor média do ambiente:

f®i) = llei — caml| (5.1)
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onde ¢; é o vetor de componentes de cor do individuo p;, conforme ilustrado na
Figura 5.1, e ¢, representa a cor média do ambiente. Nesta defini¢ao, individuos
que apresentem menores valores de f, ou seja, de contraste, terao uma vantagem
evolutiva sobre aqueles com maiores valores desta medida. Se relembrarmos as
conjecturas da teoria evolutiva mencionadas no inicio desta secao, o efeito esperado
da introducao desta pressao evolutiva devera ser tal que “a variedade positivamente
selecionada tenderd a propagar a sua nova forma modificada”. Em outras palavras,
valores das componentes de cor que resultem em individuos de menor contraste
tenderao a se propagar e se estabelecer na populacao ao longo do tempo.

Os efeitos desta mudanga no ambiente apds a geracao 25/da. populacao sao
ilustrados nas Figuras 5.4-5.6. A Figura 5.4 ilustra as frequéncias de ocorréncia de
cada componente de cor antes e depois da introducao do predador, observando que as
primeiras 25 geragoes sao idénticas as ilustradas na Figura 5.2. E interessante notar
que, de acordo com o previsto, houve uma reducao significativa na ocorréncia de boa
parte dos valores possiveis para cada uma das componentes de cor, com as variagoes
mais vantajosas dominando completamente o espaco genético da populacae. O
efeito desta mudanca na composi¢ao genética média dos individuos pode ser vista
na Figura 5.5, na forma de uma reducgao gradativa des contrastes médio e minimo
da populagao ao longo das geragoes que se seguem a introducao do predador.

Intensidade de cores ao longe das geragoes
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Figura 5.4:"Evolugao das componentes de cor na populacao. Apéds a introdugao do
predador (linha pontilhada), nota-se uma acentuada tendéncia de preservagao das
componentes mais favorecidas em detrimento das menos eficazes.

Por fim, a Figura 5.6 ilustra este processo evolutivo a partir de individuos re-
presentativos da populacao em diferentes momentos. Em um primeiro momento
(geragao 25), anterior a pressao evolutiva introduzida pelo predador, vé-se que, em-
bora hajam individuos capazes de se camuflar, também ocorrem individuos com alto
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Figura 5.5: Evolucao da capacidade de camuflagem da populacao, representada
através de uma medida de contraste. A presenca de umepredador apds a geracao
25, destacada pela linha pontilhada, introduz uma componente de pressao seletiva
que gradualmente leva a populacao a evoluir uma melhor camuflagem, ou seja, um
menor contraste. Nas geragoes finais deste processo, nota-se que a capacidade de
camuflagem média dos individuos se torna bastante similar a do melhor individuo,
indicando que os valores genéticos que possibilitam esta caracteristica sao compar-
tilhados por boa parte da populacao.

contraste em relagdo ao ambiente de fundo: A medida em que o predador, através
da eliminacao dos menos aptos, vai exercendo uma pressao seletiva em favor dos
individuos de menor contraste, observa-se que a populagao vai se tornando progres-
sivamente mais dificil de distinguir em relagae ao fundo. Considerando que a visao
cromatica dos seres humanos-esté entre as mais desenvolvidas do reino animal, o fato
de que a maioria de nés.tem dificuldade de observar os lagartos nas geracoes mais
avancadas torna facil a extrapolacao para um predador enfrentando uma crescente
difieuldade em encontrar suas presas.

5.3.2 Algoritmos evolutivos

Apés examinarmos 0 exemplo da se¢ao anterior, estamos agora prontos para exa-
minar as questoes centrais relacionadas a implementacao e uso de algoritmos evo-
lutivos para otimizacao. Muitas ja foram tratadas de forma implicita na evolucao
da populacao de lagartos ficticios, e serao discutidas aqui de forma um pouco mais
detalhada.

Como apresentado no inicio desta segao, tem-se que sistemas evolutivos, sejam
eles naturais ou nao, sao compostos por trés componentes basicos: hereditariedade,
variacao e pressao seletiva agindo sobre uma dada populacao. Além disto, vimos
no exemplo anterior que a aplicacao da pressao seletiva em um sistema evolutivo
resulta no deslocamento de uma determinada medida de desempenho na direcao das
caracteristicas positivamente selecionadas.

A partir destas consideragoes, a analogia entre a dinamica de sistemas evolutivos
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(c) Geragao 75 (d) Geragao 100

Figura 5.6: Individuos amostrados aleatoriamente em diferentes momentos de
tempo. Os individuos da geracdo 25 (a) representam a populagdo antes da in-
trodugao do predador. E interessante notar a progressiva melhora na capacidade de
camuflagem dos lagartos a medida em que as geragoes vao passando, o que ilustra
bem o efeito da pressao evolutiva nesta populagao.
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e o processo de otimizacao discutido nos capitulos anteriores torna-se clara, com a
pressao evolutiva representada por uma funcao-objetivo a ser minimizada, ou, de
maneira mais geral, por alguma métrica que permita uma comparagao quantitativa
do desempenho dos diferentes individuos; e a populacao de individuos represen-
tando solucoes candidatas para o problema. Enquanto que diferentes abordagens de
otimizacao baseadas em ideias evolutivas serao tratadas em detalhe nos capitulos
seguintes, podemos desde ja definir uma estrutura genérica para um algoritmo evo-
lutivo de otimizacao, como a ilustrada pelo Algoritmo 1.

Algorithm 1: Estrutura Genérica para Algoritmos Evolutives

Entrada: Tamanho da populagao (i), Espago de busca(X'), Fungées
objetivo e de restrigao (f (), g (-), h(-)), Critérios de parada (Q)
Saida: Estimativa(s) da solugdo 6tima (z*) na populagao final.

1 inicio

2 PO < Inicializar populacio(u, X);

3 t <+ 0;

4 enquanto —() faca

5 ) + Avaliar(P® | f(-) ,g(-) ,h());

6 S® « Selecionar (P® , &1));

7 V® Modiﬁcar(S(t));

8 PO« Atualizar Populagao(P®., V"));
9 t+—t+1;

10 fim

11 fim

Algoritmos evolutivos implementam-estas componentes de formas diferentes e,
em alguns casos, em momentos distintos de cada iteragao (ou geracao, no jargao de
algoritmos evolutivos). Independentemente da implementacao escolhida para cada
um _destes passos, entretanto, um dado algoritmo evolutivo deve abordar, antes de
mais nada, as seguintes questoes:

Representacao

A primeira questao fundamental na implementagao de qualquer algoritmo de oti-
mizacao evolutive é a questao da representacao, ou codificacao do espaco de varidveis.
No exemplo de sistema evolutivo, utilizamos uma representacao através do alfa-
beto discreto {A,C,G, T}, com cada uma destas letras sendo traduzida para um
nimero inteiro através de seu equivalente binario. Porém, embora a natureza opere
desta forma, nada impede que outras representacoes sejam utilizadas. A codificagao
bindaria das variaveis é uma das mais frequentes na literatura de técnicas evolutivas,
devido principalmente a seu amplo uso em algoritmos genéticos. J& em vérias areas
de otimizacao aplicada a engenharia, ¢ comum encontrar algoritmos evolutivos de
codificacao real, onde os valores das variaveis do problema sao utilizados diretamente
pelos métodos evolutivos, sem a necessidade de codificagoes intermediarias.
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Avaliagao da Qualidade

Assim como nos métodos baseados em direcoes de busca, explorados nos capitulos
anteriores, técnicas evolutivas também necessitam de funcgoes capazes de atribuir
valores numéricos de qualidade as solugoes-candidato geradas ao longo do processo de
otimizacao. Algumas técnicas especificas, como por exemplo o operador de selecao
por roleta (Segdo ?7), exigem que todos os valores de desempenho das diferentes
solucoes sejam positivos, o que frequentemente exige modificacoes nas rotinas de
avaliacao da fungao objetivo, ou pseudo-objetivo, no caso de problemas restritos
tratados pelas técnicas de penalizacao discutidas na Secao ?7?7. Em boa parte dos
casos, entretanto, é possivel utilizar diretamente a funcao objetivo como medida do
sucesso evolutivo de um dado individuo.

Selecao

Outro aspecto crucial para o bom funcionamento de um algoritmo evolutivo é a
definicao dos mecanismos de selecao. Enquanto que no exemplo foi utilizado apenas
um mecanismo muito simples, definido pela eliminagao deterministica dos 20% me-
nos aptos, ou, equivalentemente, pela sobrevivéncia dos'80% melhores, ha formas
muito mais sofisticadas de se implementar a pressao seletiva para métodos de oti-
mizacao. Estes métodos em geral se dividem entre selegao para reproducao, ou seja,
quais individuos serao utilizados para a geracao de novas solugoes; e selecao para
sobrevivencia, através da qual sao escolhidas as solucoes que.comporao a populacao
na proxima geracao. Diferentes operadores de selegao sao descritos nos capitulos
seguintes, e cada um possui suas proprias caracteristicas e limitacoes.

Operadores de Variagao

Os operadores de variacao representam diferentes mecanismos de exploracao do
espaco de solugoes pela populagao. de um algoritmo evolutivo. Se relembrarmos
o exemplo utilizado neste capitulo, foram utilizados dois operadores: cruzamento,
no qualainformacao genética de dois individuos é combinada para a geragao de uma
nova solucao; e mutacao, onde parte desta informacao é intencional e aleatoriamente
modificada. De um outro ponto de vista, é possivel enxergar estes dois operadores
como representando, respectivamente, a combinacao de informagao existente e a ex-
ploracao de novas combinacoes possivelmente inéditas na populagao. Entretanto,
assim como no caso da representacao, algoritmos evolutivos podem apresentar ou-
tros operadores qué nao necessariamente possuem paralelos na natureza, como por
exemplo o cruzamento com mais de dois progenitores explorado nas estratégias evo-
lutivas (Segdo 77?), ou operadores de busca local.
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