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Capitulo 4

Métodos Numéricos para
Otimizacao Restrita

4.1 Introducao

No capitulo anterior, vimos alguns métodos numéricos que sao utilizados para a
otimizacao de problemas sem restrigoes e que se baseiam na informagao do gradiente
da fungao objetivo.

O objetivo deste capitulo é o estudo.de métodos numéricos para otimizagao de
problemas com restrigoes, i.e., além da fungao objetivo serao consideradas também
na formulacao do problema de otimizacao as fungoes de. restricao de igualdade e
desigualdade. Em sua forma geral o problema de otimizacao é definido por:

minimize f(x)

gi(x) <05 i=1,...,1 (4.1)
sujeito a:
hij(@)y=0; j=1,...,m
sendo'que £ € R", f(-) :R* —» R A(-) : R* = R™ e g(-) : R" — R
A estratégia que sera utilizada aborda o seguinte enfoque:

e Converter o problema restrito em um irrestrito, tal que se possa utilizar qual-
quer método apresentado no capitulo anterior.

O capitulo é dividido em trés secoes. Inicialmente, é apresentada uma revisao dos
métodos numéricos utilizados para a solugao de problemas de otimizacao restritos.
Posteriormente; sao analisados os métodos de penalidade e barreira. Por fim, é
estudado o método dos multiplicadores de Lagrange.

Ao final do capitulo é apresentada uma lista de exercicios. Leitura complementar
sobre os métodos discutidos neste capitulo pode ser encontrada nas referéncias [1],

2], 3], 14, [7]-

4.2 Revisao

...em construcao!
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4.3 Métodos de Penalidade

Os métodos de penalidade transformam o problema restrito em um irrestrito adicio-
nando uma funcao de penalidade a funcao objetivo. Assim, o problema de otimizagao
definido em (4.1) passa a ser expresso por:

minimize f(z) + p(x) (4.2)

em que p(z) é uma fungao penalidade que incorpora as restricoes de igualdade e
desigualdade.
Para o caso de restricoes de igualdade, tem-se:

(4.3)

em que £ € R", h(z*) = 0 e r" > 0. Qualquer violagao da restricao de igualdade
h(z) implicard em um termo de alta penalidade r[h;(z)]?,

Para o caso de restri¢oes de desigualdade, tem-se:

p(x) =9 [max {0, gi(x)}]? (4.4)

em que & € R™, g;(z*) < 0er?>0. Se gi(x) £ 0,0 ponto x encontra-se na regiao
factivel e a restricao de desigualdade é satisfeita; entao, 0 maximo {0, g;(x)} é nulo, e
portanto a penalidade nao ocorre. Caso gontrario, seg;(z) > 0 tem-se a penalidade
ol (@)]2

Este métodopermite que o processo de otimizacao se inicie a partir de um ponto
x; tanto na regiao factivel quanto na regiao nao factivel. No caso do processo se
iniciar a partir de um ponto z; na regiao nao factivel, as penalidade 7" [h;(z)]? e
79(g;(x)]* tornam-se grandes fazendo com’ que os novos pontos gerados aproximem-se
da regiao-factivel, minimizando a funcao objetivo. Portanto, a medida que r — oo
a_solucao do problema penalizado converge para a solucao do problema original.

Em geral, a funcao de penalidade ¢ definida da seguinte maneira:

m l

ple) =1"> hi(@)® +r* ) (max {0, gi(x)})” (4.5)

j=1 i=1

onde 7" e r9 sdo multiplicadores de penalidade das restricdes de igualdade e de-
sigualdade, respectivamente. Esses multiplicadores sao atualizados usando-se um
escalar, ou seja, rj,; = rpC" e rl,, = r{CY onde, por exemplo, r1_; =r{_ =0.1e
C" = (09 = 5; de maneira que tanto r* — oo quanto 79 — 0o no processo iterativo.
Outras maneiras de se determinar 7" e r9 sao discutidas em [?].

4.3.1 Algoritmo

O algoritmo bésico do método de penalidade é mostrado a seguir.
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Algorithm 1: Algoritmo do Método da Penalidade
Entrada: funcao f: R" - R
fungao penalidade p(-) dada em (4.5)
precisao desejada €
1 inicio
2 escolha xy € R™;
3 escolha " > 0 e r9 > 0;
4 escolha C" > 0 e C9 > 0;
5 k < 0;
6
7
8
9

se k = 0 entao

determine a solu¢ao étima x; de min f(z) + p(z).a partir de zo;
enquanto p(zy,1) > € faga

i rpoh

10 Thyr < rCY;

11 k< k-+1;

12 determine a solucao 6tima xy,1 de min f(2).+ p(x) a partir dey;
13 fim

14 fim

15 fim

4.3.2 Exemplo — Método de Penalidade

Seja o problema:

minimize f(z) = (z1.— 2)* + (21 — 225)?
(4.6)

sujeito a: h(z) = 23 — a5 = 0

O problema irrestrito; obtido a partir da formulacao do método da penalidade,
pode ser escrito como:

minimize f(2)= (#; — 2)* + (21 — 222) + r’(a} — 5)? (4.7)

Utilizando o algoritmo do método da penalidade, a partir de zo = (2,1)%; rl =
0.1'e C" = 10, obtém-se o grafico da Fig. 4.1 a seguir.

4.4 Métodos de Barreira

De maneira similar aos métodos de penalidade, os métodos de barreira, ou de pe-
nalidade interna, transformam o problema restrito em um problema irrestrito. Para
tal, as restrigoes sao adicionadas a funcao objetivo como penalidades que funcionam
como “barreiras”, as quais limitam a solucao a regiao factivel. Assim, o problema
de otimizacao definido em (4.1) passa a ser expresso por:

minimize f(z) + b(x) (4.8)
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Método da Penalidade
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Figura 4.1: Solucao grafica usando o Métode de Penalidade.

em que b(z) é uma funcdo barreira que incorpora exclusivamente as restrigoes de
desigualdade, a qual pode ser definida como:

b(x) = —rf ; ﬁ (4.9)

em que z € R" e b(z) é wma barreira ndo negativa e continua na regiao {z | g(z) < 0},
a qual tende a infinito a medida que se aproxima do limite da regiao {z | g(z) < 0}
a partir de um ponto interior a regiao factivel.

Iniciando o processo de otimizacao em um ponto & na regiao factivel, observa-
se que uma barreira b(-), como definida em (4.9), gerard pontos intermedidrios que
pertencerao também a regiao factivel, pois (4.8) nao estd definida na regido nao
factivel. Estes pontos se aproximarao iterativamente da restricao de desigualdade,
minimizando a fungdo objetivo. Nesse processo, a fungao barreira tende a infinito,
b(-) — o0, impedindo que os pontos x;, saiam da regiao factivel.

Nos métodos de barreira, inicia-se o processo com um valor de r?9 relativamente
elevado, e faz-se r9 — 0, diminuindo o seu valor em cada iteracao de acordo com
Ths1 < rpC?, em que, por exemplo, r{_; = 10 e C? = 0.1. A medida que 79 — 0,
a solucao do problema penalizado converge para a solucao do problema original.
Outras maneiras de se determinar r? sao discutidas em [5] e [?].

A fungao barreira ideal seria aquela que fosse nula para os pontos factiveis (i.e.,
que nao adicionasse nenhum valor a fungao objetivo original), e infinita nos limites
da regiao factivel. Porém, essa fungao seria descontinua na fronteira da regiao viavel
e, assim, dificultaria o desenvolvimento computacional.
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4.4.1 Exemplo — Método de Barreiras

...em construcao!

4.5 Método de Multiplicadores de Lagrange

O método de multiplicadores de Lagrange (ALM) transforma o probléema restrito
em um problema irrestrito adicionando as restricoes de igualdade e«desigualdade a
funcao objetivo. Com o intuito de satisfazer as condi¢oes de Karush-Kuhn-Tucker
no problema irrestrito, associam-se as restricoes de igualdade e desigualdade os
multiplicadores de Lagrange.

Em geral, o método ALM é definido da seguinte maneira:

m

p(x) = rhkgl el hi(Z)]? + 19 il[max {9;(z), —2% P+...

(4.10)

+ 2 Mehu(®) + 3- maz{g;(z), _2%
k=1 j=1

J=

onde \; e (3; sao os multiplicadores de Lagrange, e r" e r9 sdo osmultiplicadores de

penalidade definidos de maneira similar ao método de penalidade. Os multiplicado-
res de Lagrange sao atualizados, em cada iteragao; com informagoes a respeito das
restricoes de acordo com:

)‘k-l—l =\, + 2Thh($k)
(4.11)

Brt1 = Br + 2r9(max|g(xy), ;ff])

4.5.1 Exemplo — Método de Multiplicadores de Lagrange

Seja o problema:

minimize f(z) = (z; — 2)* + (v1 — 229)?
(4.12)
sujeito a: h(z) = 2% — x5 =0

O problemairrestrito, obtido a partir da formulacao do método de multiplica-
dores de Lagrange, pode ser escrito como:

minimize f(z) = (r; — 2)* + (21 — 229)> + A2} — 22)% + A2} — 22)

Utilizando o algoritmo do método ALM, a partir de o = (3,3)T e \g = 1,
obtém-se os graficos ilustrados na Fig. 4.2 a seguir. Observa-se que no decorrer do
processo iterativo as curvas de nivel da funcao irrestrita se aproximam da funcao de
restricao, h(x).
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Método de Multiplicadores de Lagrange:FALM
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Figura 4.2: Solucao grafica ilustrando as curvas de nivel da funcao objetivo “modi-
ficada” em quatro iteragoes do método de multiplicadores de Lagrange.
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4.6 Exercicios

1. Compare os métodos de penalidade, barreira e ALM, indicando as vantagens
e desvantagens de cada um.

2. Seja o problema: min f(x) = x?, sujeito a h(z) = r—1 = 0, cuja solugao 6tima
é dada por 2* = 1. Seja o problema irrestrito: min 2 + r"(x — 1)2. Pede-se:

(i) Para r" = 1,10 e 100, determine os pontos onde a derivada da funcao do
problema irrestrito se anula. Verifique que a solucao otima é ilimitada.
Esboce a funcao irrestrita para cada r".

(ii) Mostre que a solucdo 6tima é ilimitada para qualcquer r" dado.

3. Seja o problema:

minimize f(z ) 3 +x2
sujelto a: ( = —x2+1<0

(i) Determine a solugao 6tima para o problema.

(ii) Escolha uma fungao penalidade, faga rJ = 1 e, iniciando em zy = (2,6),
determine z; pelo método do gradiente.

4. Seja o problema:

minimize f(z) =\(x; —5)? + (25 — 3)?

) | g(x)=x1 + 22 <3

to a:

sujeito a o) = —31 + 279 < 4

(i) Esboce as fungoes e determine por inspegao a solugao 6tima para o pro-
blema.

(ii) Escolha uma fungao barreira, faga r§ = 1 e, iniciando em zy, = (0,0),
determine z; por um método de minimizacao irrestrita.

5. Seja o problema:

minimize f(z) = x] — 23:1562 + :1:1 + @175 — 211 + 4

sujerto a: { g(x) = 02502+ 0.7522 — 1 < 0

(i) Esboce as fungoes e determine por inspegao a solugao 6tima para o pro-
blema.

(ii) Resolva o problema usando o método ALM.
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