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Capitulo 3

Métodos Numéricos para
Otimizacao Irrestrita

3.1 Introducao

No capitulo anterior, vimos a caracterizagao da fun¢ao ebjetivo, funcoes de restrigao,
e as condigoes de otimalidade — condigoes de Karush-Kuhn-Tucker — que servem
de base para encontrar a solucaowde problemas de otimizacao utilizando técnicas
numéricas.

O objetivo deste capitulo é o estudo de métodos numéricos para otimizacao
irrestrita, em particular Métodos de Direcoes. de Busca. Esses métodos sao a base
de varios pacotes comerciais de otimizagao.€ foram desenvolvidos a partir da ideia
basica de fazer o algoritme evoluir encontrando novos pontos situados em diregoes
para as quais a funcao objetivo decresca, em relacao ao ponto corrente.

A versao mais primitiva dessa familia de métodos é o “Algoritmo do Gradiente”:
dado um ponto inicial no espago.de buseca, obtém-se um novo ponto situado sobre
a reta definida por esse ponto e pelo gradiente da funcao objetivo. Essa é a direcao
para a qual, localmente, a funcao mais rapidamente decresce, no sentido contrario
ao do'vetor gradiente. Determina-se o novo ponto como aquele em que a funcao
objetivo atinge o.minimo sobre-essa reta. A partir desse novo ponto, repete-se o
processo, até que seja satisfeito um critério de convergéncia.

Ao longo das décadas de 50 e 60 do século XX, tal método basico foi aperfeicoado
para permitir que a direcao de busca, na qual era feita a busca unidimensional, so-
fresse uma “correcao”, dando origem a uma familia de métodos chamados “Métodos
Quase-Newton”. Tal correcao leva em conta mais informacoes a respeito da funcao
objetivo; além do valor de seu gradiente no ponto corrente, procura-se também levar
em consideracao a curvatura da fungao. Aproximagoes de segunda ordem, por exem-
plo, levando em consideracao estimativas da Hessiana da funcao objetivo, permitem
significativa aceleracao de convergéncia dos métodos.

Os métodos agrupados neste capitulo, sob a denominacao de “Métodos de
Direcao de Busca”, tém essa raiz, e possuem em comum as seguintes caracteristicas:

1. Cada novo ponto é obtido a partir de um processo de otimizacao unidimensi-
onal, que tem como ponto de partida o ponto anterior.
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2. A direcao na qual é feita a busca unidimensional é uma funcao das avaliagoes
anteriores da funcao objetivo.

O capitulo é dividido em sete se¢oes. Inicialmente, é definida a estrutura basica
dos métodos de direcao de busca. Posteriomente, é apresentado o problema exemplo
que sera utilizado para ilustrar as caracteristicas dos métodos que serao estudados
no capitulo. Entao, é descrito o método de busca em direcoes aleatoria. Este
¢é seguido pelo método do gradiente, que inclui a descricao do método da secao
aurea para minimizacao de fungoes unidimensionais. Em seguida; é apresentado
o método de aproximacoes quadraticas, i.e., o método de Newton e a familia de
métodos quase-Newton, incluindo os métodos de Davidon-Fletcher-Powell (DFP) e
Broyden-Fletcher-Goldfarb-Shanno (BFGS). Finalmente, a tltima se¢ao. dedica-se
a métodos sem derivada: método de Hooke-Jeeves e método . de Nelder-Mead. Ao
final do capitulo é apresentada uma lista de exercicios. Leitura complementar sobre
os métodos discutidos neste capitulo pode ser encontrada nas referéncias [1]— [2].

3.2 Estrutura Basica

Seja o problema de otimizacao mono-objetivo irrestrito:

*

x* = arg mmin f(z) (3.1)

sendo que £ € R" e f(-) : R" — R!. Dadoim ponto inicial £y # z*, obtém-se uma
sequencia xj, tal que®, — &* a partir do algoritmo de otimizacao. A familia dos
algoritmos de direcao de busca possui a estrutura:

Algorithm 1: Algoritme de Direcao de Busca

1 k<« 0;
2 while (eritério de parada nao for satisfeito) do

3 di. < h(zy, ...,z f(21),..., f(2r));
4 oy « arg min f(xy + ady);

5 Ty < Ty + Qpdy;
6 k+k+1,;
7 end

Nessa estrutura, h(-,...,-) é uma funcdo que em geral serd recursiva, isto é, nao
ird depender explicitamente dos pontos anteriores, mas ird armazenar sua influéncia
em variaveis intermediarias. Um algoritmo ird diferir de outro essencialmente pela
maneira como ¢ calculada a direcao de busca dj, ou na escolha dessa funcao. No
caso do Método do Gradiente, tem-se simplesmente que:

No caso do Método de Newton, tem-se que:
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H), = Hessiana(f(xy)) (3.3)

dk = —H];1Vf($k) (34)

Tanto o gradiente quanto a Hessiana sao determinados por meio de diversas
avaliagoes da fungao f(-), tendo em vista a regra bdsica de que esta é'0 Wnico tipo
de informagao disponivel. A justificativa para a utilizacao dessas direcoes de busca
serd estudada neste capitulo. Os métodos chamados de quase-Newton substituem
a avaliacao da Hessiana da funcao objetivo pela construgao de uma estimativa para
essa Hessiana.

Os elementos para a construgao de algoritmos de diregoes de busca sao, portanto:

(i) um método de calculo de diregdes de busca, possivelmente envolvendo o caleulo
de estimativas para o gradiente e para a Hessiana da funcao objetivo;

(ii) um método de minimizacao de fung¢oes de uma tinica variavel,

(iii) um critério de decisao que permita afirmar que o algoritmo convergiu para
uma solucao satisfatoria, podendo ser terminada sua execugao.

Esses elementos serao examinados a seguir. “Antes porém, é apresentado o pro-
blema exemplo que sera utilizado para ilustrar.as caracteristicas dos métodos discuti-
dos neste capitulo. A natureza do processode convergéncia, intrinseco aos métodos
de direcao de busca, € estudada através do exame de convergéncia de um algo-
ritmo de interesse’apenas conceitual: o algoritmo do método de busca em diregoes
aleatorias.

3.3 Problema Exemplo

Considere o problema:

*

z* = arg min f(x) = 227 + 22 + 271709 + 11 — 225 + 3
T
(3.5)
Sujeito a:{ —6<2:1<6;,-6<129<6

que representa a’minimizacdo de uma funcao de duas varidveis f(zq,x2). Neste
caso, a regiao factivel é definida pelos limites inferiores e superiores das variaveis
x1 e xe. Por ser uma funcao de apenas duas varidveis, f(z1,x2) pode ser repre-
sentada no plano x; X z, através de curvas de nivel, conforme indicado na Figura
3.1. Por inspecao, obtém-se que a solucao é o ponto z; = —1.5; x5 = 2.5. Este
problema exemplo serd utilizado nas secoes seguintes para estudar as caracteristicas
dos métodos de direcao de busca. Antes porém, analisaremos as condicoes de otima-
lidade para assegurar que a solugao obtida por inspegao é de fato o ponto minimo
do problema.
As condigbes necessarias de primeira ordem requerem:
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9f()

— =4 2 1=0 3.6
axl T + i) —+ ( )
of()
=2 201 —2=0 3.7
D2y Ty + 21 (3.7)
que resulta em um sistema de duas equagoes e duas incognitas, cuja solugao é ] =

—1.5 e x; = 2.5.
As condigoes suficientes de segunda ordem requerem que a matriz Hessiana (3.8)
seja positiva definida.

H:[;‘ﬂ (3.8)

A verificacao se a matriz Hessiana é positiva definida sera feita por meio de dois
métodos: (i) calculo dos autovalores de H, e (ii) caleulo dos determinantes de todas
as submatrizes que envolvem a diagonal principal de H.

e (Calculo dos autovalores de H:

"“Al 2 = (4-X)(2-X) —4=0

2 2— X

Os autovalores sao A\ = 5.24 e Ay = 0.76; a matriz é positiva definida.

e (Calculo dos‘determinantes de todas as submatrizes que envolvem a diagonal
principal de H:

4] >0

4 2
[22}_4>O

A matriz é positiva definida.

Com isso, conclui-se que as condigoes de segunda ordem sao satisfeitas e que
x] = —1.5 e x5 = 2.5 é de fato o ponto de minimo da fungao.

3.4 Meétodo de Busca em Direcoes Aleatérias

Considere-se o Algoritmo 2 apresentado a seguir.

A fungao rand(n,1) é definida tal que sua saida é um vetor de n componen-
tes aleatorios independentes e identicamente distribuidos, segundo uma distribuicao
Gaussiana, com média 0 e variancia 1. A convergéncia desse algoritmo para o ponto
de minimo de uma funcao unimodal é estabelecida no teorema a seguir.
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Solugédo Gréfica do Problema Exemplo

Figura 3.1: Solucao Grafica do Problema Exemplo

Algorithm 2: Algoritmo de Busea em Diregoes Aleatorias
1 k<« 0;

2 while (critério de parada nao for satisfeito) do

3 dy. < rand(n,1));

4 ay, < arg min f(xy + ady);
5 Ty < Ty Fody;

6 k< k+1;

7 end

Teorema 3.1 Seja f(z): R" — R uma funcdo estritamente unimodal, e seja xg
um ponto qualquer em seu dominio. A aplicacdo do algoritmo de busca em diregies
aleatdrias a essa fungao, partindo desse ponto, produz uma sequéncia [f (zx)] que se
aprorima de forma monotonica do valor minimo da fungao, f(x*). U

DEMONSTRACAO: A subrotina de minimizacao unidimensional embutida no algoritmo
implica que, qualquer que seja a direcao dy, escolhida:

f@r) < flzgp-1)

o que demonstra a monotocidade da sequéncia. A unimodalidade estrita de f(z) implica
que para todo ponto x; # x* haverd possiveis direcdes dj. para as quais ocorra:

f(.'z:k +Oékdk) < f(.’l,‘k)

para algum valor de a. Se uma dessas diregoes nao for escolhida, ocorrera:

Trr1 = Tk
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Do contrario:

Tpy1 F T

f@r1) < flzw)

Pela construgao da funcédo aleatéria geradora do vetor dji, hd uma probabilidade nao-nula
de geracao de diregoes em que ocorre a diminuicao do valor da funcao, de forma que a
aproximacao fica demonstrada, ou seja:

Vap # ¢, IN: f(zrn) < f(@g)

Note-se que o Teorema mostra que ocorre a aprorima¢ao, mas nao a convergencia
para o ponto de minimo 2*. De qualquer forma, este ¢ um algoritmo que efetivamente
funcionaria para a minimizagao de funcoes. A questao a ser observada é que uma
escolha adequada da direcao de busca dy, em substituicao a aleatéria, pode aumentar
em muito a eficiéncia do algoritmo ‘de minimizacao. Os diversos algoritmos de
diregbes de busca surgem precisamente quando se propoem diferentes formas de se
fazer tal escolha de uma direcao.

3.4.1 Exemplo

A utilizacao do algoritmo/de buseca em direcoes aleatérias no problema exemplo
definido pela equagao (3-5) resulta na trajetoria representada na Fig. 3.2 a seguir.
Nesse exemplo, usou-se 0 ponto inicial o = (4, —4)” e o niimero méximo de iteragoes
fixado em 20. O gréfico ilustrando a variagao do valor da funcao objetivo f () versus
6 numero de iteragoes ¢ mostrado na Fig. 3.3.

3.5 Método do Gradiente

A primeira escolha razoavel para uma direcdo de busca eficaz, dj, é a da direcao
contraria a do gradiente da funcao no ponto corrente z,. Essa escolha se justifica
com a observagao de que, localmente, essa é a diregdo na qual a fungao f(-) decresce
mais rapidamente. Isso define o Algoritmo do Método do Gradiente, esquematizado
no Algoritmo 3.

Esse algoritmo baseia-se apenas na informagao local a respeito da variacao da
fungao f(-) em todas as dire¢oes do espaco, sintetizada no gradiente da fungao f(-).
A tnica suposigao implicita na aplicagao desse algoritmo é a de que a fungao f(z)
seja diferenciavel.

Os elementos construtivos desse algoritmo sao examinados a seguir.
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Problema Exemplo: Método de Busca em Dire¢des Aleatérias

Figura 3.2: Problema exemplo — solu¢ao usando o Método de Busca em Direcoes
Aleatorias.

Algorithm 3: Algoritmo do Método do Gradiente
k < 0;

while (critério de parada nao for satisféito) do
gi < gradiente(f(*)sxx));

dy, < —gi;

Qy < arg mgn f(zy + ady);

[SLT SR VR

(=]

Ty — T+ apdy;
7 k+k+1;
8 end

3.5.1 Calculo do Gradiente

No contexto da teoria de otimizacao, a suposicao mais geral a respeito da informacao
sobre o sistema sendo otimizado é: dispoe-se apenas de um modelo que, recebendo
como entrada o vetor de varidveis de otimizacao, fornece o valor da fungao-objetivo
para tal vetor. Portanto, nao se dispoe, em geral, de fun¢ées que explicitamente
fornecam o gradiente da fungao objetivo para certa especificacao do vetor de variaveis
de otimizagao, o que torna necessaria a construcao de um algoritmo para calcular o
gradiente de f(x).

O algoritmo mais simples que se pode imaginar para o calculo numérico aproxi-
mado do gradiente de uma fungao é decorréncia imediata da definicao de gradiente,
sendo substituida a férmula diferencial por diferencas finitas. Seja £ € R™ o vetor
de variaveis de otimizagao, e seja e; o vetor definido por:
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Problema Exemplo: Método de Busca em Dire¢des Aleatérias
35 T T T

0 5 10 15 20
iteraces

Figura 3.3: Problema exemplo — variacao da funcao objetivo versus o ntimero de
iteracoes para o Método de Busca em Diregoes Aleatorias.

.
e, = | 1 | — i-esima posicao (3.9)

0

Considere-se um certo 6 > 0, tal que § =~ 0. O algoritmo de cédlculo do vetor
gradiente g no ponto x pode ser definido como:

Algorithm 4: Algoritmo do Calculo do Gradiente

k <+ 0;
for (i < 1 until n) do
| g [f (@ +de:) — f(z)] /;

end
g [91, 47, gn

W N =

ot

]T

Y

NoTA 3.1 Deve-se observar que o Algoritmo de Cadlculo do Gradiente é exato para
fungoes lineares, ou seja, para funcoes cuja série de Taylor termina no termo de
primeira ordem. Nesse caso, 0 pode assumir qualquer valor: o cdlculo serd exato
mesmo para & grande.

EXEMPLO 3.1 Seja a funcgdo de duas varidveis f(x), definida por



METODOS NUMERICOS PARA OTIMIZACAO IRRESTRITA 9
f(x) = 222 + 23 + 22129 + 71 — 209 + 3
Analiticamente, o gradiente dessa funcdo é dado por:

. 4[L‘1+2[L‘2+1
Viz) = {2x1+2x2—2}

Por essa formula analitica, sabe-se que no ponto xo = [0 O]T o gradiente € igual a:

V(o) = { _12 }

Utilizando-se o algoritmo de diferencas finitas, para §.=0.0001, obtém-se a estima-
tiva de gradiente iqual a:

crins - [ 18]

Deve-se notar que o Algoritmo do Gradiente nao utiliza nenhuma informagao analitica
a respeito da funcao. A unica informagdao utilizada € proveniente de avaliagoes da
funcao em diferentes pontos.

3.5.2 Otimizacao Unidimensional

A seguinte linha doralgoritmo do gradiente é agora examinada:

o< arg min f(z, + ady)

O célculo de oy, é feito fixando-se o ponto atual x;, e uma direcao de busca, dy.
Issofaz com que a fungao ebjetivo, f(z), que originalmente seria de n varidveis, ou
seja, dependeria de um vetor £ de dimensao n, torne-se agora uma funcao de uma
Unica variavel, a.

A otimizacao de funcoes de uma unica variavel, em uma tnica dimensao, por-
tanto, ¢ tarefa substancialmente mais simples que a otimizacao em diversas di-
mensoes. Podem-se construir algoritmos diversos para resolver esse problema, ba-
seados em premissas diversas a respeito da funcao a ser otimizada. Uma premissa
comum, que necessariamente possui validade local em um ponto de 6timo estrito, é
a de que a funcao-objetivo possua um tinico minimo local no dominio em questao.

A estratégia que sera adotada compoe-se de duas etapas:

1. Cercar o valor 6timo aj, o qual determina o ponto de minimo da busca unidi-
mensional, 1 = x; + ajdy. Para tal constroe-se um intervalo [a, b] em que
aj, € [a, b];

2. Reduzir o intervalo [a, b] até a precisao desejada, ou, até que | — o*| < &.
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Determinacao do Intervalo [a, b

Determinar o intervalo [a, b] resume-se a cercar o* a partir de x; e dar passos na
diregao dj enquanto a fungao 0(«) = f(zy + ady) decrescer. Assim que esta fungao
volta a crescer, significa que passou-se por uma depressao ou por um ponto de
minimo a* naquela dire¢ao (diregao dy). Portanto, basta fechar o intervalo [asb] que
contém esta depressao.

Esta ideia estd organizada no Algoritmo 5. Admite-se que 6(-) é unimodal, @ e
b sao o inicio e fim, respectivamente, do intervalo [a,b], s é o comprimento do passo
inicial, e NFC representa o contador do ntimero de avaliacoes da _funcao objetivo.

Algorithm 5: Algoritmo para Determinacao do Intervalo

a <+ 0;
b+ s;
calcule O(a) = 6(0) = f(xy);
calcule 0(b);
NCF1 + 2;
while 0(b) < 6(a) do
a < b;
O(a) < 6(b);
b < 2b;
calcule O(b);
NFC1+ NFC1+1;
end
if NFC1 < 3 then
‘ a <+ 0;
else
| a<a/2
end
return a, b;

© W N O A~ W N o+

—
o

e O s e
0 N OO Gt b W N -

As seguintes observacoes sao acrescentadas:

(i) Ao dar passos enquanto a funcao decresce estd se fazendo a = b e b = 2b. Essa
escolha é arbitraria. Pode-se optar por b = b+s, ou b = 3b, etc. A consequéncia
direta desta escolha serd um menor ou maior nimero de iteragoes e intervalo

final.
(ii) ...

Reducgao do Intervalo [a, b]

H&a varios métodos, diretos e indiretos, que podem ser utilizados para reduzir o
intervalo [a, b]; veja por exemplo [1] e [3]. Vamos concentrar a nossa aten¢ao no
método da secao aurea.

Teorema 3.2 Seja uma fungdo 0(-) : R — R. Seja um dominio [a,b] C R, no qual
0(-) possui um unico minimo local x*. Sejam ainda dois pontos x, e xy tais que
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a<xy<xp<b (3.10)

Se ocorrer

0(x,) < 0(xp) (3.11)

entao a solugdo minimizante x* ndo se encontra no intervalo [xy,b], e se ocorrer

0(x,) > 0(xp) (3.12)

entao a solugdo minimizante x* ndao se encontra no intervalo [a;%,).

0

DEMONSTRAGAO: Tome-se o interva-lo [a, z]. Nesse intervale, hd algum ponto @g para
o qual f(zo) < f(x) ¥V z € [a,xp] e xg # xp, pela hipdtese (3.11). Logo, xg é um minimo
local no segmento [a, zp]. Como x¢ # x3, tem-se que no intervalo [a, b] z¢ permanece sendo
minimo local. Acrescentando-se agora a hipdtese de que sé hd um minimo local em [a, b,
obtém-se que x* = x(, que é o resultado pretendido. Para o outro lado do segmento, o
argumento é analogo. |

Com esse teorema, é possivel construir um algoritmo quese fundamenta na
légica de excluir, a cada passo, um trecho do segmento considerado, de forma a
faze-lo contrair-se. Quando o segmento estiver suficientemente “pequeno”, pode-
se considerar que ocorreu a convergéncia para o ponto de minimo da otimizagao
unidimensional. A precisao dessa convergéncia, ou seja, o erro maximo cometido,
serd igual a metadedo comprimento remanescente.

Existe, claramente, uma maneira de escolher os pontos x, e x;, dentro do seg-
mento, de forma a maximizar, em média, o comprimento do intervalo a ser excluido
a cada passo, minimizande assim o numero de iteracoes necessario para se atingir
determinada precisao. Uma escolha frequentemente adotada é definida pela “secao
aurea’y-em-que escolhem-se z, e x;, de forma que:

Ty, =b—0.618(b—a) (3.13)

xp =a+ 0.618(b — a) (3.14)

O fator 0.618 corresponde a “razao aurea”, utilizada pelos antigos gregos para definir
a razao dosladosadjacentes de um retangulo que seria “perfeita”sob o ponto de vista
estético.

Com esta escolha, o método de minimizacao de uma funcao real no intervalo
[a,b] para se atingir uma precisdo €/2 pode ser definido conforme apresentado no
Algoritmo 6.

Claramente, a cada passo do algoritmo o comprimento do intervalo [a, b] é mul-
tiplicado por um fator menor ou igual a 0.618, de forma que pode-se calcular o
numero esperado maximo de passos para se atingir a precisao desejada:

I < 0.618"1, (3.15)
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Algorithm 6: Algoritmo da Secao Aurea

1z, < b—0.618(b— a);

2 2 < a+ 0.618(b — a);

3 0, < 0(z,);

4 Gb — 9(375);

5 while (b—a > ¢€) do

6 if (6, > 0,) then

7 A Tg;

8 Tq — Tp;

9 xp < a+ 0.618(b — a);
10 0y < Op;

11 95 — G(xb);

12 else

13 b < xp;

14 Tp < Tq;

15 Zq < b—0.618(b— a);
16 0, < 0,;

17 0, < 0(x,);

18 end

19 end

20 o+ (a+0)/2;

sendo lj, o comprimentordo intervalo [a, b] no passo k:

E importante salientar que ¢é possivel construir outros algoritmos, inclusive mais
eficientes que o Método da Segao Aurea, para a otimizacao de funcoes de uma tnica
varidvel. Para maiores detalhes, podem ser consultadas as referéncias [1] e [3].

EXEMPLO 3.2 Tome-se a mesma funcdo do Problema Exemplo.
f(x) = 222 + 22 + 22109 + 71 — 279 + 3
O gradiente da fungao é dado por:

. 4$1+2.§C‘2+1
Vi) = [2x1+2x2—2}

No ponto g =]=1 11" o gradiente € igual a:
Vi) =|
O -2
A fungao 0(-), tomada a partir do ponto xg na dire¢ao de —V f(xo), pode ser encon-

trada analiticamente por substituicao da varidvel vetorial x pela varidvel escalar o.
Baseando-se neste conceito, tem-se que:

T =20 —aVf(z)
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e ) R poeey

Realizando as substituicoes necessdrias, obtém-se a func¢ao unidimensional:

ou:

O(a) =2(a—1)2+(2a+1)*+2(a—1)(2a+1)+(a—1)—2(2a+1)+3 = 10a’~5a+1
Essa func¢ao possui minimo para:
do(«)
da

ou seja, para o = 1/4. Para esse valor de «, o novo ponto x obtido no espago

vetorial é:

x| | -1 =1 =3/4 _ | 075

Ty || +1 4| =2 | | £3/2 | |« +15
Utilizando o algoritmo da secao durea, obtém-se uma. estimativa do ponto que mi-
nimiza 0(-) na direcao considerada. Este ponto é igual a:

z1 | o | —0.7501

Ty | | +1.4998
para uma precisao estabelecida de e = 0.001." Deve-se notar que o ponto determinado
nao € o ponto de minimo global da funcdo f(x), mem corresponde a um minimo local

dessa funcao, pois o gradiente nao se anula nesse ponto. Este vetor apenas minimiza
a fungdao f(-) sobre a reta.definida pelo ponto xy e pela direcao de busca —V f(xg).

=200 —5=0

3.5.3 Critérios de Parada

Apés produzir uma sequéncia-de estimativag da fungao objetivo, avaliada para uma
sequéencia de pontos do espago de variaveis de otimizacao, o algoritmo de otimizagao
eventualmente devera se aproximar de.uim ponto de 6timo local da funcao. Como
a aproximagao para o otimo ocorre de forma assintotica, é necessario em algum
momento tomar a decisao de interromper o algoritmo, sendo a aproximacao obtida
considerada o valor 6timo alecancado.

Alguns critérios possiveis, para a tomada dessa decisao, seriam:

Estabilizacao do Valor da Fungao-Objetivo

Caso o valor da fungao-objetivo, ao longo de um certo niimero de iteragoes, nao varie
mais que certo percentual da diferenca entre seu valor maximo ocorrido em todo o
processo de otimizagao e seu valor minimo verificado também em todo o processo, é
possivel interromper o algoritmo supondo que dificilmente viriam a ocorrer melhorias
significativas da funcao objetivo com essa continuidade.

A seguir é apresentado um trecho de algoritmo que exemplifica a construgao
desse critério, o qual considera como estabilizado um algoritmo que varia, nas ulti-
mas cinco iteragoes, menos de 0.0001 da “amplitude” Ay da funcao objetivo, sendo
fmaz € fmin, Tespectivamente, o maximo e o minimo valor ocorrido para a funcgao
objetivo durante toda a execucao.
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Algorithm 7: Critério de Parada: Funcao Objetivo

Af — fmaa} - fmzna
for = max {f (@), f(Te-1), [(Th-2), [(Te-3), [(T-a), [(Tk-s5)};
fo— <= min {f(zr), f(@r—1), f(@r—2), f(@r—3), f(@r—a), f(@r—5)};
O < fsr — [5—;
if (6y < 0.0001Af) then
parada < true;
else
‘ parada < false;
end

© 00 N O oA W N =

Nota 3.2 O leitor deve estar atento para o fato de que€ necessdrio calcular-o valor
Ay, nao sendo recomenddvel utilizar, em seu lugar, mem [uun nem fua. Fiea para
o leitor o exercicio de explicar que problemas poderiam ocorrer caso fossem feitas
tais escolhas.

NoTA 3.3 Seria entretanto possivel utilizar, para Ay, alguma,defini¢io um pouco
mais sofisticada, que por exemplo excluisse alguns dos mdazximos valores ocorridos
para a funcao objetivo antes do cdlculo de fa.. Tal procedimento aumenta a com-
plexidade do algoritmo, mas pode torndg-lo mais estavel.

Estabilizagcao do Vetor de Variaveis de Otimizacao

Outra alternativa para o problema de formulacao de critérios de parada de algoritmos
de otimizacao seria a constatacao de que o vetor de variaveis se estabilizou em algum
ponto do espaco.

A seguir é-apresentado um trecho de algoritmo que exemplifica a construgao
desse critério; o qual considera¢omo estabilizado um algoritmo cujo vetor de varidveis
varia, nas ultimas cinco iteracoes, menos de 0.0001 da “faixa de variagao” verificada
do vetor de variaveis ao. longo de toda a execucao. Sejam Z,,q; € T 0S vetores
cujas componentes sao 0 maximo valor ocorrido para cada componente do vetor de
variaveis durante toda a execugdo e o vetor cujas componentes sao o minimo va-
lor ocorrido para cada componente do vetor de varidveis durante toda a execucao
do algoritmo, respectivamente. Aqui as operagoes com vetores sao entendidas como
operacoes realizadas sobre cada uma das componentes dos operandos. A comparagao
entre dois vetores sera verdadeira se cada uma das comparagoes de componentes for
verdadeira.

NotA 3.4 Novamente, observa-se que nao é recomenddvel utilizar, para construir
esse critério de parada, nem E,q;, NEM Ty, nem Tx_1 (embora essa ultima alter-
nativa seja frequentemente usada na literatura) em substitui¢cao a A,. Fica para o
leitor a tarefa de explicar que problemas ocorreriam nesses casos.

Anulagao do Vetor Gradiente

Por fim, é possivel ainda determinar o final de um processo de otimizacao com uma
informacao a respeito do vetor gradiente da fungao objetivo. Sabendo-se a prior:
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Algorithm 8: Critério de Parada: Vetor de Variaveis

Am < Tmaz — Tmin;
Zsy < max {Tp, Tp1,Lp_2, k3, Tk, Th_5};
Zs_ < min {Ty, Tp1, T2, Tp—3,Tp—a,Tp_5};
0p ¢ T5p — T5;
if (0 < 0.0001A;) then
‘ parada < true;
else
‘ parada < false;
end

© 00 N O oA W N =

que a funcgao-objetivo é diferencidavel, seu gradiente sera nulo em seus pontos de
minimos locais (condi¢ao necessaria de primeira ordem). Pode-se, portanto, detectar
a ocorréncia desses minimos pela monitoracao do valor da norma do vetor gradiente.

No trecho do algoritmo a seguir, é mostrada uma implementacao desseteste
sobre o vetor g(z), que é o gradiente da fungdo objetivo f(:) mo ponto . A base da
comparagao adotada é o maximo valor da norma do gradiente ocorrido ao longo de
toda a execucao, denotado por M,,...

Algorithm 9: Critério de Parada: Vetor Gradiente

1 My = maz {|lg(zx), lg(@r-1)Il, g(@e—2)I};
2 if (M, < 0.0001M,,,,) then

3 ‘ parada < true;
4 else

5 ‘ parada < false;
6 end

3.5:4 Convergéncia

Pode-se mostrar, usando o teorema da convergéncia global, que o Algoritmo do
Método do Gradiente converge para a solugao dos problemas de otimizagao mediante
as condicoes formuladas na proposicao a seguir.

Proposigao 3.1 Seja o problema de otimizagao irrestrito definido por:

' = arg n;in f(z) (3.16)

sendo x € R™, com f(-) : R +— R wuma fung¢ao continua. Entio o Algoritmo
do Gradiente ird convergir para x* para todo ponto inicial xy situado na bacia de
atracao de x*. O

DEMONSTRACAO: As condicoes para a validade do teorema da convergéncia global
se complementam quando se restringe o dominio da funcao a bacia de atracdo do ponto
de minimo. Nessa situagdo, os vetores obtidos ao longo das iteragoes do Algoritmo do
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Gradiente apresentam valores de f(-) descendentes. As demais condi¢oes nao dependem
do dominio. |

Corolario 3.1 Caso o Algoritmo do Gradiente seja iniciado em um ponto Ty nao
situado na bacia de atragao do minimo global x*, podem ocorrer duas situagoes:

1. O Algoritmo do Gradiente converge para o minimo local associado a bacia de
atra¢ao em que estiver localizado seu ponto inicial x.

2. Caso o ponto inicial nao esteja localizado em nenhuma bacia de atra¢do, o
Algoritmo do Gradiente nao converge.

3.5.5 Exemplo

A utilizagao do algoritmo do método do gradiente no problema exemplo definido pela
equacao (3.5) resulta na trajetoéria ilustrada na Fig. 3.4/a seguir. Nesse exemplo,
usou-se o ponto inicial £y = (4, —4)7 e, como critério de parada, o ntimero maximo
de iteragoes fixado em 20. O grafico.ilustrando a variacao do valor da fungao objetivo
f(+) versus o nimero de iteragoes é mostrado na Fig. 3.3.

Problema Exemplo: Método do Gradiente

Figura 3.4: Problema exemplo — solucao usando o Método do Gradiente.

3.6 Aproximacoes Quadraticas

Suponha-se agora que, conhecendo-se a priori a natureza da fungao objetivo, saiba-
se que é razoavel admitir que essa funcao corresponda, de maneira aproximada, a
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Problema Exemplo: Método do Gradiente
35 T T T

30 h

0 5 10 15 20
iteraces

Figura 3.5: Problema exemplo — variacao da funcao ebjetivo versus o ntimero de
iteracoes para o Método do Gradiente.

uma funcao quadratica, dentro de algum dominio que contenha o ponto de minimo
z*. A aproximacao é feita ao redor de um ponto &y, também' contido nesse dominio:

f@)~eoter - (x—2)t (T —20) Co(T — 20) (3.17)

sendo ¢y € R", ¢; €R™ e Oy € R™ ", Essa hipdtese, de fato, corresponde a suposicao
de que a fungao f(x) seja de classe C*°, poistoda fungao dessa classe pode ser escrita
em termos de'uma série de Taylor:

[k (@) + V) (&~ 20) + 5(e ~20) H@o)w —2) + 0B)  (318)

onde o vetor V f(zy) é o gradiente da funcdo no ponto zy, a matriz H(zy) ¢é a
Hessiana da funcao em z(,€ O(3) é o conjunto das contribui¢bes dos termos de
ordem maior ou igual a trés. O gradiente da funcao f(z) dada por (3.18) é:

Vi) =Vf(zy)+ H(zo)(x —20) (3.19)

Sabe-se, entretanto, a partir das condigoes de primeira ordem, que no ponto de
minimo local £*, o gradiente se anula, de maneira que:

Vi) =Vf(zy)+ H(zxo)(x" —29) =0 (3.20)
de onde se obtém a férmula de determinacao do ponto de minimo:

Tt = Xy — H(xo)’IVf(xo) (321)

Ou seja, se a funcao a ser otimizada for exatamente quadratica, basta se conhecer
o gradiente e a Hessiana em um ponto qualquer x, para se determinar, em uma
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tnica itera¢do, o ponto de minimo z*, através da equagao (3.21). Se a funcéo for
aproximadamente quadratica num certo dominio, a equagao (3.21) pode ainda ser
empregada para produzir estimativas do ponto de minimo que convergem muito
mais rapidamente que aquelas produzidas pelo Algoritmo do Método do Gradiente.

3.6.1 Método de Newton

A partir da expressao definida pela equagao (3.21), pode-se construir-im algoritmo
de minimizacao de funcoes que, em sua forma mais simples, envolve a aplicacao
iterativa de (3.21) para a busca do étimo. O Método de Newton emprega esta
abordagem (Algoritmo 10).

Algorithm 10: Algoritmo do Método de Newton
1 k<« 0;

2 while (critério de parada nao for satisfeito)do
3 g < gradiente(f(-),x);

4 Hy < Hessiana(f(+),xy);
5 Ty < T — H, gy
6 k+k+1,;
7 end
Convergéncia

No caso da otimizacao de fungdes com forma precisamente quadratica, o Algoritmo
do Método de Newton nao apenas converge para a solugao exata do problema, como
também o faz de maneira nao‘iterativa, émam unico passo. Essa nao é, entretanto,
a situacao geral: as funcgoes a serem otimizadas, embora frequentemente sejam duas
vezes diferenciaveis, o que é necessario para a aplicabilidade desse método, na mai-
oriardas vezes nao sao quadraticas.

Nessa tultima situagao, 0 Método de Newton, na formulagao apresentada, pode
até mesmo nao convergir. Observando os requisitos arrolados entre as hipdteses do
teorema da convergéncia global, verifica-se que o Algoritmo de Newton nao satisfaz
a exigéncia de que a iteracao deva ser descendente, ou seja, de que o valor da funcao
objetivo. necessariamente decresca a cada iteracao. De fato, nada garante que o
calculo analitico da solucao que seria a exata para um problema quadratico, se
aplicado a um-problema que nao é quadratico, nao venha a levar até mesmo a um
aumento no'valor da fungao objetivo.

3.6.2 Método de Newton Modificado

Para garantir que o algoritmo produza a diminuigao monotonica do valor da fungao
objetivo, mesmo para fung¢oes nao-lineares que tenham comportamento significati-
vamente diferente da funcao quadratica, é empregada uma variacao do Algoritmo
de Newton que incorpora um aspecto crucial das caracteristicas de convergéncia do
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Algorithm 11: Algoritmo do Método de Newton Modificado

1 k<« 0;

2 while (critério de parada nao for satisfeito) do
3 | gk < gradiente(f(-),xx);

4 Hy < Hessiana(f(+),xy);

5 dk < —Hk_lgk;

6 Qay < arg moi{n f(zr + ady);

7 Ty < T+ Oékdk;

8 k+k+1,;

9 end

Algoritmo do Gradiente: a execucao de uma minimizacao unidimensional em cada
direcao.

Com excegao da rotina de célculo da Hessiana, todas as subrotinas envolvidas
na construcao desses algoritmos ja foram apresentadas por ocasidao da construcao do
Algoritmo do Gradiente, e sao reaproveitadas aqui.

Convergéncia

O algoritmo modificado é exatamente equivalente ao Algoritmo de Newton original,
no sentido de que ambos produzem a mesma sequéncia de pontos, caso a funcao
a ser otimizada seja exatamente quadratica. Agora, no entanto, hd a garantia de
decrescimento monotonico-da funcao objetivo a cada iteragao, qualquer que seja a
estrutura da fungao objetivo. Dessa forma, garante-se o atendimento de todos os re-
quisitos do teorema da convergéncia global num sentido similar ao da convergéncia
do Algoritmo do Gradiente. = Agora, para estabelecer a completa equivaléncia da
regiao de convergéncia do Algoritmo de Newton Modificado com a do Algoritmo do
Gradiente, basta mostrar‘que o primeiro é bem definido na mesma regiao de con-
vergéncia-do ultimo, ou seja, na bacia de atragao. Isto é assegurado pela proposicao
a seguir.

Proposicao 3.2 Seja f(-) : R"” — R wma fungdo continua infinitas vezes dife-
remcidvel. Seja ¥ um minimo local estrito dessa fun¢ao. Sob tais condicoes, a
Hessiana de f(-) € definida positiva na bacia de atragdo de x*. O

H& a necessidade de diferenciabilidade infinita de f(-) neste caso, ao contrario
das fungoes otimizadas com o algoritmo do gradiente, que precisam apenas ser di-
ferenciaveis uma vez. Isso decorre da possibilidade que haveria, se nao se colocasse
tal exigéncia, de se concatenar trechos de hiperplanos por meio de fungoes suaves,
que podem ser diferenciaveis até alguma ordem finita, formando bacias de atracao
suaves nas quais a Hessiana ¢é nula em diversos trechos. O método de Newton sim-
plesmente nao seria definido para tais fungoes. O minimo local, agora, ainda deve
ser estrito, pois do contrario poderia ter posto incompleto, também invalidando a
iteracao de Newton.

Definidas essas exigéncias para a aplicabilidade do método, é possivel estabelecer
a regiao de convergéncia.
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Proposicao 3.3 Seja o problema de otimizagao irrestrito definido por:

T = arg mzin f(x) (3.22)

sendox € R", com f(-) : R" — R uma func¢do continua infinitas vezes diferencidvel,
e x* um minimo estrito. Entao o Algoritmo de Newton Modificado ird convergir
para * para todo ponto inicial o situado na bacia de atracdo de x*. O

Corolario 3.2 Garantidas as condi¢oes da proposicao anterior, caso o Algoritmo
de Newton Modificado seja iniciado em um ponto xy nao situado na bacia de atra¢do
do minimo global *, podem ocorrer trés situacoes:

(i) O Algoritmo de Newton Modificado converge para o ménimo local estrito asso-
ctado a bacia de atracao em que estiver localizado seu ponto inicial &g.

(ii) Caso o ponto inicial esteja localizado em uma bacia deatragdo de um minimo
local nao estrito, o Algoritmo de Newton. Modificado pode ficar indefinido,
ou seja, a Hessiana pode nao ser inversivel. Caso contrdrio, ocorrerd con-
vergéncia para o minimo local.

(iii) Caso o ponto inicial nao esteja localizado em meénhuma bacia de atragdo, o
Algoritmo de Newton Modificado nao converge, podendo ainda ficar indefinido.

0

NoTA 3.5 O leitor deve estar ciente de que egistem procedimentos ad-hoc para evi-
tar que a “Hessiana”utilizada pelo algoritmo fique nao inversivel, ao custo da perda
de fidelidade para representar a verdadeira Hessiana da func¢ao, porém garantindo
as propriedades de convergéncia do algoritmo. Para maiores informagaes, ver [1].

3.6.3 Determinacao Numérica da Hessiana

Para a implementacao do método de Newton é necessario o calculo numérico da
Hessiana. Por.meio de um hipotético método de diferencas finitas, seria necessario
avaliar o gradiente da funcao objetivo em n + 1 pontos, no caso de uma fungao de
n varidveis. Sendo g(z) o gradiente da func@o objetivo, avaliado numericamente
por meio de diferengas finitas, como ja visto, o método de calculo da Hessiana por
diferencas finitas pode ser formulado como:

Algorithm 12:/Algoritmo do Calculo da Hessiana por Diferencas Finitas

1 k<« 0;

2 for (i <=1 until n) do

3 | Fy < [g(z+de;) —g(2)] /3
4 end

5 F+ [F, - F,;

Cada uma das avaliagoes de gradiente por sua vez envolve, como ja se viu, a
avaliacao da funcao objetivo em n + 1 pontos, de forma que o nimero total de
avaliagoes da fungao objetivo seria igual a (n + 1)
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3.6.4 Construcao da Hessiana

Examine-se novamente a equagao (3.19), reproduzida a seguir por conveniéncia:

Vf(z) =V f(z) + H(zo) (2 — 20) (3.23)

Essa equacao foi o ponto de partida para a construcao do método de Newton. Ela
pode também ser usada para construir um método para estimar a propria Hessiana
da funcao. Reescrevendo a equacao para dois pontos distintos x; e xa, e supondo
que a Hessiana seja constante em todo o espago, tem-se:

H(Zlfl — 932) = Vf(ml) — Vf(xg) (324)

Essa mesma féormula pode ser repetida para a seguinte sequéncia de vetores:

H(zy —x2) = Vf(z1) — Vf(22)
H(zy —x3) = Vf(x2) =V f(23)

: (3.25)
H(-Tnfl - zn) = vf(-z'nfl) = vf<xn)
H(xn - xn+1) - vf(xn) - Vf(xn—f—l)
Definindo os vetores v, e r; como:
Vi =% — it
(3.26)
ri =V f(z) - V(i)
tem-se que:
Hv, vy - v, =[riry -+ 1] (3.27)
Definindo V. = [v; vy - ~wple R = {rirs -+ r,], obtém-se:
HV =R (3.28)

Observando agora que os vetores v; tratam-se de escolhas, nota-se que é possivel
escolhé-los de tal forma que V seja inversivel, o que permite fazer:

H=RV"! (3.29)

Isso significa que, avaliando o gradiente da funcdo f(z) em n + 1 pontos ade-
quadamente escolhidos no espaco, é possivel determinar a Hessiana dessa funcao.

NotA 3.6 Ezaminando-se o resultado obtido, verifica-se que a equagdo (3.28) é
uma generalizacao do cdlculo da Hessiana por diferencas finitas. De fato, fazendo-
se V=41 tem-se de (3.28) que H = R/0.

NotA 3.7 Da mesma forma como o cdlculo do gradiente por diferencas finitas €
exato para fungoes polinomiais de grau 1, o cdlculo da Hessiana por (3.29) é exato
para fungoes polinomiais de grau 2 (desde que se disponha, no entanto, de avaliagoes
exatas do gradiente). Pelo mesmo motivo que no caso da avalia¢io exata do gra-
diente em funcoes lineares, caso a funcao seja quadrdtica, nao € necessario que os
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pontos em que se avalia o gradiente estejam proximos entre si para que o cdlculo da
Hessiana permaneca exato.

Diversos métodos de otimizacao baseiam-se na equagao (3.29), variando-se, de

método para método, a escolha dos pontos, o que implica na variacao da escolha de
V.

3.6.5 Correcao de Posto 1

Conforme foi visto, ha certa arbitrariedade na escolha dos vetores v;. A tnica
condi¢ao necessaria é de que sejam n vetores linearmente independentes. Dessa
forma, é possivel acrescentar restricoes ao problema de forma a obter férmulas re-
cursivas particularmente interessantes.

A ideia a ser explorada aqui é a de que deve ser possivel fazer a construcao
recursiva da estimativa da Hessiana, ou de sua inversa, durante o decorrer de um
processo de otimizacao. A estimativa parcial da Hessianaideve poder ser utilizada
no decorrer desse processo. Isso é particularmente til na etimizacao de funcgoes
nao-quadraticas, em que a Hessiana nao é constante: esse procedimento permite a
adaptacao continua da estimativa da Hessiana ao seu valor localmente valido.

E mostrado inicialmente o algoritmo mais simples possivel para realizar o pro-
cedimento pretendido, que serda aqui denominado Algoritmo de Correcao de Posto
1. B

Seja Hy, = H 1. A ideia é construir um -método recursivo que produza uma
sequéncia de estimativas [ﬁ k], a partir de novas avaliagoes da fungao e de seu gra-
diente em novos pontes: Observa-se inicialmente que a Hessiana de toda fungao é
simétrica, de forma que a recursao deve gerar uma matriz simétrica. A recursao
proposta é da forma:

ﬁk+1 = j‘vlk -+ akzsz (330)

sendo-2zg € R" e o € R. Claramente, o termo ozkzsz é uma matrix n X n com
posto no maximo igual a 1, de onde vem o nome do algoritmo. Supondo, para fins
de desenvolvimento da féormula de recursao, que a funcao objetivo fosse exatamente
quadrética, é preciso definir oy e 2, em fungao dos valores conhecidos (os vetores
[zx).e [Vf(zk)]), de forma a garantir que seja satisfeita a relagao:

ﬁkﬂrizvi Vi= 1,...,]€ (331)
Essa relagdo é quase a mesma que (3.28), mas exige a igualdade apenas para os
pontos ja avaliados, até o indice k. Em primeiro lugar, desenvolve-se a férmula para
i = k. Substituindo-se (3.30) em (3.31), obtém-se:
akzkz{rk =Vr — ﬁk’l"k

(’Uk — ﬁkrk)(vk — ﬁk’l"k)T = (akzszrk)(akr{zkzg) (332)

('Uk — Hkrk)(vk — Hk'l‘k)T = ak(z{rk)zakzkzg
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Com isso, quase se tem uma férmula para o termo de corregao a2z} em fungao

de Hy, v, e i, a menos da quantidade escalar ak(zg'rk)? Para se determinar essa
constante, faz-se:

T To 2T 7
rLQpZE2 e =1, (Vg — Hiry)

(3.33)

ar(ziry)? = rlvy, — vl Hyry,

Substituindo-se (3.33) em (3.32) obtém-se:
1 ~ -
akzkzg = T Py (’Uk — Hkrk)(vk — H]J‘k)T (334)
TV — T3 Hyry,
ou, voltando a férmula recursiva para calculo de H [
- ~ 1 » ~

Hk-i—l = Hk —+ ~ ('Uk — Hkrk)(vk — Hkrk)T (335)

T T
TV — T Hyry,

Essa férmula, por construcao, vale para v = k. Resta provar que ela é valida
para ¢ < k.

Teorema 3.3 Seja F' uma matriz. simétrica fiza, e suponha-se que gy, V1, ...,V
sejam vetores dados. Definam-se os wetores r; = Hw;, para iv= 0,1,..., k. Seja
ainda Hy uma matriz simétrica qualquer. Se:

. . 1

Hz = Hz + (v, — ﬁiri V; — ﬁi'r‘i T 3.36
i p o ) ) (3.36)
entao:
vi=H . \Vi=1,... k (3.37)
]

DEMONSTRAGAO: Por construcao, a relagao ¢ vélida para ¢ = k. Tome-se algum r;
para ¢ < k, e aplique-se esse vetor em Hy1:

Hjri = Hyri + — —— (v, — Hyry)wlr; —rTHr,
k417 k Z+r£kar£Hkrk (VK Kk (Vs =7 Hy i)

Note-se que Hy/€ simétrica, de forma que:
Flposts = Frs b —— (o — Flurs)0Trs — rT s
ki = Hiri ot e (on — Hyrg) (w1 — 1 Hieri)
Adota-se neste ponto, como hipétese de inducao, que
v; = Hyr;
seja verdade. Isso implica que:

ﬁk—i—l"'i =v; + % ! (v — ﬁkrk)(”g"'i - ’"g”i)

riv,—rTHpry
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Entretanto:
riv; =vl HTv; = vl Hv, = v]'r
de forma que:
v{ri — rf'vl- =0
ou:
ﬁkJrlri =
Isso completa a prova. |

Sabe-se entao que, usando-se a férmula (3.35), obtém-se.o valor exato da inversa
da Hessiana de uma funcao quadratica, a partir dem + 1 valores de pontos do espaco
com as respectivas avaliagoes de gradientes da funcao nesses pontos.

Algoritmo de Correcao de Posto 1

Com esse resultado, é possivel construir um algoritmo de otimizacao utilizando a
estrutura basica da “direcao de busca’, tomando Hj; como aproximacao da inversa
da Hessiana. O algoritmo se inicia em um ponto xy qualquer:

Algorithm 13: Algoritmo de Corre¢ao dePosto 1
1 k<« 0;

2 ﬁ]k +— I

3 gr < gradiente(f(-),xy);

4 while (critério de parada.-ndo for satisfeito) do
5 | dp < —Hugus

6 Qy < arg moi{n [y + ady);

7 Ty < X + apdy;

g1 < gradiente( (%), ®r11);
Vi < T — Ty 1,

10 Tk <= Gk — Git1;

11 Hy 1 = Hi + m
12 k+ k+1;

13 end

('Uk - ﬁk"'k)('vk - ﬁk"'k)TQ

Deve-se notar que, de maneira arbitraria, a estimativa ﬁ]o foi inicializada com
a matriz identidade. Qualquer outra matriz simétrica poderia ter sido utilizada, de
acordo com o Teorema 3.3. Esse teorema, juntamente com o resultado anteriormente
conhecido a respeito de aproximacoes quadraticas em geral, afirma que se a fungao
objetivo for quadratica, a convergéncia exata do algoritmo para o minimo global
da funcao necessariamente ocorrerd, e o numero de passos para tal convergéncia
serd menor ou igual a n. Note-se que, ao invés de serem tomados pontos quaisquer
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que gerem vetores v; linearmente independentes, estao sendo tomados exatamente
aqueles pontos gerados pelo processo de otimizacao. Caso a fungao seja exatamente
quadratica, estes pontos geram necessariamente vetores v; linearmente independen-
tes.

Sob o ponto de vista da otimizacao de uma funcao a prior: sabida ser quadratica,
nao ha vantagem computacional em se utilizar o Algoritmo de Corre¢ao de Posto
1 em lugar da férmula exata (3.21) junto com (3.29). A aplicagdo destas envol-
veria exatamente n + 1 avaliagoes de gradiente, enquanto a aplicacao-do algoritmo
de corregao envolveria um nimero menor ou igual a este de iteracoes, cada uma
envolvendo uma avaliacao de gradiente, mas envolvendo também uma otimizagao
unidimensional. Esta tltima poderia tornar o algoritmo de correcao mais caro sob
o ponto de vista computacional.

No entanto, sabe-se que no caso geral da otimizagao de fungoes nao-lineares
nao necessariamente quadraticas, a Hessiana da fungao objetivo nao serda em geral
constante. Nao ocorrerd, de qualquer forma, a_convergéncia em n iteragoes. O
Algoritmo de Corregao de Posto 1 torna-se nesse caso vantajoso, pois a estimativa
da Hessiana vai mudando dinamicamente, de'forma a acompanhar a variacao dessa
Hessiana. A cada passo, uma nova estimativa da Hessiana estd disponivel, para ser
utilizada no processo de otimizacao. Essas sao caracteristicas gerais da categoria de
métodos conhecidos como quase-Newton, que serd vista a seguir.

NoTA 3.8 Deve-se notar qua a primeira iteragao do Algeritmo de Correcao de
Posto 1, no formato anteriormente definido, corresponde exatamente a uma itera¢do
do Algorimto do Gradiente. Isso ocorre porque, com a matriz Hy sendo inicializada
wgual a identidade, no-primeiro passo a direcao de busca fica sendo igual a do gra-
diente. A partir do sequndo passo, a dire¢do comeg¢a a mudar gradativamente, até
que no m-€sima passo a dire¢ao passa a coimeidir com a do Algoritmo de Newton,
caso a Hessiana seja constantes~Caso a~Hessiana nao seja constante, a estimativa
do Algoritmo de Correcao de Posto.1 serd sempre inexata, e este algoritmo nao
chegard a convergir para. o comportamento hipotético do Algoritmo de Newton. No
entanto, como.a avaliacao. direta da Hessiana, ezigida pelo Algoritmo de Newton,
éinconveniente, na prdatica usualmente se opta pela utilizacdo de algoritmos quase-
Newton.

Convergéncia do Algoritmo de Correcao de Posto 1

O Algoritmo de Correcao de Posto 1 possui propriedades de convergéncia que sao
intermediarias-entre as do Algoritmo do Gradiente e as do Algoritmo de Newton.
Este ultimossimplesmente nao se aplica quando a Hessiana nao ¢é definida positiva.
Ja o Algoritmo do Gradiente exige apenas a existéncia de uma bacia de atragao
de uma fungao diferenciavel. O Algoritmo de Corregao de Posto 1 nao pode ficar
indefinido em nenhum ponto, uma vez que nao envolve inversoes de matrizes. No
entanto, sua formulagao permite que a matriz Hy,; venha eventualmente perder a
propriedade de ser positiva definida, caso ocorra:

rTv, —rTHyrp < 0 (3.38)
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Nao ha nada que impeca essa condicao de ocorrer. Isso significa que a férmula
de correcao pode eventualmente vir a ficar comprometida. Isso pode fazer com que o
algoritmo fique estacionado em pontos que nao correspondem a solugao do problema.
Pode-se evitar tal situagao incluindo-se uma verificagao dos autovalores de Hyy 1 a
cada passo, fazendo-se a substituicao dessa matriz pela identidade sempre que for
detectado um autovalor negativo. Isso iria restaurar as condigoes do teorema da
convergéncia global, e o algoritmo passaria a convergir exatamente na mesma regiao
que o Algoritmo do Gradiente.

3.6.6 Métodos Quase-Newton

Os métodos de otimizagao conhecidos como quase-Newton sao desenvolvidos de
acordo com a mesma logica que foi usada na elaboragao do Algoritmo de Correg¢ao de
Posto 1; de fato, este algoritmo é o exemplo mais‘simples de um algoritmo quase-
Newton. Usa-se uma regra recursiva que permiite a construgao iterativa de tuma
matriz Hj que corresponde a uma estimativa’da inversa da Hessiana da funcao ob-
jetivo. Como deve ter sido observado na segao anterior, diversas escolhas arbitrarias
de regras foram realizadas, de forma que outras escolhas teriam sido possiveis para
garantir as propriedades desejadas de Hj. Com os graus de liberdade ainda rema-
nescentes, é possivel produzir métodos que evitem as dificuldades de convergéncia
do Algoritmo de Corregdo de Posto I: essencialmente, deve-se garantir que a matriz
Hj. permaneca sempre definida positiva, e, preferencialmente, bem condicionada, ou
seja, com autovalores nao muito distanciados entre si.

Dois métodos particularmente eficientes foram desenvolvidos para produzir esti-
mativas recursivas para Hj, com as propriedades requeridas: o método DFP (Davidon-
Fletcher-Powell )€ o método BFGS (Broyden-Fletcher-Goldfarb-Shanno), assim ba-
tizados em hemenagem aos seus formuladores. Verificando-se, a posteriori, as co-
nexoes entre esses métodos, estes foram agrupados em uma estrutura mais geral, a
familia de Broyden. Esses métodos sao-apresentados a seguir.

Método DFP

A correcao proposta pelo método DFP é dada por:

T 7 T 17

CDFP - ’Uk’Uk Hk’l"k’f‘ka
PP =k 2 (3.39)

V. Tk rk1¥krk

Método BFGS

A correcao proposta pelo método BFGS é dada por:

T 17 T T 17 7 T
k o T T T :
T, Vg V. Tk T, Vg
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Familia de Broyden

A correcao genérica utilizada pelos métodos conhecidos como familia de Broyden é
dada por:

Cr(€) = (1 =& O™ + 0 e® (3.41)

Em todos os casos da familia de Broyden, incluindo os casos extremos BFGS e
DFP, a formula de atualizacao para a estimativa da inversa da Hessiana fica:

Hyr = Hy + Gy, (€) (3.42)

Para £ = 0, obtém-se o método DFP, e para £ = 1 o métodoBFGS.
Alguns fatos devem ser citados a respeito dessa correcao da familia de Broyden:

e A correcao realizada a cada passo é de posto possivelmente dois, o que é
facilmente verificavel por inspecao.

e A correcao é sempre definida positiva, de forma que a matriz Hy preservara
sua propriedade de ser definida positiva.

e Dados i e j tais que 0 < i < j < k, entdo v] Huj = 0, ou seja, v; e v; sdo
H-ortogonais.

e Dado ¢ tal que 0 < i < k, entao ﬁkHH'vi = v;.

As provas das afirmagdes anteriores podem ser encontradas em [1].

Algoritmos Quase-Newton

Os algoritmos obtidos a partir da familia de Broyden, aqui denominados Algoritmos
Quase-Newton, sao estruturades-no Algoritmo 14.

Evidentemente, para.a implementacao pura do Algoritmo DFP ou do Algoritmo
BFGS, nao haveria necessidade do calculo intermediario de Cy (&), sendo possivel
simplificar o programa, para o cdlculo direto de H x com a correcao correspondente.

Convergéncia da Familia Broyden

A maneira mais facil de provar a convergéncia dos algoritmos da familia de Broyden
seria introduzindo uma modificagao nos mesmos: se se faz com que a matriz Hy
seja periodicamente reinicializada, sendo igualada a identidade, torna-se possivel
a aplicacao direta do teorema da convergéncia global. Os algoritmos passam a
convergir exatamente como o Algoritmo do Gradiente.

E possivel, mesmo sem introduzir tal modificacao, provar a convergéncia dos
algoritmos, sendo necessarias entretanto algumas premissas adicionais sobre a fungao
a ser otimizada.

Exemplo

A utilizacao do algoritmo do método DFP no problema exemplo definido pela
equacao (3.5) resulta na trajetéria ilustrada na Fig. 3.6 a seguir.
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Algorithm 14: Algoritmos Quase-Newton

1 k<« 0;

j:]k +— I

g < gradiente(f(-),x);

while (critério de parada nao for satisfeito) do
dy, « —Hygi;

Qay  arg moi{n f(zr + ady);

(= B B VU M

7 Ty < T + Oékdk;
8 g1 < gradiente(f(-), Ery1);
9 Vi < Tp — Ty,

10 T < 9k — Gk+1;
CDFP _ vl  Hprgr[Hy
i = o!

11
’Uz‘)‘k 'l"sz'l"k ’
BFGS r{Hkrk vk'v{ vkr{Hk—I—Hkrkv{
12 Cy = 1+ =7 T — T ;
TV Vi Tk TV

138 | Cp(§) = (1= &) CPFP + £OPres;
14 Hyy = Hip + C (§);

15 k< k+1,

16 end

3.6.7 Método do Gradiente Conjugado

O método de otimizagao conhecido como Gradiente Conjugado foi desenvolvido ini-
cialmente na década de 1950 para a solucao de sistemas de equagoes lineares, e ainda
¢ um dos métodos mais utilizados para a solucao de sistemas com matrizes esparsas.
Em 1964, Fletcher e Reeves generalizaram o método para resolver problemas de
otimizacao nao linear irrestrita com fung¢oes nao quadraticas.

Considere um sistema‘de equagoes lineares da forma:

Az =b (3.43)

sendo A uma matriz simétrica definida positiva.

A solucao desse sistema de equagoes por meio do célculo da inversa de A é
impraticavel para sistemas grandes, por demandar muito esforco computacional.
Por essa razao, é interessante utilizar um método iterativo para a solucao desse
sistema.

Paraisso, vamos considerar um problema de minimizacao da funcao quadratica

a seguir:
1
flz) = §m’Am —bx +c (3.44)

O minimo global dessa funcao é obtido a partir da condicao de otimalidade de
primeira ordem:

Vi(z)=Az —b=0 (3.45)

Portanto, o minimo de f(z) é também a solugao do sistema linear (3.43), isto é,
podemos resolver o sistema linear (3.43) minimizando a funcao quadrética associada
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Problema Exemplo: Método DFP

Figura 3.6: Problema exemplo — solugao usando o Método DFP.

(3.44). Devido as particularidades do-problema, podemos desenvolver um método
do gradiente com calculo exato do tamanho de passo.
A diregao oposta ao gradiente equivale ao residuo na solucao do sistema (3.43):

—Vfx)=b—Az =r (3.46)
Assim, usaremos a seguinte férmula iterativa baseado no método do gradiente:
Lpi1 = Xyt Ty (347)

O tamanho do passo pode ser determinado analiticamente:

% (@k4a) = vf(xlﬁl)l% (@r41)
= V@) 5 on o)
= —Ti1Tk
Fazendo d
da (@ 41) = —Thpare =0 (3.48)

implica que os residuos sao ortogonais, ou seja:

T =0
(b — Azk+1)/rk =0
(b — A.’L'k — OékA’l"k),’f'k =0

(’I"k — OzkATk)/Tk =0
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10 -

-10 -5 0 5 10

Figura 3.7: Tlustragao de dois vetores conjugados em relagao a matriz Hessiana da
funcao quadratica cujas curvas de nivel sao mostradas.

que resulta em:
L

(3.49)

@ rl Ary,

Usando o passo 6timo determinado em (3.49) na férmula iterativa (3.47), es-
tamos minimizando a fungao quadratica (3.44) pelo método do gradiente. A mini-
mizacao dessa fungao quadraticanos levasa solugao do sistema linear original Az = b.
Contudo, essa abordagem herda os problemas do método do gradiente ja discutidos
anteriormente. Por essa razao, desenvolveu-se o método do gradiente conjugado,
em _que, além de se forcar a ortogonalidade dos residuos em iteragoes sucessivas,
utiliza-se uma férmula iterativa.da forma:

L1 — Ty + Ozkdk (350)

em que as diregoes dj sao conjugadas entre si.
Dois vetores v;€ v; sdo ditos conjugados em relagdo a matriz A, ou simplesmente
A-conjugados, se vale a relacao:

v;Av; = vjAv; = 0 (3.51)

Essa ideia é ilustrada na Figura 3.7. Se usarmos a transformacgao de variaveis
z = Bz de tal forma que A = B'B = B?, entao dois vetores z; e z; A-conjugados
serao ortogonais no espaco de variaveis transformado. Portanto, é intuitivo perceber
que a nocao de conjugacao de dois vetores em relacdo a matriz A traz consigo
informagao sobre a curvatura do espaco, isto é, a Hessiana da funcao quadratica
(3.44). Ao forcar que a proxima diregdo de busca di.; seja conjugada a diregao
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d;. estamos calculando uma nova direcao de busca que implicitamente considera
informacao sobre a curvatura da fungao quadratica.
O método do gradiente conjugado utiliza as férmulas recursivas a seguir:

Tpi1 =T + Ozkdk (352)
g1 =T — OékAdk (353)
dis1 =T + Brdy; (3.54)

com a imposicao de que as diregdes dj, sdo A-conjugadas e os residues sao ortogonais
entre si. Aplicando essas condigbes de ortogonalidade e conjugacao, podemos derivar
as férmulas para oy e [y.

Inicialmente, vamos verificar a equacao de atualizacaodos residuos:

Tip1 =b— Az
=b-A (ZL‘k + akdk)
=b-— A.’L‘k — OékAdk

=T — OzkAdk

A partir da condicao de ortogonalidade dos residuos, temos:

r;c+1"'k‘ =0
(Tk — OzkAdk),Tk =0
’I";g’l"k — Oékd;cA’I‘k =0

que fornece

Tk
= 3.55
w d;CA’I'k ( )
mas 1 = dj, — Bp—1di_1, ver(3.54), assim:
Tk
o = 3.56
“ T G Ad, — B dAdy (3.56)
Como os vetores dy, e di_; sao conjugados, entao:
L
= 57
T4 Ad, (3:57)

A partir da condicao de conjugacao dos vetores de direcao, temos:

1 Ady, =0
(ris1 + Brdi) Ady, = 0
’T’;H_lAdk + Bkd;cAd/§ =0
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que fornece

T;~c+1Adk
= —— 3.58
Isolando o termo Adj, em (3.53) e substituindo no numerador de (3.58):
Ly (T —Tht1)
= 3.59
Lembrando que rj e ry1 sao ortogonais, temos
rhqT
By = Rl kL (3.60)

o

Com base nessas equacgoes, temos o algoritmo do gradiente conjugado para mi-
nimizagao de fungoes quadraticas da forma (3.44) ou, de.maneira equivalente, para
a solucao de um sistema de equacoes lineares com matriz de coeficientes simétrica
definida positiva A.

Algorithm 15: Algoritmo dos Gradientes Conjugados
k < 0;
T < b— A.’l?k;
dk — Ti;
while (critério de parada nao for satisfeito) do
Ty < T+ pdy,
Thi1 ¢ Th — o Ady
8 Br < r‘%;;i:iﬂ ;
9 dy1 < Try1 + Brdy
10 k+— k+1;
11 end

W N =

5 A <

(=]

O método converge para o ponto de minimo de uma funcao quadratica com n
variaveis em n iteracoes. De fato, o método aproxima a solucao do problema por
meio da seguinte expansao:

k=1

Método dos Gradientes Conjugados para otimizagao nao linear

Como vimos o método dos gradientes conjugados foi desenvolvido a partir da ob-
servacao de que o problema de resolver um sistema linear com matriz de coeficientes
simétrica definida positiva é equivalente a minimizacao de uma funcao quadratica
convexa. Mais tarde, observou-se que é possivel adaptar o método para resolver
problemas de otimizacao nao linear mais gerais, nao apenas aqueles envolvendo
fungoes quadraticas. A versao do algoritmo para otimizacao nao linear de funcgoes
nao quadraticas apresenta trés diferencas basicas:
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1. A nocgao de residuo perde o significado, uma vez que a minimizacao da fungao
f(z) nao estd mais ligada a solugdo de um sistema linear do tipo Az = b. Por
essa razao nao é possivel utilizar a férmula recursiva para atualizar o residuo.
O vetor r; é utilizado em sua nocao mais geral, isto ¢, a direcao oposta ao
vetor gradiente.

2. Nao é possivel determinar o tamanho do passo «y analiticamente, devendo-se
empregar algum método de busca unidirecional para determinar.seu valor.

3. Nao é possivel determinar 3 analiticamente, havendo diferentes escolhas possiveis
para esse parametro.

Com essas modificagoes, temos o algoritmo apresentado a seguir.

Algorithm 16: Método dos Gradientes Conjugados
k < 0;

ro  —Vf(xo);

do(—'Tm

while (critério de parada nao for satisfeito) do
Qy < arg Irgn f(zx + ady);

U o W N =

Tpy1 < Ty + oypdy;
Ti1 — — V(@)
Calcular Sg;

di1 < Trp1 + Brdy;
k+k+1,;

end

© o N O

—
o

=
=

Duas férmulas bem conhecidas para o ¢alculo do parametro (3, sao:

/
T 1Tk+1
Fletcher-Reeves: Blf R _ H}i
Tka
!
rk+1(7'k+1 —T)
/

Polal¢Ribiere: gJf =

Como agora a funcao a ser otimizada nao é necessariamente uma funcao qua-
drética, o método em geral converge em mais do que n iteragoes. Portanto, como
o método produz'n diregoes conjugadas no espago n-dimensional, deve-se reiniciar
o método a cada n iteracoes, do contrario, as direcoes de busca deixarao de ser
conjugadas: Esse reinicio periddico é feito simplesmente fazendo dp = ry a cada n
iteragoes. De fato, o método sem reinicio periddico converge mais lentamente do que
o método adotando reinicio periddico. Se a fungao for quadratica, a convergéncia
continua garantida em n iteracoes.

Em geral, para fungdes nao quadraticas, os métodos quase-Newton convergem
em menos iteracoes, entretanto consomem mais operacoes e mais memoria por
iteragao, uma vez que uma aproximagao da inversa da matriz Hessiana deve ser
armazenada. Além disso, as equagoes de atualizacao dessa aproximacao demandam
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mais operacoes. O método dos gradientes conjugados requer o armazenamento dos
dois ultimos vetores gradiente e o vetor dj. Por essa razao, o método de otimizacao
dos gradientes conjugados é o mais indicado e o mais usado em problemas de oti-
mizacao nao linear de elevada dimensao, especificamente problemas com mais de
200 variaveis. Em problemas de baixa e média dimensao, os métodos quase-Newton
sao mais recomendados.

3.7 Meétodos Sem Derivadas

Nas segoes anteriores, discutimos métodos baseados em diregdes de busca que se
sustentam no calculo de derivadas da funcao objetivo. Contudo, dentro da estrutura
basica dos métodos de direcoes de busca, apresentada no inicio do capitulo, é possivel
incluir métodos que definem uma dire¢ao de busca dj, que nao depende de estimativas
do gradiente da funcao no ponto. Estes métodos sao discutidos aqui.

Em geral, métodos baseados em derivadas ¢onvergem mais rapidamente, mas
s6 podem ser usados em problemas caracterizados por fungoes continuamente di-
ferencidveis, o que nem sempre se verifica em algumas aplicagbes praticas. Além
disso, em problemas com muitas varidveis, os erros numéricos introduzidos por apro-
ximagoes no calculo do gradiente podem se tornar significativos, prejudicando a con-
vergéncia dos métodos baseados em derivadas. Por essas razoes; faz-se necessario
apresentar alguns métodos numéricos de otimizacao sem derivadas.

3.7.1 Método de Hooke-Jeeves

O Método Hooke-Jeeves foi proposto na década de 1960 para otimizar funcoes sem a
necessidade de que estas sejam continuas ou diferencidveis. O método testa pontos
padroes a partir do ponto atual, por essa razao é também conhecido como Pattern
Search na literatura. O método alterna diregoes de pesquisa na dire¢ao dos eixos
coordenados e diregoes construidas a partir do ponto da iteracao anterior, isto é,
dire¢oes na forma xy, 1 —xy.

O funcionamento do método é bastante simples. Seja z, o ponto atual, y, =
Z), e o vetor e; associado a i-ésima coluna da matriz identidade. O método testa
perturbagoes na direcao de cada eixo coordenado, de forma que um novo ponto y;,1
é gerado de acordo com alguma das seguinte situacoes:

1. 'y; = y;_1 + Xe; se uma perturbagao de magnitude A\ na direcao positiva da
coordenada ; causa uma melhora no valor da funcao objetivo;

2. ¥y; = Yi_1 — Ae; se uma perturbacao de magnitude A na dire¢ao negativa da
coordenada z; causa uma melhora no valor da fungao objetivo;

3. ¥y; = y;_1 caso contrario.

Note que as perturbacoes nas direcoes e; sao acumulativas, isto é, nesta pri-
meira fase, a sequéncia de pontos {yo,¥1, - - -, Yn} representa passos de tamanho A na
direcao daqueles eixos coordenados que diminuem o valor da funcao objetivo. Apds
serem feitas as perturbagoes em todas as coordenadas, obtém-se o ponto zx1 = vy,,.
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Observe que o ponto x,; foi obtido a partir de x; com perturbacoes nas dire¢oes
de melhora de cada varidavel. Assim, a direcao

dk =Tp1 — Tk (362)

sugere uma boa direcao de busca em que a fun¢ao objetivo pode decrescer mais
rapidamente. Em geral, essa direcao nao esta alinhada com os eixos c¢oordenados
e representa mais uma diregao padrao de pesquisa no método. Portanto, pode-se
fazer

Yo =Tpi1 + a(Tpy1 — k)

comegando a préxima iteracao a partir deste ponto. O algoritmo do método Hooke-
Jeeves é apresentado a seguir.

Algorithm 17: Método Hooke-Jeeves

1 k<« 0;
2 Yo < Tg;
3 while A > ¢ do
4 foreachi=0...,n—1do
5 if f(y; + Aeir1) < f(y:) then Y« yi + e ;
6 else if f(y; — \ei11) < f(y:) then yiyi &y = Aeiyq ;
7 else yi1 < ¥i;
8 end
9 if f(y,) <f(zx) then
10 Tr+15 Yn,
11 Yo' Tpy1 + O (T = T,);
12 else
13 A A/2;
14 Ty Ty,
15 Yo < Ti;
16 end
17 k< k+1,
18 end

As linhas 4-8 executam a fase de busca nos eixos coordenados. Se y,, for igual a
Ty, significa’que nao foi possivel minimizar a fungao em nenhuma dire¢ao coordenada
usando o tamanho atual de A. Assim, deve-se reduzir o valor de A\, em geral pela
metade, o que ¢ feito na linha 13.

O método Hooke-Jeeves é de facil programacao e é competitivo computacional-
mente com outros métodos. Modificagdes podem ser incluidas, tais como um \ para
cada variavel, ou acoplar métodos de busca unidirecional. No método basico, os
parametros a e A sao fixos e fornecidos pelo usuario. Contudo, estes parametros
podem ser determinados usando-se algum método de busca unidirecional.
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3.7.2 Método de Nelder-Mead

O método Nelder-Mead Simplex! foi desenvolvido também na década de 1960 para
otimizacao nao linear. O método nao exige que a fungao objetivo seja diferenciavel,
mas requer que a funcao seja continua. O método trabalha com n+ 1 pontos a cada
iteragao, eliminando o pior ponto. Um novo ponto é criado com base em regras
especificas que serao discutidas a seguir. Esses n + 1 pontos formam os vértices
de um politopo especial denominado simplex. Dessa forma, o comportamento do
método pode ser visto como a expansao, contracao e movimentacao desse simplex
no espaco de busca do problema.
No que se segue, usaremos a seguinte notacao:

e be{l,...,n+ 1} representa o indice do vértice com @ melhor valor.de fungao
objetivo;

e we {l,...,n+ 1} representa o indice do vértice com o pior valor de fungao
objetivo;

e s {l,...,n+ 1} representa o indice do vértice com o'segundo pior valor de

funcao objetivo;

O centréide da face oposta a x,, é dado por:

1

_l’_

n
T = x;
1

S|

i

3
€

Este ponto é usado-como base para definir as operacoes do método Nelder-
Mead Simplex. Essas operagoes modificam a forma do simplex adaptando-o as
caracteristicas da funcao. Cada operacao visa.gerar o novo vértice do simplex, que
substituira o'pior. vértice. Essas operagoes sao descritas a seguir e ilustradas na
Figura 3.8.

Reflexao: A operacao de reflexdo tem por objetivo rejeitar a pior solugao e avangar
o simplex na direcao de melhora. FEssa operagao reflete o pior vértice do
simplex sobre a face oposta:

z,=+a@—z,), a=1

Expansao: Essa operacao expande o simplex na direcao de melhora, gerando um
ponto além-do ponto de reflexao:

. =x+y(@—2x2,), 7=2
Contracao externa: Contrai o simplex na direcao de melhora:
o =z+p3&—2,), =05
Contracao interna: Contrai o simplex internamente:

z. =z—fF(&—=z,), =05
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Xe

o e o o
=4

Figura 3.8: Ilustracao das operacoes-de reflexao, contracao e expansao do simplex
no método Nelder-Mead.

Com base nestas operagoes, temos o Algoritmo 18 apresentado a seguir.

Observe que se o ponto refletido é melhor do que o melhor vértice, entao o
simplex foi refletido muma direcao que minimiza bastante a funcao objetivo, portanto
vale a pena expandir o simplex nessa direcao testando o ponto z.. Caso contrario, se
z, nao possuium valor tao bom de fungao objetivo, entao é provavel que o simplex
esteja proximo do ponto de mimimo, por isso sao testados os pontos de contragao
interna e externa, ver linhas 9-15.

Se nenhuma das operacoes resultou num novo vértice com valor de funcao ob-
jetivo pelo menos melhor do que aquele correspondente ao vértice a ser rejeitado,
entao deve-se encolher o simplex, pois o ponto de minimo estd em seu interior. A
operacao de encolhimento de'simplex ¢ feita preservando o vértice x;, e aproximando
os demais vértices na direcao de xy:

T —x,to(x,—x), t=1,....n+1,i#b (3.63)

com o = 0.5.

Finalmente, os critérios de parada sao em geral baseados no volume do simplex.
Por exemplo, pode-se monitorar os tamanhos das arestas ||x; — x| e caso estas
estejam abaixo de um valor de tolerancia, considera-se que o método convergiu.

IN#o confundir com o método Simplex desenvolvido para otimizacao linear.
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Algorithm 18: Método Nelder-Mead Simplex

© 00 N OO A~ W N o+

I N R T e o e T )
0 NN O A W N = O

k < 0;
while (critério de parada nao for satisfeito) do
Calcule z, =& + o (Z — z,);
if f(z,) < f(z;) then Expansao
calcule e avalie z.;
if f(z.) < f(z,) then Z,u = x.;
else x,., = x,;
else if f(z}) < f(z,) < f(zs) then &, 0 =2,;
else if f(z,) < f(z,) < f(z,) then Contracao externa
calcule e avalie x.;
if f(z.r) <f(zy) then z,., =2z, ;
Ise if f(z,) > f(x,) then Contragao interna
calcule e avalie z._;
if f(z.o) < f(zy) thenz,., =z, ;
else
‘ Encolhe o simplex
end

®

end
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3.8 Exercicios

1.

Dado f: R? = R, f(z) = 22 + 23 e 2y = (2,2)7, efetuar uma busca direcional
pelo Método da Segao Aurea na diregdo —V f(-) a partir de xy,. Considere
0 = 0.0001 para a estimacao do gradiente; s = 0.1 para determinar o intervalo
[a,b]; e € = 0.1 como critério de parada do Algoritmo da Secio Aurea [4].

Considere a fungao f definida por f(z) = (z1 + 23)* + 2(z; — 2.~ 4)*. Dado
um ponto o e um vetor dire¢do nao nulo d, seja 0(«) = f(xo + ad). Pede-se:
(i) Obter a expressao explicita para 0(«).

(ii) Calcular o valor de a* que resolve o problema dé minimizagao de 6(«),
sujeito a o € R, parazg = (5,4)T ed = (-2, 1)T.

Seja o problema de minimizar f(z) = 23 + z# — 27%3 usando o Método de

Newton a partir do ponto £y = (1,1)”. Um programa computacional cuida-

dosamente implementado para executar este métode nao foi bem sucedido.

Discutir as provaveis razoes para o nao sucesso [4].

Dada a funcio f(z) = 23 + 423 — 4z, — 8z, pergunta-se [4]:

(i) Qual a dire¢do de maximo declive no ponto z = (1, 1)7?

(ii) Qual a direcao inicial de busca d determinada pelo Método de Newton a
partir de o = (1,1)7?

(iii) Qual o comprimento de «, para© item (ii), tal que £; = z¢ + ad?

(iv) Usando o"Método de Newton, quantos passos sdo necessarios para mini-
mizar/f(z) partindo de zo = (1,1)T? Por que?

. Seja o problema definido por: minimize f(x) = x] — 223wy + 23 + 23 — 221 +4,

com —4 < xy, 1 £ 4. A partir. do ponto zo = (3, 4)7, encontrar o minimo
de f(z) usando: (i) o Método do Gradiente, (ii) o Método DFP, e (iii) o
Métode BEFGS. O mesmo critério de parada deve ser empregado para todos os
algoritmos. Plotar o grafico de f(x) versus o numero de iteragdes para os trés
métodos e comparar o.processo de convergencia. Os métodos convergem para
a mesma solugao? Por que?

Considere o seguinte problema:

minimize > [100(z; — 2?_;)? + (1 — 2;-1)?]
i=2

Assumindo os valores de dimensoes n = 5, 10, e 50, e ponto inicial xq =
(—-1.2,1.0,—1.2,1.0,...), encontrar o minimo de f(x) usando: (i) o Método
do Gradiente, (ii) o Método DFP, e (iii) o Método BFGS. O mesmo critério
de parada deve ser empregado para todos os algoritmos. Plotar o grafico de
f(z) versus o nimero de iteragoes para os trés métodos e comparar o processo
de convergéncia. Os métodos convergem para a mesma solucao? Por que?
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7. Considere o sistema de equacoes simultaneas

hi(x) =0 parai=1,...,1

(i) Mostre como resolver esse sistema de equagoes usando otimizagao irres-
trita. (Dica: considere o problema de minimizar »,_, |h;(z)|”, onde p é
um inteiro positivo.)

(ii) Usando essa estratégia, resolva o seguinte sistema:
2(ZL‘1 — 2)4 + (2?E1 — IL‘2)2 —4=0

23 —219+1=0
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