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3.4 Problema exemplo – solução usando o Método do Gradiente. . . . . . 16
3.5 Problema exemplo – variação da função objetivo versus o número de

iterações para o Método do Gradiente. . . . . . . . . . . . . . . . . . 17
3.6 Problema exemplo – solução usando o Método DFP. . . . . . . . . . . 29
3.7 Ilustração de dois vetores conjugados em relação à matriz Hessiana

da função quadrática cujas curvas de ńıvel são mostradas. . . . . . . . 30
3.8 Ilustração das operações de reflexão, contração e expansão do simplex

no método Nelder-Mead. . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



D
R
A
FT

iv LISTA DE FIGURAS



D
R
A
FT

Caṕıtulo 3

Métodos Numéricos para

Otimização Irrestrita

3.1 Introdução

No caṕıtulo anterior, vimos a caracterização da função objetivo, funções de restrição,
e as condições de otimalidade – condições de Karush-Kuhn-Tucker – que servem
de base para encontrar a solução de problemas de otimização utilizando técnicas
numéricas.

O objetivo deste caṕıtulo é o estudo de métodos numéricos para otimização
irrestrita, em particular Métodos de Direções de Busca. Esses métodos são a base
de vários pacotes comerciais de otimização e foram desenvolvidos a partir da ideia
básica de fazer o algoritmo evoluir encontrando novos pontos situados em direções
para as quais a função objetivo decresça, em relação ao ponto corrente.

A versão mais primitiva dessa famı́lia de métodos é o “Algoritmo do Gradiente”:
dado um ponto inicial no espaço de busca, obtém-se um novo ponto situado sobre
a reta definida por esse ponto e pelo gradiente da função objetivo. Essa é a direção
para a qual, localmente, a função mais rapidamente decresce, no sentido contrário
ao do vetor gradiente. Determina-se o novo ponto como aquele em que a função
objetivo atinge o mı́nimo sobre essa reta. A partir desse novo ponto, repete-se o
processo, até que seja satisfeito um critério de convergência.

Ao longo das décadas de 50 e 60 do século XX, tal método básico foi aperfeiçoado
para permitir que a direção de busca, na qual era feita a busca unidimensional, so-
fresse uma “correção”, dando origem a uma famı́lia de métodos chamados “Métodos
Quase-Newton”. Tal correção leva em conta mais informações a respeito da função
objetivo; além do valor de seu gradiente no ponto corrente, procura-se também levar
em consideração a curvatura da função. Aproximações de segunda ordem, por exem-
plo, levando em consideração estimativas da Hessiana da função objetivo, permitem
significativa aceleração de convergência dos métodos.

Os métodos agrupados neste caṕıtulo, sob a denominação de “Métodos de
Direção de Busca”, têm essa raiz, e possuem em comum as seguintes caracteŕısticas:

1. Cada novo ponto é obtido a partir de um processo de otimização unidimensi-
onal, que tem como ponto de partida o ponto anterior.

1
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2. A direção na qual é feita a busca unidimensional é uma função das avaliações
anteriores da função objetivo.

O caṕıtulo é dividido em sete seções. Inicialmente, é definida a estrutura básica
dos métodos de direção de busca. Posteriomente, é apresentado o problema exemplo
que será utilizado para ilustrar as caracteŕısticas dos métodos que serão estudados
no caṕıtulo. Então, é descrito o método de busca em direções aleatória. Este
é seguido pelo método do gradiente, que inclui a descrição do método da seção
áurea para minimização de funções unidimensionais. Em seguida, é apresentado
o método de aproximações quadráticas, i.e., o método de Newton e a famı́lia de
métodos quase-Newton, incluindo os métodos de Davidon-Fletcher-Powell (DFP) e
Broyden-Fletcher-Goldfarb-Shanno (BFGS). Finalmente, a última seção dedica-se
a métodos sem derivada: método de Hooke-Jeeves e método de Nelder-Mead. Ao
final do caṕıtulo é apresentada uma lista de exerćıcios. Leitura complementar sobre
os métodos discutidos neste caṕıtulo pode ser encontrada nas referências [1]– [2].

3.2 Estrutura Básica

Seja o problema de otimização mono-objetivo irrestrito:

xxx∗ = arg min
xxx

f(xxx)
(3.1)

sendo que xxx ∈ R
n e f(·) : Rn 7→ R

1. Dado um ponto inicial xxx0 6= xxx∗, obtém-se uma
sequência xxxk tal que xxxk → xxx∗ a partir do algoritmo de otimização. A famı́lia dos
algoritmos de direção de busca possui a estrutura:

Algorithm 1: Algoritmo de Direção de Busca

1 k ← 0;
2 while (critério de parada não for satisfeito) do

3 dddk ← hhh(xxx1, . . . ,xxxk, f(xxx1), . . . , f(xxxk));
4 αk ← arg min

α
f(xxxk + αdddk);

5 xxxk+1 ← xxxk + αkdddk;
6 k ← k + 1;

7 end

Nessa estrutura, hhh(·, . . . , ·) é uma função que em geral será recursiva, isto é, não
irá depender explicitamente dos pontos anteriores, mas irá armazenar sua influência
em variáveis intermediárias. Um algoritmo irá diferir de outro essencialmente pela
maneira como é calculada a direção de busca dddk, ou na escolha dessa função. No
caso do Método do Gradiente, tem-se simplesmente que:

dddk = −∇f(xxxk) (3.2)

No caso do Método de Newton, tem-se que:
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Hk = Hessiana(f(xxxk)) (3.3)

e

dddk = −H
−1

k ∇f(xxxk) (3.4)

Tanto o gradiente quanto a Hessiana são determinados por meio de diversas
avaliações da função f(·), tendo em vista a regra básica de que esta é o único tipo
de informação dispońıvel. A justificativa para a utilização dessas direções de busca
será estudada neste caṕıtulo. Os métodos chamados de quase-Newton substituem
a avaliação da Hessiana da função objetivo pela construção de uma estimativa para
essa Hessiana.

Os elementos para a construção de algoritmos de direções de busca são, portanto:

(i) um método de cálculo de direções de busca, possivelmente envolvendo o cálculo
de estimativas para o gradiente e para a Hessiana da função objetivo;

(ii) um método de minimização de funções de uma única variável;

(iii) um critério de decisão que permita afirmar que o algoritmo convergiu para
uma solução satisfatória, podendo ser terminada sua execução.

Esses elementos serão examinados a seguir. Antes porém, é apresentado o pro-
blema exemplo que será utilizado para ilustrar as caracteŕısticas dos métodos discuti-
dos neste caṕıtulo. A natureza do processo de convergência, intŕınseco aos métodos
de direção de busca, é estudada através do exame de convergência de um algo-
ritmo de interesse apenas conceitual: o algoritmo do método de busca em direções
aleatórias.

3.3 Problema Exemplo

Considere o problema:

xxx∗ = arg min
xxx

f(xxx) = 2x2
1 + x2

2 + 2x1x2 + x1 − 2x2 + 3

Sujeito a:
{
−6 ≤ x1 ≤ 6;−6 ≤ x2 ≤ 6

(3.5)

que representa a minimização de uma função de duas variáveis f(x1, x2). Neste
caso, a região fact́ıvel é definida pelos limites inferiores e superiores das variáveis
x1 e x2. Por ser uma função de apenas duas variáveis, f(x1, x2) pode ser repre-
sentada no plano x1 × x2 através de curvas de ńıvel, conforme indicado na Figura
3.1. Por inspeção, obtém-se que a solução é o ponto x1 = −1.5; x2 = 2.5. Este
problema exemplo será utilizado nas seções seguintes para estudar as caracteŕısticas
dos métodos de direção de busca. Antes porém, analisaremos as condições de otima-
lidade para assegurar que a solução obtida por inspeção é de fato o ponto mı́nimo
do problema.

As condições necessárias de primeira ordem requerem:
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∂f(·)

∂x1

= 4x1 + 2x2 + 1 = 0 (3.6)

∂f(·)

∂x2

= 2x2 + 2x1 − 2 = 0 (3.7)

que resulta em um sistema de duas equações e duas incógnitas, cuja solução é x∗
1 =

−1.5 e x∗
2 = 2.5.

As condições suficientes de segunda ordem requerem que a matriz Hessiana (3.8)
seja positiva definida.

H =

[
4 2
2 2

]
(3.8)

A verificação se a matriz Hessiana é positiva definida será feita por meio de dois
métodos: (i) cálculo dos autovalores de H , e (ii) cálculo dos determinantes de todas
as submatrizes que envolvem a diagonal principal de H .

• Cálculo dos autovalores de H :

∣∣∣∣
4− λ1 2

2 2− λ2

∣∣∣∣ = (4− λ1)(2− λ2)− 4 = 0

Os autovalores são λ1 = 5.24 e λ2 = 0.76; a matriz é positiva definida.

• Cálculo dos determinantes de todas as submatrizes que envolvem a diagonal
principal de H :

|4| > 0

[
4 2
2 2

]
= 4 > 0

A matriz é positiva definida.

Com isso, conclui-se que as condições de segunda ordem são satisfeitas e que
x∗
1 = −1.5 e x∗

2 = 2.5 é de fato o ponto de mı́nimo da função.

3.4 Método de Busca em Direções Aleatórias

Considere-se o Algoritmo 2 apresentado a seguir.
A função rand(n, 1) é definida tal que sua sáıda é um vetor de n componen-

tes aleatórios independentes e identicamente distribúıdos, segundo uma distribuição
Gaussiana, com média 0 e variância 1. A convergência desse algoritmo para o ponto
de mı́nimo de uma função unimodal é estabelecida no teorema a seguir.
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Figura 3.1: Solução Gráfica do Problema Exemplo

Algorithm 2: Algoritmo de Busca em Direções Aleatórias

1 k ← 0;
2 while (critério de parada não for satisfeito) do

3 dddk ← rand(n, 1));
4 αk ← arg min

α
f(xxxk + αdddk);

5 xxxk+1 ← xxxk + αkdddk;
6 k ← k + 1;

7 end

Teorema 3.1 Seja f(xxx) : Rn 7→ R uma função estritamente unimodal, e seja xxx0

um ponto qualquer em seu domı́nio. A aplicação do algoritmo de busca em direções
aleatórias a essa função, partindo desse ponto, produz uma sequência [f (xxxk)] que se
aproxima de forma monotônica do valor mı́nimo da função, f (xxx∗). �

Demonstração: A subrotina de minimização unidimensional embutida no algoritmo
implica que, qualquer que seja a direção dddk escolhida:

f(xxxk) ≤ f(xxxk−1)

o que demonstra a monotocidade da sequência. A unimodalidade estrita de f(xxx) implica
que para todo ponto xxxk 6= xxx∗ haverá posśıveis direções dddk para as quais ocorra:

f(xxxk + αkdddk) < f(xxxk)

para algum valor de αk. Se uma dessas direções não for escolhida, ocorrerá:

xxxk+1 = xxxk
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Do contrário:

xxxk+1 6= xxxk

e

f(xxxk+1) < f(xxxk)

Pela construção da função aleatória geradora do vetor dddk, há uma probabilidade não-nula
de geração de direções em que ocorre a diminuição do valor da função, de forma que a
aproximação fica demonstrada, ou seja:

∀ xxxk 6= xxx∗, ∃ N : f(xxxk+N ) < f(xxxk)

�

Note-se que o Teorema mostra que ocorre a aproximação, mas não a convergência
para o ponto de mı́nimo xxx∗. De qualquer forma, este é um algoritmo que efetivamente
funcionaria para a minimização de funções. A questão a ser observada é que uma
escolha adequada da direção de busca dddk, em substituição à aleatória, pode aumentar
em muito a eficiência do algoritmo de minimização. Os diversos algoritmos de
direções de busca surgem precisamente quando se propõem diferentes formas de se
fazer tal escolha de uma direção.

3.4.1 Exemplo

A utilização do algoritmo de busca em direções aleatórias no problema exemplo
definido pela equação (3.5) resulta na trajetória representada na Fig. 3.2 a seguir.
Nesse exemplo, usou-se o ponto inicial xxx0 = (4,−4)T e o número máximo de iterações
fixado em 20. O gráfico ilustrando a variação do valor da função objetivo f(xxx) versus
o número de iterações é mostrado na Fig. 3.3.

3.5 Método do Gradiente

A primeira escolha razoável para uma direção de busca eficaz, dddk, é a da direção
contrária à do gradiente da função no ponto corrente xxxk. Essa escolha se justifica
com a observação de que, localmente, essa é a direção na qual a função f(·) decresce
mais rapidamente. Isso define o Algoritmo do Método do Gradiente, esquematizado
no Algoritmo 3.

Esse algoritmo baseia-se apenas na informação local a respeito da variação da
função f(·) em todas as direções do espaço, sintetizada no gradiente da função f(·).
A única suposição impĺıcita na aplicação desse algoritmo é a de que a função f(xxx)
seja diferenciável.

Os elementos construtivos desse algoritmo são examinados a seguir.
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Figura 3.2: Problema exemplo – solução usando o Método de Busca em Direções
Aleatórias.

Algorithm 3: Algoritmo do Método do Gradiente

1 k ← 0;
2 while (critério de parada não for satisfeito) do

3 gggk ← gradiente(f(·),xxxk));
4 dddk ← −gggk;
5 αk ← arg min

α
f(xxxk + αdddk);

6 xxxk+1 ← xxxk + αkdddk;
7 k ← k + 1;

8 end

3.5.1 Cálculo do Gradiente

No contexto da teoria de otimização, a suposição mais geral a respeito da informação
sobre o sistema sendo otimizado é: dispõe-se apenas de um modelo que, recebendo
como entrada o vetor de variáveis de otimização, fornece o valor da função-objetivo
para tal vetor. Portanto, não se dispõe, em geral, de funções que explicitamente
forneçam o gradiente da função objetivo para certa especificação do vetor de variáveis
de otimização, o que torna necessária a construção de um algoritmo para calcular o
gradiente de f(xxx).

O algoritmo mais simples que se pode imaginar para o cálculo numérico aproxi-
mado do gradiente de uma função é decorrência imediata da definição de gradiente,
sendo substitúıda a fórmula diferencial por diferenças finitas. Seja xxx ∈ R

n o vetor
de variáveis de otimização, e seja eeei o vetor definido por:
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Figura 3.3: Problema exemplo – variação da função objetivo versus o número de
iterações para o Método de Busca em Direções Aleatórias.

eeei =




0
...
0
1
0
...
0




→ i-esima posição (3.9)

Considere-se um certo δ > 0, tal que δ ≈ 0. O algoritmo de cálculo do vetor
gradiente ggg no ponto xxx pode ser definido como:

Algorithm 4: Algoritmo do Cálculo do Gradiente

1 k ← 0;
2 for (i← 1 until n) do
3 gi ← [f(xxx+ δeeei)− f(xxx)] /δ;
4 end

5 ggg ← [g1, . . . , gn]
T ;

Nota 3.1 Deve-se observar que o Algoritmo de Cálculo do Gradiente é exato para
funções lineares, ou seja, para funções cuja série de Taylor termina no termo de
primeira ordem. Nesse caso, δ pode assumir qualquer valor: o cálculo será exato
mesmo para δ grande.

Exemplo 3.1 Seja a função de duas variáveis f(xxx), definida por
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f(xxx) = 2x2
1 + x2

2 + 2x1x2 + x1 − 2x2 + 3

Analiticamente, o gradiente dessa função é dado por:

∇f(xxx) =

[
4x1 + 2x2 + 1
2x1 + 2x2 − 2

]

Por essa fórmula anaĺıtica, sabe-se que no ponto xxx0 = [0 0]T o gradiente é igual a:

∇f(xxx0) =

[
1
−2

]

Utilizando-se o algoritmo de diferenças finitas, para δ = 0.0001, obtém-se a estima-
tiva de gradiente igual a:

∇̂f(xxx0) =

[
1.0002
−1.9999

]

Deve-se notar que o Algoritmo do Gradiente não utiliza nenhuma informação anaĺıtica
a respeito da função. A única informação utilizada é proveniente de avaliações da
função em diferentes pontos.

3.5.2 Otimização Unidimensional

A seguinte linha do algoritmo do gradiente é agora examinada:

αk ← arg min
α

f(xxxk + αdk)

O cálculo de αk é feito fixando-se o ponto atual xxxk e uma direção de busca, dddk.
Isso faz com que a função objetivo, f(xxx), que originalmente seria de n variáveis, ou
seja, dependeria de um vetor xxx de dimensão n, torne-se agora uma função de uma
única variável, α.

A otimização de funções de uma única variável, em uma única dimensão, por-
tanto, é tarefa substancialmente mais simples que a otimização em diversas di-
mensões. Podem-se construir algoritmos diversos para resolver esse problema, ba-
seados em premissas diversas a respeito da função a ser otimizada. Uma premissa
comum, que necessariamente possui validade local em um ponto de ótimo estrito, é
a de que a função-objetivo possua um único mı́nimo local no domı́nio em questão.

A estratégia que será adotada compõe-se de duas etapas:

1. Cercar o valor ótimo α∗
k, o qual determina o ponto de mı́nimo da busca unidi-

mensional, xxxk+1 = xxxk + α∗
kdddk. Para tal constroe-se um intervalo [a, b] em que

α∗
k ∈ [a, b];

2. Reduzir o intervalo [a, b] até a precisão desejada, ou, até que |α− α∗| < ξ.



D
R
A
FT

10 Notas de Aula de Otimização

Determinação do Intervalo [a, b]

Determinar o intervalo [a, b] resume-se a cercar α∗ a partir de xxxk e dar passos na
direção dddk enquanto a função θ(α) = f(xxxk + αdddk) decrescer. Assim que esta função
volta a crescer, significa que passou-se por uma depressão ou por um ponto de
mı́nimo α∗ naquela direção (direção dddk). Portanto, basta fechar o intervalo [a, b] que
contém esta depressão.

Esta ideia está organizada no Algoritmo 5. Admite-se que θ(·) é unimodal, a e
b são o ińıcio e fim, respectivamente, do intervalo [a, b], s é o comprimento do passo
inicial, e NFC representa o contador do número de avaliações da função objetivo.

Algorithm 5: Algoritmo para Determinação do Intervalo

1 a← 0;
2 b← s;
3 calcule θ(a) = θ(0) = f(xxxk);
4 calcule θ(b);
5 NCF1← 2;
6 while θ(b) < θ(a) do
7 a← b;
8 θ(a)← θ(b);
9 b← 2b;

10 calcule θ(b);
11 NFC1← NFC1 + 1;

12 end

13 if NFC1 ≤ 3 then

14 a← 0;
15 else

16 a← a/2;
17 end

18 return a, b;

As seguintes observações são acrescentadas:

(i) Ao dar passos enquanto a função decresce está se fazendo a = b e b = 2b. Essa
escolha é arbitrária. Pode-se optar por b = b+s, ou b = 3b, etc. A consequência
direta desta escolha será um menor ou maior número de iterações e intervalo
final.

(ii) . . .

Redução do Intervalo [a, b]

Há vários métodos, diretos e indiretos, que podem ser utilizados para reduzir o
intervalo [a, b]; veja por exemplo [1] e [3]. Vamos concentrar a nossa atenção no
método da seção áurea.

Teorema 3.2 Seja uma função θ(·) : R 7→ R. Seja um domı́nio [a, b] ⊂ R, no qual
θ(·) possui um único mı́nimo local x∗. Sejam ainda dois pontos xa e xb tais que
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a < xa < xb < b (3.10)

Se ocorrer

θ(xa) < θ(xb) (3.11)

então a solução minimizante x∗ não se encontra no intervalo [xb, b], e se ocorrer

θ(xa) > θ(xb) (3.12)

então a solução minimizante x∗ não se encontra no intervalo [a, xa].

�

Demonstração: Tome-se o interva-lo [a, xb]. Nesse intervalo, há algum ponto x0 para

o qual f(x0) ≤ f(x) ∀ x ∈ [a, xb] e x0 6= xb, pela hipótese (3.11). Logo, x0 é um mı́nimo

local no segmento [a, xb]. Como x0 6= xb, tem-se que no intervalo [a, b] x0 permanece sendo

mı́nimo local. Acrescentando-se agora a hipótese de que só há um mı́nimo local em [a, b],

obtém-se que x∗ = x0, que é o resultado pretendido. Para o outro lado do segmento, o

argumento é análogo. �

Com esse teorema, é posśıvel construir um algoritmo que se fundamenta na
lógica de excluir, a cada passo, um trecho do segmento considerado, de forma a
fazê-lo contrair-se. Quando o segmento estiver suficientemente “pequeno”, pode-
se considerar que ocorreu a convergência para o ponto de mı́nimo da otimização
unidimensional. A precisão dessa convergência, ou seja, o erro máximo cometido,
será igual à metade do comprimento remanescente.

Existe, claramente, uma maneira de escolher os pontos xa e xb dentro do seg-
mento, de forma a maximizar, em média, o comprimento do intervalo a ser exclúıdo
a cada passo, minimizando assim o número de iterações necessário para se atingir
determinada precisão. Uma escolha frequentemente adotada é definida pela “seção
áurea”, em que escolhem-se xa e xb de forma que:

xa = b− 0.618(b− a) (3.13)

xb = a+ 0.618(b− a) (3.14)

O fator 0.618 corresponde à “razão áurea”, utilizada pelos antigos gregos para definir
a razão dos lados adjacentes de um retângulo que seria “perfeita”sob o ponto de vista
estético.

Com esta escolha, o método de minimização de uma função real no intervalo
[a, b] para se atingir uma precisão ǫ/2 pode ser definido conforme apresentado no
Algoritmo 6.

Claramente, a cada passo do algoritmo o comprimento do intervalo [a, b] é mul-
tiplicado por um fator menor ou igual a 0.618, de forma que pode-se calcular o
número esperado máximo de passos para se atingir a precisão desejada:

lk ≤ 0.618k−1l1 (3.15)
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Algorithm 6: Algoritmo da Seção Áurea

1 xa ← b− 0.618(b− a);
2 xb ← a+ 0.618(b− a);
3 θa ← θ(xa);
4 θb ← θ(xb);
5 while (b− a > ǫ) do
6 if (θa > θb) then
7 a← xa;
8 xa ← xb;
9 xb ← a+ 0.618(b− a);

10 θa ← θb;
11 θb ← θ(xb);

12 else

13 b← xb;
14 xb ← xa;
15 xa ← b− 0.618(b− a);
16 θb ← θa;
17 θa ← θ(xa);

18 end

19 end

20 α← (a+ b)/2;

sendo lk o comprimento do intervalo [a, b] no passo k.
É importante salientar que é posśıvel construir outros algoritmos, inclusive mais

eficientes que o Método da Seção Áurea, para a otimização de funções de uma única
variável. Para maiores detalhes, podem ser consultadas as referências [1] e [3].

Exemplo 3.2 Tome-se a mesma função do Problema Exemplo.

f(xxx) = 2x2
1 + x2

2 + 2x1x2 + x1 − 2x2 + 3

O gradiente da função é dado por:

∇f(xxx) =

[
4x1 + 2x2 + 1
2x1 + 2x2 − 2

]

No ponto xxx0 = [−1 1]T o gradiente é igual a:

∇f(xxx0) =

[
−1
−2

]

A função θ(·), tomada a partir do ponto xxx0 na direção de −∇f(xxx0), pode ser encon-
trada analiticamente por substituição da variável vetorial xxx pela variável escalar α.
Baseando-se neste conceito, tem-se que:

xxx = xxx0 − α∇f(xxx0)
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ou:
[
x1

x2

]
=

[
−1
+1

]
− α

[
−1
−2

]
=

[
α− 1
2α+ 1

]

Realizando as substituições necessárias, obtém-se a função unidimensional:

θ(α) = 2(α−1)2+(2α+1)2+2(α−1)(2α+1)+(α−1)−2(2α+1)+3 = 10α2−5α+1

Essa função possui mı́nimo para:

dθ(α)

dα
= 20α− 5 = 0

ou seja, para α = 1/4. Para esse valor de α, o novo ponto xxx obtido no espaço
vetorial é:

[
x1

x2

]
=

[
−1
+1

]
−

1

4

[
−1
−2

]
=

[
−3/4
+3/2

]
=

[
−0.75
+1.5

]

Utilizando o algoritmo da seção áurea, obtém-se uma estimativa do ponto que mi-
nimiza θ(·) na direção considerada. Este ponto é igual a:

[
x1

x2

]
=

[
−0.7501
+1.4998

]

para uma precisão estabelecida de ǫ = 0.001. Deve-se notar que o ponto determinado
não é o ponto de mı́nimo global da função f(xxx), nem corresponde a um mı́nimo local
dessa função, pois o gradiente não se anula nesse ponto. Este vetor apenas minimiza
a função f(·) sobre a reta definida pelo ponto xxx0 e pela direção de busca −∇f(xxx0).

3.5.3 Critérios de Parada

Após produzir uma sequência de estimativas da função objetivo, avaliada para uma
sequência de pontos do espaço de variáveis de otimização, o algoritmo de otimização
eventualmente deverá se aproximar de um ponto de ótimo local da função. Como
a aproximação para o ótimo ocorre de forma assintótica, é necessário em algum
momento tomar a decisão de interromper o algoritmo, sendo a aproximação obtida
considerada o valor ótimo alcançado.

Alguns critérios posśıveis, para a tomada dessa decisão, seriam:

Estabilização do Valor da Função-Objetivo

Caso o valor da função-objetivo, ao longo de um certo número de iterações, não varie
mais que certo percentual da diferença entre seu valor máximo ocorrido em todo o
processo de otimização e seu valor mı́nimo verificado também em todo o processo, é
posśıvel interromper o algoritmo supondo que dificilmente viriam a ocorrer melhorias
significativas da função objetivo com essa continuidade.

A seguir é apresentado um trecho de algoritmo que exemplifica a construção
desse critério, o qual considera como estabilizado um algoritmo que varia, nas ulti-
mas cinco iterações, menos de 0.0001 da “amplitude”∆f da função objetivo, sendo
fmax e fmin, respectivamente, o máximo e o mı́nimo valor ocorrido para a função
objetivo durante toda a execução.
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Algorithm 7: Critério de Parada: Função Objetivo

1 ∆f ← fmax − fmin;
2 f5+ ← max {f(xxxk), f(xxxk−1), f(xxxk−2), f(xxxk−3), f(xxxk−4), f(xxxk−5)};
3 f5− ← min {f(xxxk), f(xxxk−1), f(xxxk−2), f(xxxk−3), f(xxxk−4), f(xxxk−5)};
4 δf ← f5+ − f5−;
5 if (δf < 0.0001∆f) then
6 parada← true;
7 else

8 parada← false;
9 end

Nota 3.2 O leitor deve estar atento para o fato de que é necessário calcular o valor
∆f , não sendo recomendável utilizar, em seu lugar, nem fmin nem fmax. Fica para
o leitor o exerćıcio de explicar que problemas poderiam ocorrer caso fossem feitas
tais escolhas.

Nota 3.3 Seria entretanto posśıvel utilizar, para ∆f , alguma definição um pouco
mais sofisticada, que por exemplo exclúısse alguns dos máximos valores ocorridos
para a função objetivo antes do cálculo de fmax. Tal procedimento aumenta a com-
plexidade do algoritmo, mas pode torná-lo mais estável.

Estabilização do Vetor de Variáveis de Otimização

Outra alternativa para o problema de formulação de critérios de parada de algoritmos
de otimização seria a constatação de que o vetor de variáveis se estabilizou em algum
ponto do espaço.

A seguir é apresentado um trecho de algoritmo que exemplifica a construção
desse critério, o qual considera como estabilizado um algoritmo cujo vetor de variáveis
varia, nas últimas cinco iterações, menos de 0.0001 da “faixa de variação”verificada
do vetor de variáveis ao longo de toda a execução. Sejam xxxmax e xxxmin os vetores
cujas componentes são o máximo valor ocorrido para cada componente do vetor de
variáveis durante toda a execução e o vetor cujas componentes são o mı́nimo va-
lor ocorrido para cada componente do vetor de variáveis durante toda a execução
do algoritmo, respectivamente. Aqui as operações com vetores são entendidas como
operações realizadas sobre cada uma das componentes dos operandos. A comparação
entre dois vetores será verdadeira se cada uma das comparações de componentes for
verdadeira.

Nota 3.4 Novamente, observa-se que não é recomendável utilizar, para construir
esse critério de parada, nem xxxmax, nem xxxmin, nem xxxk−1 (embora essa última alter-
nativa seja frequentemente usada na literatura) em substituição a ∆xxx. Fica para o
leitor a tarefa de explicar que problemas ocorreriam nesses casos.

Anulação do Vetor Gradiente

Por fim, é posśıvel ainda determinar o final de um processo de otimização com uma
informação a respeito do vetor gradiente da função objetivo. Sabendo-se a priori
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Algorithm 8: Critério de Parada: Vetor de Variáveis

1 ∆xxx ← xxxmax − xxxmin;
2 xxx5+ ← max {xxxk,xxxk−1,xxxk−2,xxxk−3,xxxk−4,xxxk−5};
3 xxx5− ← min {xxxk,xxxk−1,xxxk−2,xxxk−3,xxxk−4,xxxk−5};
4 δxxx ← xxx5+ − xxx5−;
5 if (δxxx < 0.0001∆xxx) then
6 parada← true;
7 else

8 parada← false;
9 end

que a função-objetivo é diferenciável, seu gradiente será nulo em seus pontos de
mı́nimos locais (condição necessária de primeira ordem). Pode-se, portanto, detectar
a ocorrência desses mı́nimos pela monitoração do valor da norma do vetor gradiente.

No trecho do algoritmo a seguir, é mostrada uma implementação desse teste
sobre o vetor ggg(xxx), que é o gradiente da função objetivo f(·) no ponto xxx. A base da
comparação adotada é o máximo valor da norma do gradiente ocorrido ao longo de
toda a execução, denotado por Mmax.

Algorithm 9: Critério de Parada: Vetor Gradiente

1 Mg = max {‖ggg(xxxk)‖ , ‖ggg(xxxk−1)‖ , ‖ggg(xxxk−2)‖};
2 if (Mg < 0.0001Mmax) then
3 parada← true;
4 else

5 parada← false;
6 end

3.5.4 Convergência

Pode-se mostrar, usando o teorema da convergência global, que o Algoritmo do
Método do Gradiente converge para a solução dos problemas de otimização mediante
as condições formuladas na proposição a seguir.

Proposição 3.1 Seja o problema de otimização irrestrito definido por:

xxx∗ = arg min
xxx

f(xxx) (3.16)

sendo xxx ∈ R
n, com f(·) : R

n 7→ R uma função cont́ınua. Então o Algoritmo
do Gradiente irá convergir para xxx∗ para todo ponto inicial xxx0 situado na bacia de
atração de xxx∗. �

Demonstração: As condições para a validade do teorema da convergência global

se complementam quando se restringe o domı́nio da função à bacia de atração do ponto

de mı́nimo. Nessa situação, os vetores obtidos ao longo das iterações do Algoritmo do
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Gradiente apresentam valores de f(·) descendentes. As demais condições não dependem

do domı́nio. �

Corolário 3.1 Caso o Algoritmo do Gradiente seja iniciado em um ponto xxx0 não
situado na bacia de atração do mı́nimo global xxx∗, podem ocorrer duas situações:

1. O Algoritmo do Gradiente converge para o mı́nimo local associado à bacia de
atração em que estiver localizado seu ponto inicial xxx0.

2. Caso o ponto inicial não esteja localizado em nenhuma bacia de atração, o
Algoritmo do Gradiente não converge.

�

3.5.5 Exemplo

A utilização do algoritmo do método do gradiente no problema exemplo definido pela
equação (3.5) resulta na trajetória ilustrada na Fig. 3.4 a seguir. Nesse exemplo,
usou-se o ponto inicial xxx0 = (4,−4)T e, como critério de parada, o número máximo
de iterações fixado em 20. O gráfico ilustrando a variação do valor da função objetivo
f(·) versus o número de iterações é mostrado na Fig. 3.3.
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Figura 3.4: Problema exemplo – solução usando o Método do Gradiente.

3.6 Aproximações Quadráticas

Suponha-se agora que, conhecendo-se a priori a natureza da função objetivo, saiba-
se que é razoável admitir que essa função corresponda, de maneira aproximada, a
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Figura 3.5: Problema exemplo – variação da função objetivo versus o número de
iterações para o Método do Gradiente.

uma função quadrática, dentro de algum domı́nio que contenha o ponto de mı́nimo
xxx∗. A aproximação é feita ao redor de um ponto xxx0, também contido nesse domı́nio:

f(xxx) ≈ ccc0 + ccc1 · (xxx− xxx0) + (xxx− xxx0)
TC2(xxx− xxx0) (3.17)

sendo ccc0 ∈ R
n, ccc1 ∈ R

n e C2 ∈ R
n×n. Essa hipótese, de fato, corresponde à suposição

de que a função f(xxx) seja de classe C∞, pois toda função dessa classe pode ser escrita
em termos de uma série de Taylor:

f(xxx) = f(xxx0) +∇f(xxx0)
T (xxx− xxx0) +

1

2
(xxx− xxx0)

TH(xxx0)(xxx− xxx0) +O(3) (3.18)

onde o vetor ∇f(xxx0) é o gradiente da função no ponto xxx0, a matriz H(xxx0) é a
Hessiana da função em xxx0, e O(3) é o conjunto das contribuições dos termos de
ordem maior ou igual a três. O gradiente da função f(xxx) dada por (3.18) é:

∇f(xxx) = ∇f(xxx0) +H(xxx0)(xxx− xxx0) (3.19)

Sabe-se, entretanto, a partir das condições de primeira ordem, que no ponto de
mı́nimo local xxx∗, o gradiente se anula, de maneira que:

∇f(xxx∗) = ∇f(xxx0) +H(xxx0)(xxx
∗ − xxx0) = 0 (3.20)

de onde se obtém a fórmula de determinação do ponto de mı́nimo:

xxx∗ = xxx0 −H(xxx0)
−1∇f(xxx0) (3.21)

Ou seja, se a função a ser otimizada for exatamente quadrática, basta se conhecer
o gradiente e a Hessiana em um ponto qualquer xxx0 para se determinar, em uma
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única iteração, o ponto de mı́nimo xxx∗, através da equação (3.21). Se a função for
aproximadamente quadrática num certo domı́nio, a equação (3.21) pode ainda ser
empregada para produzir estimativas do ponto de mı́nimo que convergem muito
mais rapidamente que aquelas produzidas pelo Algoritmo do Método do Gradiente.

3.6.1 Método de Newton

A partir da expressão definida pela equação (3.21), pode-se construir um algoritmo
de minimização de funções que, em sua forma mais simples, envolve a aplicação
iterativa de (3.21) para a busca do ótimo. O Método de Newton emprega esta
abordagem (Algoritmo 10).

Algorithm 10: Algoritmo do Método de Newton

1 k ← 0;
2 while (critério de parada não for satisfeito) do

3 gggk ← gradiente(f(·),xxxk);
4 Hk ← Hessiana(f(·),xxxk);
5 xxxk+1 ← xxxk −H−1

k gggk;
6 k ← k + 1;

7 end

Convergência

No caso da otimização de funções com forma precisamente quadrática, o Algoritmo
do Método de Newton não apenas converge para a solução exata do problema, como
também o faz de maneira não iterativa, em um único passo. Essa não é, entretanto,
a situação geral: as funções a serem otimizadas, embora frequentemente sejam duas
vezes diferenciáveis, o que é necessário para a aplicabilidade desse método, na mai-
oria das vezes não são quadráticas.

Nessa última situação, o Método de Newton, na formulação apresentada, pode
até mesmo não convergir. Observando os requisitos arrolados entre as hipóteses do
teorema da convergência global, verifica-se que o Algoritmo de Newton não satisfaz
à exigência de que a iteração deva ser descendente, ou seja, de que o valor da função
objetivo necessariamente decresça a cada iteração. De fato, nada garante que o
cálculo anaĺıtico da solução que seria a exata para um problema quadrático, se
aplicado a um problema que não é quadrático, não venha a levar até mesmo a um
aumento no valor da função objetivo.

3.6.2 Método de Newton Modificado

Para garantir que o algoritmo produza a diminuição monotônica do valor da função
objetivo, mesmo para funções não-lineares que tenham comportamento significati-
vamente diferente da função quadrática, é empregada uma variação do Algoritmo
de Newton que incorpora um aspecto crucial das caracteŕısticas de convergência do
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Algorithm 11: Algoritmo do Método de Newton Modificado

1 k ← 0;
2 while (critério de parada não for satisfeito) do

3 gggk ← gradiente(f(·),xxxk);
4 Hk ← Hessiana(f(·),xxxk);
5 dddk ← −H

−1

k gggk;
6 αk ← arg min

α
f(xxxk + αdddk);

7 xxxk+1 ← xxxk + αkdddk;
8 k ← k + 1;

9 end

Algoritmo do Gradiente: a execução de uma minimização unidimensional em cada
direção.

Com exceção da rotina de cálculo da Hessiana, todas as subrotinas envolvidas
na construção desses algoritmos já foram apresentadas por ocasião da construção do
Algoritmo do Gradiente, e são reaproveitadas aqui.

Convergência

O algoritmo modificado é exatamente equivalente ao Algoritmo de Newton original,
no sentido de que ambos produzem a mesma sequência de pontos, caso a função
a ser otimizada seja exatamente quadrática. Agora, no entanto, há a garantia de
decrescimento monotônico da função objetivo a cada iteração, qualquer que seja a
estrutura da função objetivo. Dessa forma, garante-se o atendimento de todos os re-
quisitos do teorema da convergência global num sentido similar ao da convergência
do Algoritmo do Gradiente. Agora, para estabelecer a completa equivalência da
região de convergência do Algoritmo de Newton Modificado com a do Algoritmo do
Gradiente, basta mostrar que o primeiro é bem definido na mesma região de con-
vergência do último, ou seja, na bacia de atração. Isto é assegurado pela proposição
a seguir.

Proposição 3.2 Seja f(·) : R
n 7→ R uma função cont́ınua infinitas vezes dife-

renciável. Seja xxx∗ um mı́nimo local estrito dessa função. Sob tais condições, a
Hessiana de f(·) é definida positiva na bacia de atração de xxx∗. �

Há a necessidade de diferenciabilidade infinita de f(·) neste caso, ao contrário
das funções otimizadas com o algoritmo do gradiente, que precisam apenas ser di-
ferenciáveis uma vez. Isso decorre da possibilidade que haveria, se não se colocasse
tal exigência, de se concatenar trechos de hiperplanos por meio de funções suaves,
que podem ser diferenciáveis até alguma ordem finita, formando bacias de atração
suaves nas quais a Hessiana é nula em diversos trechos. O método de Newton sim-
plesmente não seria definido para tais funções. O mı́nimo local, agora, ainda deve
ser estrito, pois do contrário poderia ter posto incompleto, também invalidando a
iteração de Newton.

Definidas essas exigências para a aplicabilidade do método, é posśıvel estabelecer
a região de convergência.
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Proposição 3.3 Seja o problema de otimização irrestrito definido por:

xxx∗ = arg min
xxx

f(xxx)
(3.22)

sendo xxx ∈ R
n, com f(·) : Rn 7→ R uma função cont́ınua infinitas vezes diferenciável,

e xxx∗ um mı́nimo estrito. Então o Algoritmo de Newton Modificado irá convergir
para xxx∗ para todo ponto inicial xxx0 situado na bacia de atração de xxx∗. �

Corolário 3.2 Garantidas as condições da proposição anterior, caso o Algoritmo
de Newton Modificado seja iniciado em um ponto xxx0 não situado na bacia de atração
do mı́nimo global xxx∗, podem ocorrer três situações:

(i) O Algoritmo de Newton Modificado converge para o mı́nimo local estrito asso-
ciado à bacia de atração em que estiver localizado seu ponto inicial xxx0.

(ii) Caso o ponto inicial esteja localizado em uma bacia de atração de um mı́nimo
local não estrito, o Algoritmo de Newton Modificado pode ficar indefinido,
ou seja, a Hessiana pode não ser inverśıvel. Caso contrário, ocorrerá con-
vergência para o mı́nimo local.

(iii) Caso o ponto inicial não esteja localizado em nenhuma bacia de atração, o
Algoritmo de Newton Modificado não converge, podendo ainda ficar indefinido.

�

Nota 3.5 O leitor deve estar ciente de que existem procedimentos ad-hoc para evi-
tar que a “Hessiana”utilizada pelo algoritmo fique não inverśıvel, ao custo da perda
de fidelidade para representar a verdadeira Hessiana da função, porém garantindo
as propriedades de convergência do algoritmo. Para maiores informações, ver [1].

3.6.3 Determinação Numérica da Hessiana

Para a implementação do método de Newton é necessário o cálculo numérico da
Hessiana. Por meio de um hipotético método de diferenças finitas, seria necessário
avaliar o gradiente da função objetivo em n + 1 pontos, no caso de uma função de
n variáveis. Sendo ggg(xxx) o gradiente da função objetivo, avaliado numericamente
por meio de diferenças finitas, como já visto, o método de cálculo da Hessiana por
diferenças finitas pode ser formulado como:

Algorithm 12: Algoritmo do Cálculo da Hessiana por Diferenças Finitas

1 k ← 0;
2 for (i← 1 until n) do
3 Fi ← [ggg(xxx+ δeeei)− ggg(xxx)] /δ;
4 end

5 F ← [F1 · · · Fn];

Cada uma das avaliações de gradiente por sua vez envolve, como já se viu, a
avaliação da função objetivo em n + 1 pontos, de forma que o número total de
avaliações da função objetivo seria igual a (n+ 1)2.



D
R
A
FT

Métodos Numéricos para Otimização Irrestrita 21

3.6.4 Construção da Hessiana

Examine-se novamente a equação (3.19), reproduzida a seguir por conveniência:

∇f(xxx) = ∇f(xxx0) +H(xxx0)(xxx− x0) (3.23)

Essa equação foi o ponto de partida para a construção do método de Newton. Ela
pode também ser usada para construir um método para estimar a própria Hessiana
da função. Reescrevendo a equação para dois pontos distintos xxx1 e xxx2, e supondo
que a Hessiana seja constante em todo o espaço, tem-se:

H(xxx1 − xxx2) = ∇f(xxx1)−∇f(xxx2) (3.24)

Essa mesma fórmula pode ser repetida para a seguinte sequência de vetores:

H(xxx1 − xxx2) = ∇f(xxx1)−∇f(xxx2)
H(xxx2 − xxx3) = ∇f(xxx2)−∇f(xxx3)

...
H(xxxn−1 − xxxn) = ∇f(xxxn−1)−∇f(xxxn)
H(xxxn − xxxn+1) = ∇f(xxxn)−∇f(xxxn+1)

(3.25)

Definindo os vetores vvvi e rrri como:

vvvi = xxxi − xxxi+1

rrri = ∇f(xxxi)−∇f(xxxi+1)
(3.26)

tem-se que:

H [vvv1 vvv2 · · · vvvn] = [rrr1 rrr2 · · · rrrn] (3.27)

Definindo V = [vvv1 vvv2 · · · vvvn] e R = [rrr1 rrr2 · · · rrrn], obtém-se:

HV = R (3.28)

Observando agora que os vetores vvvi tratam-se de escolhas, nota-se que é posśıvel
escolhê-los de tal forma que V seja inverśıvel, o que permite fazer:

H = RV −1 (3.29)

Isso significa que, avaliando o gradiente da função f(xxx) em n + 1 pontos ade-
quadamente escolhidos no espaço, é posśıvel determinar a Hessiana dessa função.

Nota 3.6 Examinando-se o resultado obtido, verifica-se que a equação (3.28) é
uma generalização do cálculo da Hessiana por diferenças finitas. De fato, fazendo-
se V = δI tem-se de (3.28) que H = R/δ.

Nota 3.7 Da mesma forma como o cálculo do gradiente por diferenças finitas é
exato para funções polinomiais de grau 1, o cálculo da Hessiana por (3.29) é exato
para funções polinomiais de grau 2 (desde que se disponha, no entanto, de avaliações
exatas do gradiente). Pelo mesmo motivo que no caso da avaliação exata do gra-
diente em funções lineares, caso a função seja quadrática, não é necessário que os
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pontos em que se avalia o gradiente estejam próximos entre si para que o cálculo da
Hessiana permaneça exato.

Diversos métodos de otimização baseiam-se na equação (3.29), variando-se, de
método para método, a escolha dos pontos, o que implica na variação da escolha de
V .

3.6.5 Correção de Posto 1

Conforme foi visto, há certa arbitrariedade na escolha dos vetores vvvi. A única
condição necessária é de que sejam n vetores linearmente independentes. Dessa
forma, é posśıvel acrescentar restrições ao problema de forma a obter fórmulas re-
cursivas particularmente interessantes.

A ideia a ser explorada aqui é a de que deve ser posśıvel fazer a construção
recursiva da estimativa da Hessiana, ou de sua inversa, durante o decorrer de um
processo de otimização. A estimativa parcial da Hessiana deve poder ser utilizada
no decorrer desse processo. Isso é particularmente útil na otimização de funções
não-quadráticas, em que a Hessiana não é constante: esse procedimento permite a
adaptação cont́ınua da estimativa da Hessiana ao seu valor localmente válido.

É mostrado inicialmente o algoritmo mais simples posśıvel para realizar o pro-
cedimento pretendido, que será aqui denominado Algoritmo de Correção de Posto
1.

Seja H̃k = H−1

k . A ideia é construir um método recursivo que produza uma

sequência de estimativas [H̃k], a partir de novas avaliações da função e de seu gra-
diente em novos pontos. Observa-se inicialmente que a Hessiana de toda função é
simétrica, de forma que a recursão deve gerar uma matriz simétrica. A recursão
proposta é da forma:

H̃k+1 = H̃k + αkzzzkzzz
T
k (3.30)

sendo zzzk ∈ R
n e αk ∈ R. Claramente, o termo αkzzzkzzz

T
k é uma matrix n × n com

posto no máximo igual a 1, de onde vem o nome do algoritmo. Supondo, para fins
de desenvolvimento da fórmula de recursão, que a função objetivo fosse exatamente
quadrática, é preciso definir αk e zzzk em função dos valores conhecidos (os vetores
[xxxk] e [∇f(xxxk)]), de forma a garantir que seja satisfeita a relação:

H̃k+1rrri = vvvi ∀ i = 1, . . . , k (3.31)

Essa relação é quase a mesma que (3.28), mas exige a igualdade apenas para os
pontos já avaliados, até o ı́ndice k. Em primeiro lugar, desenvolve-se a fórmula para
i = k. Substituindo-se (3.30) em (3.31), obtém-se:

αkzzzkzzz
T
k rrrk = vvvk − H̃krrrk

(vvvk − H̃krrrk)(vvvk − H̃krrrk)
T = (αkzzzkzzz

T
k rrrk)(αkrrr

T
k zzzkzzz

T
k )

(vvvk − H̃krrrk)(vvvk − H̃krrrk)
T = αk(zzz

T
k rrrk)

2αkzzzkzzz
T
k

(3.32)
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Com isso, quase se tem uma fórmula para o termo de correção αkzzzkzzz
T
k em função

de H̃k, vvvk e rrrk, a menos da quantidade escalar αk(zzz
T
k rrrk)

2. Para se determinar essa
constante, faz-se:

rrrTkαkzzzkzzz
T
k rrrk = rrrTk (vvvk − H̃krrrk)

αk(zzz
T
k rrrk)

2 = rrrTk vvvk − rrrTk H̃krrrk

(3.33)

Substituindo-se (3.33) em (3.32) obtém-se:

αkzzzkzzz
T
k =

1

rrrTk vvvk − rrrTk H̃krrrk
(vvvk − H̃krrrk)(vvvk − H̃krrrk)

T (3.34)

ou, voltando à fórmula recursiva para cálculo de H̃k+1:

H̃k+1 = H̃k +
1

rrrTk vvvk − rrrTk H̃krrrk
(vvvk − H̃krrrk)(vvvk − H̃krrrk)

T (3.35)

Essa fórmula, por construção, vale para i = k. Resta provar que ela é válida
para i < k.

Teorema 3.3 Seja F uma matriz simétrica fixa, e suponha-se que vvv0, vvv1, . . . , vvvk
sejam vetores dados. Definam-se os vetores rrri = Hvvvi, para i = 0, 1, . . . , k. Seja
ainda H0 uma matriz simétrica qualquer. Se:

H̃i+1 = H̃i +
1

rrrTi vvvi − rrrTi H̃irrri
(vvvi − H̃irrri)(vvvi − H̃irrri)

T (3.36)

então:

vvvi = H̃k+1rrri ∀ i = 1, . . . , k (3.37)

�

Demonstração: Por construção, a relação é válida para i = k. Tome-se algum rrri
para i < k, e aplique-se esse vetor em H̃k+1:

H̃k+1rrri = H̃krrri +
1

rrrT
k
vvvk−rrrT

k
H̃krrrk

(vvvk − H̃krrrk)(vvv
T
k rrri − rrrTk H̃

T
k rrri)

Note-se que H̃k é simétrica, de forma que:

H̃k+1rrri = H̃krrri +
1

rrrT
k
vvvk−rrrT

k
H̃krrrk

(vvvk − H̃krrrk)(vvv
T
k rrri − rrrTk H̃krrri)

Adota-se neste ponto, como hipótese de indução, que

vvvi = H̃krrri

seja verdade. Isso implica que:

H̃k+1rrri = vvvi +
1

rrrT
k
vvvk−rrrT

k
H̃krrrk

(vvvk − H̃krrrk)(vvv
T
k rrri − rrrTk vvvi)
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Entretanto:

rrrTk vvvi = vvvTkH
Tvvvi = vvvTkHvvvi = vvvTk rrri

de forma que:

vvvTk rrri − rrrTk vvvi = 0

ou:

H̃k+1rrri = vvvi

Isso completa a prova. �

Sabe-se então que, usando-se a fórmula (3.35), obtém-se o valor exato da inversa
da Hessiana de uma função quadrática, a partir de n+1 valores de pontos do espaço
com as respectivas avaliações de gradientes da função nesses pontos.

Algoritmo de Correção de Posto 1

Com esse resultado, é posśıvel construir um algoritmo de otimização utilizando a
estrutura básica da “direção de busca”, tomando H̃k como aproximação da inversa
da Hessiana. O algoritmo se inicia em um ponto xxx0 qualquer:

Algorithm 13: Algoritmo de Correção de Posto 1

1 k ← 0;

2 H̃k ← I;
3 gggk ← gradiente(f(·),xxxk);
4 while (critério de parada não for satisfeito) do

5 dddk ← −H̃kgggk;
6 αk ← arg min

α
f(xxxk + αdddk);

7 xxxk+1 ← xxxk + αkdddk;
8 gggk+1 ← gradiente(f(·),xxxk+1);
9 vvvk ← xxxk − xxxk+1;

10 rrrk ← gggk − gggk+1;

11 H̃k+1 = H̃k +
1

rrrT
k
vvvk−rrrT

k
H̃krrrk

(vvvk − H̃krrrk)(vvvk − H̃krrrk)
T ;

12 k ← k + 1;

13 end

Deve-se notar que, de maneira arbitrária, a estimativa H̃0 foi inicializada com
a matriz identidade. Qualquer outra matriz simétrica poderia ter sido utilizada, de
acordo com o Teorema 3.3. Esse teorema, juntamente com o resultado anteriormente
conhecido a respeito de aproximações quadráticas em geral, afirma que se a função
objetivo for quadrática, a convergência exata do algoritmo para o mı́nimo global
da função necessariamente ocorrerá, e o número de passos para tal convergência
será menor ou igual a n. Note-se que, ao invés de serem tomados pontos quaisquer



D
R
A
FT

Métodos Numéricos para Otimização Irrestrita 25

que gerem vetores vvvi linearmente independentes, estão sendo tomados exatamente
aqueles pontos gerados pelo processo de otimização. Caso a função seja exatamente
quadrática, estes pontos geram necessariamente vetores vvvi linearmente independen-
tes.

Sob o ponto de vista da otimização de uma função a priori sabida ser quadrática,
não há vantagem computacional em se utilizar o Algoritmo de Correção de Posto
1 em lugar da fórmula exata (3.21) junto com (3.29). A aplicação destas envol-
veria exatamente n + 1 avaliações de gradiente, enquanto a aplicação do algoritmo
de correção envolveria um número menor ou igual a este de iterações, cada uma
envolvendo uma avaliação de gradiente, mas envolvendo também uma otimização
unidimensional. Esta última poderia tornar o algoritmo de correção mais caro sob
o ponto de vista computacional.

No entanto, sabe-se que no caso geral da otimização de funções não-lineares
não necessariamente quadráticas, a Hessiana da função objetivo não será em geral
constante. Não ocorrerá, de qualquer forma, a convergência em n iterações. O
Algoritmo de Correção de Posto 1 torna-se nesse caso vantajoso, pois a estimativa
da Hessiana vai mudando dinamicamente, de forma a acompanhar a variação dessa
Hessiana. A cada passo, uma nova estimativa da Hessiana está dispońıvel, para ser
utilizada no processo de otimização. Essas são caracteŕısticas gerais da categoria de
métodos conhecidos como quase-Newton, que será vista a seguir.

Nota 3.8 Deve-se notar qua a primeira iteração do Algoritmo de Correção de
Posto 1, no formato anteriormente definido, corresponde exatamente a uma iteração
do Algorimto do Gradiente. Isso ocorre porque, com a matriz H0 sendo inicializada
igual à identidade, no primeiro passo a direção de busca fica sendo igual à do gra-
diente. A partir do segundo passo, a direção começa a mudar gradativamente, até
que no n-ésimo passo a direção passa a coincidir com a do Algoritmo de Newton,
caso a Hessiana seja constante. Caso a Hessiana não seja constante, a estimativa
do Algoritmo de Correção de Posto 1 será sempre inexata, e este algoritmo não
chegará a convergir para o comportamento hipotético do Algoritmo de Newton. No
entanto, como a avaliação direta da Hessiana, exigida pelo Algoritmo de Newton,
é inconveniente, na prática usualmente se opta pela utilização de algoritmos quase-
Newton.

Convergência do Algoritmo de Correção de Posto 1

O Algoritmo de Correção de Posto 1 possui propriedades de convergência que são
intermediárias entre as do Algoritmo do Gradiente e as do Algoritmo de Newton.
Este último simplesmente não se aplica quando a Hessiana não é definida positiva.
Já o Algoritmo do Gradiente exige apenas a existência de uma bacia de atração
de uma função diferenciável. O Algoritmo de Correção de Posto 1 não pode ficar
indefinido em nenhum ponto, uma vez que não envolve inversões de matrizes. No
entanto, sua formulação permite que a matriz Hk+1 venha eventualmente perder a
propriedade de ser positiva definida, caso ocorra:

rrrTk vvvk − rrrTk H̃krrrk < 0 (3.38)



D
R
A
FT

26 Notas de Aula de Otimização

Não há nada que impeça essa condição de ocorrer. Isso significa que a fórmula
de correção pode eventualmente vir a ficar comprometida. Isso pode fazer com que o
algoritmo fique estacionado em pontos que não correspondem à solução do problema.
Pode-se evitar tal situação incluindo-se uma verificação dos autovalores de Hk+1 a
cada passo, fazendo-se a substituição dessa matriz pela identidade sempre que for
detectado um autovalor negativo. Isso iria restaurar as condições do teorema da
convergência global, e o algoritmo passaria a convergir exatamente na mesma região
que o Algoritmo do Gradiente.

3.6.6 Métodos Quase-Newton

Os métodos de otimização conhecidos como quase-Newton são desenvolvidos de
acordo com a mesma lógica que foi usada na elaboração do Algoritmo de Correção de
Posto 1 ; de fato, este algoritmo é o exemplo mais simples de um algoritmo quase-
Newton. Usa-se uma regra recursiva que permite a construção iterativa de uma
matriz H̃k que corresponde a uma estimativa da inversa da Hessiana da função ob-
jetivo. Como deve ter sido observado na seção anterior, diversas escolhas arbitrárias
de regras foram realizadas, de forma que outras escolhas teriam sido posśıveis para
garantir as propriedades desejadas de H̃k. Com os graus de liberdade ainda rema-
nescentes, é posśıvel produzir métodos que evitem as dificuldades de convergência
do Algoritmo de Correção de Posto 1 : essencialmente, deve-se garantir que a matriz
H̃k permaneça sempre definida positiva, e, preferencialmente, bem condicionada, ou
seja, com autovalores não muito distanciados entre si.

Dois métodos particularmente eficientes foram desenvolvidos para produzir esti-
mativas recursivas paraHk com as propriedades requeridas: o método DFP (Davidon-
Fletcher-Powell) e o método BFGS (Broyden-Fletcher-Goldfarb-Shanno), assim ba-
tizados em homenagem aos seus formuladores. Verificando-se, a posteriori, as co-
nexões entre esses métodos, estes foram agrupados em uma estrutura mais geral, a
famı́lia de Broyden. Esses métodos são apresentados a seguir.

Método DFP

A correção proposta pelo método DFP é dada por:

CDFP
k =

vvvkvvv
T
k

vvvTk rrrk
−

H̃krrrkrrr
T
k H̃k

rrrTk H̃krrrk
(3.39)

Método BFGS

A correção proposta pelo método BFGS é dada por:

CBFGS
k =

(
1 +

rrrTk H̃krrrk
rrrTk vvvk

)
vvvkvvv

T
k

vvvTk rrrk
−

vvvkrrr
T
k H̃k + H̃krrrkvvv

T
k

rrrTk vvvk
(3.40)
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Famı́lia de Broyden

A correção genérica utilizada pelos métodos conhecidos como famı́lia de Broyden é
dada por:

Ck(ξ) = (1− ξ)CDFP
k + ξCBFGS

k (3.41)

Em todos os casos da famı́lia de Broyden, incluindo os casos extremos BFGS e
DFP, a fórmula de atualização para a estimativa da inversa da Hessiana fica:

H̃k+1 = H̃k + Ck (ξ) (3.42)

Para ξ = 0, obtém-se o método DFP, e para ξ = 1 o método BFGS.
Alguns fatos devem ser citados a respeito dessa correção da famı́lia de Broyden:

• A correção realizada a cada passo é de posto possivelmente dois, o que é
facilmente verificável por inspeção.

• A correção é sempre definida positiva, de forma que a matriz H̃k preservará
sua propriedade de ser definida positiva.

• Dados i e j tais que 0 ≤ i < j ≤ k, então vvvTi Hvvvj = 0, ou seja, vvvi e vvvj são
H-ortogonais.

• Dado i tal que 0 ≤ i ≤ k, então H̃k+1Hvvvi = vvvi.

As provas das afirmações anteriores podem ser encontradas em [1].

Algoritmos Quase-Newton

Os algoritmos obtidos a partir da famı́lia de Broyden, aqui denominados Algoritmos
Quase-Newton, são estruturados no Algoritmo 14.

Evidentemente, para a implementação pura do Algoritmo DFP ou do Algoritmo
BFGS, não haveria necessidade do cálculo intermediário de Ck(ξ), sendo posśıvel

simplificar o programa, para o cálculo direto de H̃k com a correção correspondente.

Convergência da Famı́lia Broyden

A maneira mais fácil de provar a convergência dos algoritmos da famı́lia de Broyden
seria introduzindo uma modificação nos mesmos: se se faz com que a matriz H̃k

seja periodicamente reinicializada, sendo igualada à identidade, torna-se posśıvel
a aplicação direta do teorema da convergência global. Os algoritmos passam a
convergir exatamente como o Algoritmo do Gradiente.

É posśıvel, mesmo sem introduzir tal modificação, provar a convergência dos
algoritmos, sendo necessárias entretanto algumas premissas adicionais sobre a função
a ser otimizada.

Exemplo

A utilização do algoritmo do método DFP no problema exemplo definido pela
equação (3.5) resulta na trajetória ilustrada na Fig. 3.6 a seguir.
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Algorithm 14: Algoritmos Quase-Newton

1 k ← 0;

2 H̃k ← I;
3 gggk ← gradiente(f(·),xxxk);
4 while (critério de parada não for satisfeito) do

5 dddk ← −H̃kgggk;
6 αk ← arg min

α
f(xxxk + αdddk);

7 xxxk+1 ← xxxk + αkdddk;
8 gggk+1 ← gradiente(f(·),xxxk+1);
9 vvvk ← xxxk − xxxk+1;

10 rrrk ← gggk − gggk+1;

11 CDFP
k =

vvvkvvv
T

k

vvvT
k
rrrk
−

H̃krrrkrrr
T

k
H̃k

rrrT
k
H̃krrrk

;

12 CBFGS
k =

(
1 +

rrrT
k
H̃krrrk

rrrT
k
vvvk

)
vvvkvvv

T

k

vvvT
k
rrrk
−

vvvkrrr
T

k
H̃k+H̃krrrkvvv

T

k

rrrT
k
vvvk

;

13 Ck(ξ) = (1− ξ)CDFP
k + ξCBFGS

k ;

14 H̃k+1 = H̃k + Ck (ξ);
15 k ← k + 1;

16 end

3.6.7 Método do Gradiente Conjugado

O método de otimização conhecido como Gradiente Conjugado foi desenvolvido ini-
cialmente na década de 1950 para a solução de sistemas de equações lineares, e ainda
é um dos métodos mais utilizados para a solução de sistemas com matrizes esparsas.
Em 1964, Fletcher e Reeves generalizaram o método para resolver problemas de
otimização não linear irrestrita com funções não quadráticas.

Considere um sistema de equações lineares da forma:

AxAxAx = bbb (3.43)

sendo AAA uma matriz simétrica definida positiva.
A solução desse sistema de equações por meio do cálculo da inversa de AAA é

impraticável para sistemas grandes, por demandar muito esforço computacional.
Por essa razão, é interessante utilizar um método iterativo para a solução desse
sistema.

Para isso, vamos considerar um problema de minimização da função quadrática
a seguir:

f(xxx) =
1

2
xxx′AxAxAx− bxbxbx+ c (3.44)

O mı́nimo global dessa função é obtido a partir da condição de otimalidade de
primeira ordem:

∇f(xxx) = AxAxAx− bbb = 0 (3.45)

Portanto, o mı́nimo de f(xxx) é também a solução do sistema linear (3.43), isto é,
podemos resolver o sistema linear (3.43) minimizando a função quadrática associada



D
R
A
FT

Métodos Numéricos para Otimização Irrestrita 29

0.1
0.3

0.5

1

3

5

10

20

40

40

x
1

x 2

Problema Exemplo: Método DFP

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figura 3.6: Problema exemplo – solução usando o Método DFP.

(3.44). Devido às particularidades do problema, podemos desenvolver um método
do gradiente com cálculo exato do tamanho de passo.

A direção oposta ao gradiente equivale ao reśıduo na solução do sistema (3.43):

−∇f(xxx) = bbb−AxAxAx = rrr (3.46)

Assim, usaremos a seguinte fórmula iterativa baseado no método do gradiente:

xxxk+1 = xxxk + αkrrrk (3.47)

O tamanho do passo pode ser determinado analiticamente:

d

dα
f(xxxk+1) = ∇f(xxxk+1)

′ d

dα
(xxxk+1)

= ∇f(xxxk+1)
′ d

dα
(xxxk + αkrrrk)

= −rrr′k+1rrrk

Fazendo
d

dα
f(xxxk+1) = −rrr

′
k+1rrrk = 0 (3.48)

implica que os reśıduos são ortogonais, ou seja:

rrr′k+1rrrk = 0

(bbb−AxAxAxk+1)
′ rrrk = 0

(bbb−AxAxAxk − αkArArArk)
′ rrrk = 0

(rrrk − αkArArArk)
′ rrrk = 0
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Figura 3.7: Ilustração de dois vetores conjugados em relação à matriz Hessiana da
função quadrática cujas curvas de ńıvel são mostradas.

que resulta em:

αk =
rrr′krrrk
rrr′kArArArk

(3.49)

Usando o passo ótimo determinado em (3.49) na fórmula iterativa (3.47), es-
tamos minimizando a função quadrática (3.44) pelo método do gradiente. A mini-
mização dessa função quadrática nos leva à solução do sistema linear originalAxAxAx = bbb.
Contudo, essa abordagem herda os problemas do método do gradiente já discutidos
anteriormente. Por essa razão, desenvolveu-se o método do gradiente conjugado,
em que, além de se forçar a ortogonalidade dos reśıduos em iterações sucessivas,
utiliza-se uma fórmula iterativa da forma:

xxxk+1 = xxxk + αkdddk (3.50)

em que as direções dddk são conjugadas entre si.
Dois vetores vvvi e vvvj são ditos conjugados em relação à matrizAAA, ou simplesmente

AAA-conjugados, se vale a relação:

vvv′iAAAvvvj = vvv′jAAAvvvi = 0 (3.51)

Essa ideia é ilustrada na Figura 3.7. Se usarmos a transformação de variáveis
zzz = BxBxBx de tal forma que AAA = BBB′BBB = BBB2, então dois vetores xxxi e xxxj AAA-conjugados
serão ortogonais no espaço de variáveis transformado. Portanto, é intuitivo perceber
que a noção de conjugação de dois vetores em relação à matriz AAA traz consigo
informação sobre a curvatura do espaço, isto é, a Hessiana da função quadrática
(3.44). Ao forçar que a próxima direção de busca dddk+1 seja conjugada à direção
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dddk estamos calculando uma nova direção de busca que implicitamente considera
informação sobre a curvatura da função quadrática.

O método do gradiente conjugado utiliza as fórmulas recursivas a seguir:

xxxk+1 = xxxk + αkdddk (3.52)

rrrk+1 = rrrk − αkAdAdAdk (3.53)

dddk+1 = rrrk+1 + βkdddk (3.54)

com a imposição de que as direções dddk são AAA-conjugadas e os reśıduos são ortogonais
entre si. Aplicando essas condições de ortogonalidade e conjugação, podemos derivar
as fórmulas para αk e βk.

Inicialmente, vamos verificar a equação de atualização dos reśıduos:

rrrk+1 = bbb−AxAxAxk+1

= bbb−AAA (xxxk + αkdddk)

= bbb−AAAxxxk − αkAdAdAdk

= rrrk − αkAdAdAdk

A partir da condição de ortogonalidade dos reśıduos, temos:

rrr′k+1rrrk = 0

(rrrk − αkAdAdAdk)
′ rrrk = 0

rrr′krrrk − αkddd
′
kArArArk = 0

que fornece

αk =
rrr′krrrk
ddd′kArArArk

(3.55)

mas rrrk = dddk − βk−1dddk−1, ver (3.54), assim:

αk =
rrr′krrrk

ddd′kAdAdAdk − βk−1ddd
′
kAdAdAdk−1

(3.56)

Como os vetores dddk e dddk−1 são conjugados, então:

αk =
rrr′krrrk
ddd′kAdAdAdk

(3.57)

A partir da condição de conjugação dos vetores de direção, temos:

ddd′k+1AdAdAdk = 0

(rrrk+1 + βkdddk)
′AdAdAdk = 0

rrr′k+1AdAdAdk + βkddd
′
kAdAdAdk = 0
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que fornece

βk = −
rrr′k+1

AdAdAdk

ddd′kAdAdAdk
(3.58)

Isolando o termo AdAdAdk em (3.53) e substituindo no numerador de (3.58):

βk = −
rrr′k+1

(rrrk − rrrk+1)

αkddd′kAdAdAdk
(3.59)

Lembrando que rrrk e rrrk+1 são ortogonais, temos

βk =
rrr′k+1

rrrk+1

rrr′krrrk
(3.60)

Com base nessas equações, temos o algoritmo do gradiente conjugado para mi-
nimização de funções quadráticas da forma (3.44) ou, de maneira equivalente, para
a solução de um sistema de equações lineares com matriz de coeficientes simétrica
definida positiva AAA.

Algorithm 15: Algoritmo dos Gradientes Conjugados

1 k ← 0;
2 rrrk ← bbb−AxAxAxk;
3 dddk ← rrrk;
4 while (critério de parada não for satisfeito) do

5 αk ←
rrr′
k
rrrk

ddd′
k
AdAdAdk

;

6 xxxk+1 ← xxxk + αkdddk ;
7 rrrk+1 ← rrrk − αkAdAdAdk ;

8 βk ←
rrr′
k+1

rrrk+1

rrr′
k
rrrk

;

9 dddk+1 ← rrrk+1 + βkdddk ;
10 k ← k + 1;

11 end

O método converge para o ponto de mı́nimo de uma função quadrática com n
variáveis em n iterações. De fato, o método aproxima a solução do problema por
meio da seguinte expansão:

xxx∗ = xxx0 +
n∑

k=1

αkdddk (3.61)

Método dos Gradientes Conjugados para otimização não linear

Como vimos o método dos gradientes conjugados foi desenvolvido a partir da ob-
servação de que o problema de resolver um sistema linear com matriz de coeficientes
simétrica definida positiva é equivalente à minimização de uma função quadrática
convexa. Mais tarde, observou-se que é posśıvel adaptar o método para resolver
problemas de otimização não linear mais gerais, não apenas aqueles envolvendo
funções quadráticas. A versão do algoritmo para otimização não linear de funções
não quadráticas apresenta três diferenças básicas:
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1. A noção de reśıduo perde o significado, uma vez que a minimização da função
f(xxx) não está mais ligada à solução de um sistema linear do tipo AxAxAx = bbb. Por
essa razão não é posśıvel utilizar a fórmula recursiva para atualizar o reśıduo.
O vetor rrrk é utilizado em sua noção mais geral, isto é, a direção oposta ao
vetor gradiente.

2. Não é posśıvel determinar o tamanho do passo αk analiticamente, devendo-se
empregar algum método de busca unidirecional para determinar seu valor.

3. Não é posśıvel determinar βk analiticamente, havendo diferentes escolhas posśıveis
para esse parâmetro.

Com essas modificações, temos o algoritmo apresentado a seguir.

Algorithm 16: Método dos Gradientes Conjugados

1 k ← 0;
2 rrr0 ← −∇f(xxx0);
3 ddd0 ← rrr0;
4 while (critério de parada não for satisfeito) do

5 αk ← argmin
α

f(xxxk + αdddk);

6 xxxk+1 ← xxxk + αkdddk;
7 rrrk+1 ← −∇f(xxxk+1);
8 Calcular βk;
9 dddk+1 ← rrrk+1 + βkdddk;

10 k ← k + 1;

11 end

Duas fórmulas bem conhecidas para o cálculo do parâmetro βk são:

Fletcher-Reeves: βFR
k =

rrr′k+1
rrrk+1

rrr′krrrk

Polak-Ribière: βPR
k =

rrr′k+1
(rrrk+1 − rrrk)

rrr′krrrk

Como agora a função a ser otimizada não é necessariamente uma função qua-
drática, o método em geral converge em mais do que n iterações. Portanto, como
o método produz n direções conjugadas no espaço n-dimensional, deve-se reiniciar
o método a cada n iterações, do contrário, as direções de busca deixarão de ser
conjugadas. Esse reińıcio periódico é feito simplesmente fazendo dddk = rrrk a cada n
iterações. De fato, o método sem reińıcio periódico converge mais lentamente do que
o método adotando reińıcio periódico. Se a função for quadrática, a convergência
continua garantida em n iterações.

Em geral, para funções não quadráticas, os métodos quase-Newton convergem
em menos iterações, entretanto consomem mais operações e mais memória por
iteração, uma vez que uma aproximação da inversa da matriz Hessiana deve ser
armazenada. Além disso, as equações de atualização dessa aproximação demandam
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mais operações. O método dos gradientes conjugados requer o armazenamento dos
dois últimos vetores gradiente e o vetor dddk. Por essa razão, o método de otimização
dos gradientes conjugados é o mais indicado e o mais usado em problemas de oti-
mização não linear de elevada dimensão, especificamente problemas com mais de
200 variáveis. Em problemas de baixa e média dimensão, os métodos quase-Newton
são mais recomendados.

3.7 Métodos Sem Derivadas

Nas seções anteriores, discutimos métodos baseados em direções de busca que se
sustentam no cálculo de derivadas da função objetivo. Contudo, dentro da estrutura
básica dos métodos de direções de busca, apresentada no ińıcio do caṕıtulo, é posśıvel
incluir métodos que definem uma direção de busca dddk que não depende de estimativas
do gradiente da função no ponto. Estes métodos são discutidos aqui.

Em geral, métodos baseados em derivadas convergem mais rapidamente, mas
só podem ser usados em problemas caracterizados por funções continuamente di-
ferenciáveis, o que nem sempre se verifica em algumas aplicações práticas. Além
disso, em problemas com muitas variáveis, os erros numéricos introduzidos por apro-
ximações no cálculo do gradiente podem se tornar significativos, prejudicando a con-
vergência dos métodos baseados em derivadas. Por essas razões, faz-se necessário
apresentar alguns métodos numéricos de otimização sem derivadas.

3.7.1 Método de Hooke-Jeeves

O Método Hooke-Jeeves foi proposto na década de 1960 para otimizar funções sem a
necessidade de que estas sejam cont́ınuas ou diferenciáveis. O método testa pontos
padrões a partir do ponto atual, por essa razão é também conhecido como Pattern
Search na literatura. O método alterna direções de pesquisa na direção dos eixos
coordenados e direções constrúıdas a partir do ponto da iteração anterior, isto é,
direções na forma xxxk+1 − xxxk.

O funcionamento do método é bastante simples. Seja xxxk o ponto atual, yyy0 =
xxxk, e o vetor eeei associado à i-ésima coluna da matriz identidade. O método testa
perturbações na direção de cada eixo coordenado, de forma que um novo ponto yyyi+1

é gerado de acordo com alguma das seguinte situações:

1. yyyi = yyyi−1 + λeeei se uma perturbação de magnitude λ na direção positiva da
coordenada xi causa uma melhora no valor da função objetivo;

2. yyyi = yyyi−1 − λeeei se uma perturbação de magnitude λ na direção negativa da
coordenada xi causa uma melhora no valor da função objetivo;

3. yyyi = yyyi−1 caso contrário.

Note que as perturbações nas direções eeei são acumulativas, isto é, nesta pri-
meira fase, a sequência de pontos {yyy0, yyy1, . . . , yyyn} representa passos de tamanho λ na
direção daqueles eixos coordenados que diminuem o valor da função objetivo. Após
serem feitas as perturbações em todas as coordenadas, obtém-se o ponto xxxk+1 = yyyn.
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Observe que o ponto xxxk+1 foi obtido a partir de xxxk com perturbações nas direções
de melhora de cada variável. Assim, a direção

dddk = xxxk+1 − xxxk (3.62)

sugere uma boa direção de busca em que a função objetivo pode decrescer mais
rapidamente. Em geral, essa direção não está alinhada com os eixos coordenados
e representa mais uma direção padrão de pesquisa no método. Portanto, pode-se
fazer

yyy0 = xxxk+1 + α (xxxk+1 − xxxk)

começando a próxima iteração a partir deste ponto. O algoritmo do método Hooke-
Jeeves é apresentado a seguir.

Algorithm 17: Método Hooke-Jeeves

1 k ← 0;
2 yyy0 ← xxxk;
3 while λ > ξ do

4 foreach i = 0 . . . , n− 1 do

5 if f(yyyi + λeeei+1) < f(yyyi) then yyyi+1 ← yyyi + λeeei+1 ;
6 else if f(yyyi − λeeei+1) < f(yyyi) then yyyi+1 ← yyyi − λeeei+1 ;
7 else yyyi+1 ← yyyi;

8 end

9 if f(yyyn) < f(xxxk) then
10 xxxk+1 ← yyyn;
11 yyy0 ← xxxk+1 + α (xxxk+1 − xxxk);

12 else

13 λ← λ/2;
14 xxxk+1 ← xxxk;
15 yyy0 ← xxxk;

16 end

17 k ← k + 1;

18 end

As linhas 4–8 executam a fase de busca nos eixos coordenados. Se yyyn for igual a
xxxk, significa que não foi posśıvel minimizar a função em nenhuma direção coordenada
usando o tamanho atual de λ. Assim, deve-se reduzir o valor de λ, em geral pela
metade, o que é feito na linha 13.

O método Hooke-Jeeves é de fácil programação e é competitivo computacional-
mente com outros métodos. Modificações podem ser inclúıdas, tais como um λ para
cada variável, ou acoplar métodos de busca unidirecional. No método básico, os
parâmetros α e λ são fixos e fornecidos pelo usuário. Contudo, estes parâmetros
podem ser determinados usando-se algum método de busca unidirecional.
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3.7.2 Método de Nelder-Mead

O método Nelder-Mead Simplex1 foi desenvolvido também na década de 1960 para
otimização não linear. O método não exige que a função objetivo seja diferenciável,
mas requer que a função seja cont́ınua. O método trabalha com n+1 pontos a cada
iteração, eliminando o pior ponto. Um novo ponto é criado com base em regras
espećıficas que serão discutidas a seguir. Esses n + 1 pontos formam os vértices
de um politopo especial denominado simplex. Dessa forma, o comportamento do
método pode ser visto como a expansão, contração e movimentação desse simplex
no espaço de busca do problema.

No que se segue, usaremos a seguinte notação:

• b ∈ {1, . . . , n+1} representa o ı́ndice do vértice com o melhor valor de função
objetivo;

• w ∈ {1, . . . , n + 1} representa o ı́ndice do vértice com o pior valor de função
objetivo;

• s ∈ {1, . . . , n + 1} representa o ı́ndice do vértice com o segundo pior valor de
função objetivo;

O centróide da face oposta a xxxw é dado por:

x̂xx =
1

n

n+1∑

i=1
i 6=w

xxxi

Este ponto é usado como base para definir as operações do método Nelder-
Mead Simplex. Essas operações modificam a forma do simplex adaptando-o às
caracteŕısticas da função. Cada operação visa gerar o novo vértice do simplex, que
substituirá o pior vértice. Essas operações são descritas a seguir e ilustradas na
Figura 3.8.

Reflexão: A operação de reflexão tem por objetivo rejeitar a pior solução e avançar
o simplex na direção de melhora. Essa operação reflete o pior vértice do
simplex sobre a face oposta:

xxxr = x̂xx+ α (x̂xx− xxxw) , α = 1

Expansão: Essa operação expande o simplex na direção de melhora, gerando um
ponto além do ponto de reflexão:

xxxe = x̂xx+ γ (x̂xx− xxxw) , γ = 2

Contração externa: Contrai o simplex na direção de melhora:

xxxc+ = x̂xx+ β (x̂xx− xxxw) , β = 0.5

Contração interna: Contrai o simplex internamente:

xxxc− = x̂xx− β (x̂xx− xxxw) , β = 0.5
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Figura 3.8: Ilustração das operações de reflexão, contração e expansão do simplex
no método Nelder-Mead.

Com base nestas operações, temos o Algoritmo 18 apresentado a seguir.
Observe que se o ponto refletido é melhor do que o melhor vértice, então o

simplex foi refletido numa direção que minimiza bastante a função objetivo, portanto
vale a pena expandir o simplex nessa direção testando o ponto xxxe. Caso contrário, se
xxxr não possui um valor tão bom de função objetivo, então é provável que o simplex
esteja próximo do ponto de mı́nimo, por isso são testados os pontos de contração
interna e externa, ver linhas 9–15.

Se nenhuma das operações resultou num novo vértice com valor de função ob-
jetivo pelo menos melhor do que aquele correspondente ao vértice a ser rejeitado,
então deve-se encolher o simplex, pois o ponto de mı́nimo está em seu interior. A
operação de encolhimento do simplex é feita preservando o vértice xxxb e aproximando
os demais vértices na direção de xxxb:

xxxi ← xxxb + σ (xxxi − xxxb) , i = 1, . . . , n+ 1, i 6= b (3.63)

com σ = 0.5.
Finalmente, os critérios de parada são em geral baseados no volume do simplex.

Por exemplo, pode-se monitorar os tamanhos das arestas ‖xxxi − xxxb‖ e caso estas
estejam abaixo de um valor de tolerância, considera-se que o método convergiu.

1Não confundir com o método Simplex desenvolvido para otimização linear.
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Algorithm 18: Método Nelder-Mead Simplex

1 k ← 0;
2 while (critério de parada não for satisfeito) do

3 Calcule xxxr = x̂xx+ α (x̂xx− xxxw);
4 if f(xxxr) < f(xxxb) then Expansão
5 calcule e avalie xxxe;
6 if f(xxxe) < f(xxxr) then xxxnew = xxxe;
7 else xxxnew = xxxr;

8 else if f(xxxb) < f(xxxr) < f(xxxs) then xxxnew = xxxr;
9 else if f(xxxs) < f(xxxr) < f(xxxw) then Contração externa

10 calcule e avalie xxxc+;
11 if f(xxxc+) ≤ f(xxxw) then xxxnew = xxxc+;

12 else if f(xxxr) ≥ f(xxxw) then Contração interna
13 calcule e avalie xxxc−;
14 if f(xxxc−) ≤ f(xxxw) then xxxnew = xxxc−;

15 else

16 Encolhe o simplex
17 end

18 end
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3.8 Exerćıcios

1. Dado f : R2 7→ R, f(xxx) = x2
1 + x2 e xxx0 = (2, 2)T , efetuar uma busca direcional

pelo Método da Seção Áurea na direção −∇f(·) a partir de xxx0. Considere
δ = 0.0001 para a estimação do gradiente; s = 0.1 para determinar o intervalo
[a, b]; e ǫ = 0.1 como critério de parada do Algoritmo da Seção Áurea [4].

2. Considere a função f definida por f(xxx) = (x1 + x3
2)

2 + 2(x1 − x2 − 4)4. Dado
um ponto xxx0 e um vetor direção não nulo ddd, seja θ(α) = f(xxx0 + αddd). Pede-se:

(i) Obter a expressão expĺıcita para θ(α).

(ii) Calcular o valor de α∗ que resolve o problema de minimização de θ(α),
sujeito a α ∈ R, para xxx0 = (5, 4)T e ddd = (−2, 1)T .

3. Seja o problema de minimizar f(xxx) = x3
1 + x1x2 − x2

1x
2
2 usando o Método de

Newton a partir do ponto xxx0 = (1, 1)T . Um programa computacional cuida-
dosamente implementado para executar este método não foi bem sucedido.
Discutir as prováveis razões para o não sucesso [4].

4. Dada a função f(xxx) = x2
1 + 4x2

2 − 4x1 − 8x2, pergunta-se [4]:

(i) Qual a direção de máximo declive no ponto xxx0 = (1, 1)T?

(ii) Qual a direção inicial de busca ddd determinada pelo Método de Newton a
partir de xxx0 = (1, 1)T?

(iii) Qual o comprimento de α, para o item (ii), tal que xxx1 = xxx0 + αddd?

(iv) Usando o Método de Newton, quantos passos são necessários para mini-
mizar f(xxx) partindo de xxx0 = (1, 1)T ? Por que?

5. Seja o problema definido por: minimize f(xxx) = x4
1−2x2

1x2+x2
1+x2

2−2x1+4,
com −4 ≤ x1, x2 ≤ 4. A partir do ponto xxx0 = (3, 4)T , encontrar o mı́nimo
de f(xxx) usando: (i) o Método do Gradiente, (ii) o Método DFP, e (iii) o
Método BFGS. O mesmo critério de parada deve ser empregado para todos os
algoritmos. Plotar o gráfico de f(xxx) versus o número de iterações para os três
métodos e comparar o processo de convergência. Os métodos convergem para
a mesma solução? Por que?

6. Considere o seguinte problema:

minimize
n∑

i=2

[100(xi − x2
i−1)

2 + (1− xi−1)
2]

Assumindo os valores de dimensões n = 5, 10, e 50, e ponto inicial x0 =
(−1.2, 1.0,−1.2, 1.0, . . .), encontrar o mı́nimo de f(x) usando: (i) o Método
do Gradiente, (ii) o Método DFP, e (iii) o Método BFGS. O mesmo critério
de parada deve ser empregado para todos os algoritmos. Plotar o gráfico de
f(xxx) versus o número de iterações para os três métodos e comparar o processo
de convergência. Os métodos convergem para a mesma solução? Por que?
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7. Considere o sistema de equações simultâneas

hi(xxx) = 0 para i = 1, . . . , l

(i) Mostre como resolver esse sistema de equações usando otimização irres-
trita. (Dica: considere o problema de minimizar

∑l

i=1
|hi(xxx)|

p, onde p é
um inteiro positivo.)

(ii) Usando essa estratégia, resolva o seguinte sistema:

2(x1 − 2)4 + (2x1 − x2)
2 − 4 = 0

x2
1 − 2x2 + 1 = 0
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