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2.9 Solução gráfica do problema exemplo – restrição de igualdade. . . . . 15
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Caṕıtulo 2

Condições de Otimalidade

2.1 Introdução

No caṕıtulo anterior, vimos, de maneira intuitiva a definição de função objetivo
e funções de restrição de igualdade e desigualdade, e as diferentes estratégias e
prinćıpios que podem ser utilizados para resolver problemas de otimização. Abordou-
se também as diferentes caracteŕısticas que as funções objetivo e de restrição podem
assumir e a implicação dessas caracteŕısticas na posśıvel estratégia a ser utilizada
na solução do problema de otimização.

Neste caṕıtulo discutiremos a caracterização da função objetivo, das funções de
restrição, e as condições de otimalidade que nos auxiliarão encontrar a solução para
o problema de otimização definido matematicamente como:

xxx∗ = arg min
xxx

f(xxx)

sujeito a:







gi(xxx) ≤ 0, i = 1, . . . , p

hj(xxx) = 0, j = 1, . . . , q

(2.1)

sendo que xxx ∈ R
n, f(·) : Rn 7→ R

1, gi(·) : R
n 7→ R

p e hj(·) : R
n 7→ R

q.
A escolha de técnicas adequadas para tratar o problema definido em (2.1) de-

pende da natureza das funções f(xxx), gi(xxx), hj(xxx). Não há uma técnica de otimização
que seja universal, no sentido de ser a melhor técnica para otimizar quaisquer
funções, e a escolha das técnicas, frequentemente, basea-se em informações sobre
o problema em questão.

Para nos orientar nessa caracterização, apresentaremos os seguintes pontos, re-
lacionadas com a questão de o quê são as soluções do problema (2.1):

1. Dado o funcional f(·) o que são os pontos de mı́nimo desse funcional, ou seja,
o que são as soluções do problema de otimização?

2. O que são os pontos de mı́nimo local desse funcional, se são dadas também as
restrições gi(xxx) ≤ 0 e hj(xxx) = 0 ?

3. Dado um ponto xxx ∈ R
n, que tipo de testes podem ser realizados para deter-

minar se esse ponto é ou não um ponto de mı́nimo de f(·), nos dois casos

1
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anteriores?

Respostas a essas questões serão fornecidas tanto no sentido local (mı́nimos
locais) quanto global (mı́nimos globais).

Antes porém de deduzir as condições de otimalidade do problema (2.1), é ne-
cessário agregar alguma informação que seja útil para se decidir como proceder para
encontrar tais soluções. Algumas caracterizações úteis, definidas neste caṕıtulo, são:

1. Função, funcional, continuidade e diferenciabilidade;

2. Curvas de ńıvel, superf́ıcie de ńıvel, região subńıvel;

3. Convexidade, quasi-convexidade, e não convexidade;

4. Unimodalidade e multimodalidade.

Cada uma dessas informações a respeito da função, se estiver dispońıvel, permite
a agregação de um certo tipo de informação de caráter global que auxilia o processo
de otimização.

A dedução das condições de otimimalidade serão utilizadas para a compreensão
e concepção dos algoritmos que utilizam a estratégia de direção de busca para a
solução de problemas de otimização. Leitura complementar pode ser encontrada
em [1]- [2].

2.2 Caracterização de Funções

2.2.1 Função e Funcional

Função

Uma função é uma relação que associa de maneira única membros de um conjunto A
com membros de um conjunto B. Em termos mais formais, uma função do conjunto
A para o conjunto B é um objeto f tal que todo elemento “a” que pertence ao
conjunto A é associado de maneira única com o objeto f(a) que pertence ao conjunto
B, f(a) ∈ B. Em termos matemáticos:

Definição 2.1 (Função) Sejam A e B dois conjuntos com membros ai, . . . , am e

bi, . . . , bn, respectivamente. Uma função f que associa de maneira única membros

de A em B é definida como:

f : A 7→ B (2.2)

�

Funcional

Um funcional é uma função que retorna um único valor, i.e. um número escalar.
Em termos matemáticos:

Definição 2.2 (Funcional) Se f(·) é um funcional então:

f : Rn 7→ R
1 (2.3)

�
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2.2.2 Superf́ıcie de Nı́vel e Região Subńıvel

A caracterização de funções adotada neste caṕıtulo se fundamenta nos conceitos de
superf́ıcie de ńıvel e de região subńıvel.

Superf́ıcie de Nı́vel

Definição 2.3 (Superf́ıcie de Nı́vel) Seja f(·) : C ⊂ R
n 7→ R. A superf́ıcie de

ńıvel S(f, α), associada ao ńıvel α, é definida como:

S(f, α) = {xxx ∈ C | f(xxx) = α} (2.4)

�

O conceito e definição de superf́ıcie de ńıvel pode ser ilustrado usando uma
função quadrática. Para esse fim, vamos utilizar a seguinte função:

f(xxx) = (xxx− xxx0)
′Q(xxx− xxx0)

Q =

[

2 0.3
0.3 1

]

xxx0 =

[

1
1

] (2.5)

que está ilustrada na Fig. 2.1.
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Figura 2.1: Superf́ıcie que representa o gráfico da função quadrática (2.5).

As curvas de ńıvel estão representadas no plano x1×x2 na Fig. 2.1. Cada curva
contém os pontos que possuem o mesmo valor de função.
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Região Sub-Nı́vel

Definição 2.4 (Região Sub-Nı́vel) Seja f(·) : C ⊂ R
n 7→ R. A região de sub-

ńıvel R(f, α), associada ao ńıvel α, é definida como:

R(f, α) = {xxx ∈ C | f(xxx) ≤ α} (2.6)

�

O conceito de região de sub-ńıvel para a função quadrática (2.5) está ilustrado
na Fig. 2.2 a seguir.

Figura 2.2: Gráfico ilustrando uma região sub-ńıvel R(f, α) - região hachurada - da
função quadrática. Indica-se, também, várias curvas de ńıvel, i.e. curvas para as
quais a função quadrática possui um mesmo valor α. Destaca-se a curva de ńıvel
α = 50.

Normalmente S(f, α) corresponde a uma fronteira de R(f, α), embora seja posśıvel
escolher α de forma que isso não ocorra. Claramente é válida uma relação de or-
denação das regiões de sub-ńıvel de uma função.

Proposição 2.1 Seja f(·) : C ⊂ R
n 7→ R. As regiões de sub-ńıvel dessa função

obedecem a:

R(f, α1) ⊃ R(f, α2) ⇔ α1 > α2 (2.7)

�

Pode-se pensar os problemas de otimização como sendo equivalentes a um pro-
blema de determinar pontos que estejam sucessivamente no interior de regiões de
sub-ńıvel cada vez menores (de menor valor de α). Em linhas gerais, se constroem
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Figura 2.3: Valor de α para o qual a região de subńıvel é conexa.

algoritmos que produzem tais sequências de pontos. Consequentemente, produz-se
uma “contração” do conjunto definido pelas regiões de sub-ńıvel, sendo a solução
atingida quando a região de sub-ńıvel se degenerar no ponto de ótimo.

As regiões de sub-ńıvel, analisadas sob o ponto de vista topológico, definem uma
categorização importante para as funções.

2.2.3 Unimodalidade e Multimodalidade

Definição 2.5 (Função Unimodal) Seja f(·) : C ⊂ R
n 7→ R. Diz-se que f(·) é

unimodal se R(f, α) é conexo para todo α ∈ R. Diz-se ainda que f(·) é estritamente

unimodal se, além disso, R(f, α) é um conjunto compacto para todo α ∈ R. �

Por simetria, define-se ainda:

Definição 2.6 (Função Multimodal) Seja f(·) : C ⊂ R
n 7→ R. Diz-se que f(·)

é multimodal se existe α ∈ R tal que R(f, α) não é conexo. �

As Figs. 2.3 e 2.4 mostram respectivamente uma região de subńıvel conexa e
uma região de subńıvel desconexa. Para esta função existe um valor de α para o
qual R(f, α) não é um conjunto conexo, caracterizando uma função multimodal.

Nota 2.1 Note-se que uma função unimodal pode possuir múltiplos mı́nimos, desde que
o conjunto deste seja conexo, e uma função estritamente unimodal também pode possuir
múltiplos mı́nimos, desde que o conjunto destes seja conexo compacto. O primeiro caso
ocorre, por exemplo, para a função

f(xxx) =
[

x1 x2
]

[

1 0
0 0

] [

x1
x2

]

(2.8)
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Figura 2.4: Valor de α para o qual a região de subńıvel é desconexa.

para a qual todos os pontos que pertencem ao eixo x1 = 0 (esses pontos formam um
conjunto conexo mas não compacto) constituem mı́nimos. Essa observação revela uma
diferença fundamental das noções de função unimodal e função multimodal aqui definidas
em relação às usualmente encontradas na literatura. Os autores acreditam que no formato
apresentado neste texto essas definições ganham maior funcionalidade para articularem a
teoria de otimização.

♦

2.2.4 Bacias de Atração

Ao redor de mı́nimos locais, sempre haverá regiões nas quais a função se comportará
de maneira unimodal. Tais regiões são definidas como bacias de atração associadas
a tais mı́nimos. Para estabelecer essa definição, é necessário definir preliminarmente
a região conexa de sub-ńıvel.

Definição 2.7 (Região Conexa de Sub-Nı́vel) Seja f(·) : C ⊂ R
n 7→ R, seja a

região de sub-ńıvel R(f, α), associada ao ńıvel α, e seja um ponto xxx0 ∈ R(f, α). A

região conexa de sub-ńıvel R(f, α,xxx0) é definida como o maior subconjunto conexo

de R(f, α) que contém xxx0. �

Agora é posśıvel definir bacia de atração.

Definição 2.8 (Bacia de Atração) Seja f(·) : C ⊂ R
n 7→ R, e seja xxx∗ ∈ C

um mı́nimo local de f(·). A bacia de atração de xxx∗ é definida como a maior região

conexa de sub-ńıvel associada a xxx∗, sendo α∗ o ńıvel correspondente, tal que a função

restrita a essa região

f(·) : Rc (f, α
∗,xxx∗) 7→ R (2.9)



D
R
A
FT

Condições de Otimalidade 7

é unimodal. A bacia de atração é dita estrita se nessa região a função é estritamente

unimodal. �

2.2.5 Continuidade e Diferenciabilidade

Suposições de continuidade e de diferenciabilidade das funções são importantes na
definição de alguns métodos de otimização. De maneira intuitiva, uma função
cont́ınua é aquela para a qual uma pequena variação na entrada gera uma pequena
variação no resultado da função, isto é, a função não possui “saltos”. Uma definição
formal é dada a seguir.

Definição 2.9 (Função cont́ınua) Uma função f(·) : C ⊂ R
n 7→ R é cont́ınua se

∀ xxx0 ∈ C:

1. f(xxx0) é definido;

2. lim
xxx→xxx0

f(xxx) = f(xxx0).

�

Definição 2.10 (Função diferenciável) Uma função f(·) : C ⊂ R
n 7→ R é dife-

renciável se ∀ xxx0 ∈ C existe o vetor gradiente:

∇f(xxx) =
[

∂f

∂x1

∂f

∂x2

· · · ∂f

∂xn

]

(2.10)

�

Essas suposições nos permitem extrair propriedades interessantes a respeito de
suas superf́ıcies de ńıvel e bacias de atração.

Proposição 2.2 Seja f(·) : C ⊂ R
n 7→ R. Se f(·) é cont́ınua no domı́nio C, então

dist(S(f, α1), S(f, α2)) > 0 ∀ (α1, α2) | |α1 − α2| > 0 (2.11)

sendo dist(·, ·) a função distância. �

Corolário 2.1 Superf́ıcies de ńıvel de funções cont́ınuas não se tocam nem se cru-

zam. �

Proposição 2.3 Seja f(·) : C ⊂ R
n 7→ R. Se f(·) é diferenciável no domı́nio

C, então toda superf́ıcie de ńıvel S(f, α) é suave, sendo o hiperplano tangente à

superf́ıcie em cada ponto perpendicular ao gradiente da função no ponto. �

A hipótese de diferenciabilidade de uma função permite elaborar estratégias
de otimização baseadas no fato de que o gradiente de um função (que, no caso de
funções diferenciáveis, é sempre bem definido) indica quais são as direções do espaço
para as quais, partindo-se de um ponto, ocorre localmente a diminuição da função.
Isso equivale à determinação das direções para as quais se caminha para regiões
de sub-ńıvel inferiores. A proposição a seguir formaliza esse fato, que deriva da
proposição anterior.
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Proposição 2.4 Seja f(·) : C ⊂ R
n 7→ R uma função diferenciável no domı́nio C,

seja xxx0 um ponto pertencente à superf́ıcie de ńıvel S(f, α), e seja ∇f(xxx0) o gradiente

de f(·) no ponto xxx0. Seja ainda um vetor ddd ∈ R
n. Então, se

ddd · ∇f(xxx0) < 0 (2.12)

então existe ǫ > 0 tal que:

f(xxx0 + ǫddd) < f(xxx0) (2.13)

�

Dizemos que ddd é uma direção minimizante de f(·) no ponto xxx0.

Por fim, o subgradiente é uma generalização do vetor gradiente para o caso de
funções não diferenciáveis.

Definição 2.11 (Subgradiente) Seja f(·) : Rn 7→ R. Um funcional linear f sb é

um subgradiente de f(·) no ponto xxx0 se:

f(xxx) ≥ f(xxx0) + f sb(xxx− xxx0) , ∀ xxx (2.14)

�

Por exemplo, seja a função f(x) = |x|. A derivada desta função é:

f ′(x) =

{

1, x > 0

−1, x < 0
(2.15)

No ponto x = 0 a derivada não é definida, entretanto pode-se definir o subgra-
diente como qualquer número real no intervalo [−1, 1].

A Fig. ? ilustra o conceito de subgradiente para uma função de duas variáveis.
Qualquer vetor no cone formado pelos vetores vvv1 e vvv2 é um subgradiente de f(·) no
ponto xxx0, em que o vetor gradiente não é definido.

2.2.6 Convexidade, Quasi-Convexidade e Não Convexidade

Conjunto Convexo

Definição 2.12 (Conjunto Convexo) Diz-se que um conjunto C ∈ R
n é convexo

se para quaisquer vetores xxx, yyy ∈ C,

αxxx+ (1− α)yyy ∈ C (2.16)

para todo α ∈ [0, 1]. �

Em outras palavras, um conjunto C é dito convexo se todos os pontos do seg-
mento de reta que une dois pontos quaisquer de C também pertencem a C. Isso
está ilustrado na Fig. 2.5.

Outro tipo de informação que pode ser útil em processos de otimização diz
respeito à convexidade das funções.
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Figura 2.5: Representação: (a) Conjunto convexo, (b) Conjunto não convexo

Função Convexa

Definição 2.13 (Função Convexa) Diz-se que uma função f(·) : C ⊂ R
n 7→ R

definida sobre um conjunto convexo C é convexa se para quaisquer xxx, yyy ∈ C,

f (αxxx+ (1− α)yyy) ≤ αf(xxx) + (1− α)f(yyy) (2.17)

para todo α ∈ [0, 1]. Se para quaisquer xxx, yyy ∈ C, sendo xxx 6= yyy e 0 < α < 1, a
desigualdade é estrita, então f(·) é estritamente convexa. �

Analogamente, f(·) é (estritamente) côncava se −f(·) for (estritamente) convexa.

Proposição 2.5 (Caracterizações de Funções Convexas) Seja f(·) uma função

duas vezes diferenciável, sobre um conjunto convexo C ⊂ R
n. Então são equivalentes

as afirmativas a seguir:

i. f (αxxx+ (1− α)yyy) ≤ αf(xxx) + (1− α)f(yyy) ∀ α ∈ [0, 1]

ii. f(yyy) ≥ f(xxx) +∇f(xxx)′(yyy − xxx) ∀ xxx, yyy ∈ C

iii. H(xxx) ≥ 0 ∀ xxx ∈ C

sendo ∇f(xxx) o vetor gradiente no ponto xxx e H(xxx) a matriz Hessiana 1 no ponto xxx.
�

Como no caso de conjuntos convexos, é posśıvel obter funções convexas a partir de
combinações convexas.

Proposição 2.6 (Combinações Convexas) Sejam fi(·) : Ci ⊂ R
n 7→ R funções

convexas definidas sobre conjuntos convexos Ci , i = 1, . . . , m. Então:

1A matriz Hessiana é obtida a partir da derivada segunda de f(·) em relação a xxx.
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i. αfi(·) é convexa sobre Ci, ∀ α ≥ 0

ii.

m
∑

i=1

αifi(·) é convexa sobre

m
⋂

i=1

Ci para αi ≥ 0 , i = 1, . . . , m

�

Proposição 2.7 Seja f(·) : C ⊂ R
n 7→ R uma função convexa sobre C convexo.

Então a região de sub-ńıvel R(f, α) é convexa para todo α ∈ R. �

A rećıproca não é verdadeira.
A convexidade de R(f, α) define um novo tipo de função, as funções quasi-

convexas.

Definição 2.14 (Função Quasi-Convexa) Seja f(·) : C ⊂ R
n 7→ R uma função

tal que suas regiões de sub-ńıvel R(f, α) são convexas para todo α ∈ R. Neste caso,

diz-se que f(·) é quasi-convexa no domı́nio C. �

Proposição 2.8 Se f(·) : C ⊂ R
n 7→ R é uma função quasi-convexa, então:

f (αxxx+ (1− α)yyy) ≤ max {f(xxx), f(yyy)} ∀ xxx, yyy ∈ C , ∀ α ∈ [0, 1] (2.18)

�

Outro resultado envolvendo conjuntos e funções convexas pode ser obtido a partir
da definição de Eṕıgrafo:

Definição 2.15 (Eṕıgrafo) O eṕıgrafo de uma função f(·) : C ⊂ R
n 7→ R é

definido como:

[f, C] = {(xxx, θ) ∈ R
n × R : xxx ∈ C , f(xxx) ≤ θ} (2.19)

�

Proposição 2.9 Uma função f(·) : C ⊂ R
n 7→ R definida sobre C convexo é

convexa se, e somente se, [f, C] é um conjunto convexo. �

Como todo conjunto convexo, o eṕıgrafo de uma função convexa admite hiperplanos
suporte em qualquer ponto de sua fronteira.

A convexidade de funções pode ser relacionada com as regiões de sub-ńıvel,
superf́ıcies de ńıvel e bacias de atração.

Proposição 2.10 Todas as regiões de sub-ńıvel de uma função convexa num domı́nio

convexo são conjuntos convexos. �

Proposição 2.11 Uma função convexa em um domı́nio convexo possui uma única

bacia de atração, a qual é um conjunto convexo. �
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Proposição 2.12 Seja uma função convexa f(·) : C ⊂ R
n 7→ R, seja um ponto

qualquer xxx0 ∈ R
n, e seja s(xxx0) ∈ R

n um vetor subgradiente da função no ponto.

Então a região de sub-ńıvel que possui o ponto xxx0 em sua fronteira está contida no

semi-espaço fechado negativo definido pelo vetor subgradiente no ponto xxx0, ou seja:

Es = {xxx ∈ R
n | (xxx− xxx0) · s(xxx0) ≤ 0}

R(f, f(xxx0)) ⊂ Es

(2.20)

�

2.2.7 Mı́nimo Local e Mı́nimo Global

Introduzimos o conceito de mı́nimo local como o ponto xxx∗, para o qual qualquer
vetor xxx na vizinhança ǫ de xxx∗ implica em f(xxx∗) ≤ f(xxx). Matematicamente:

Definição 2.16 (Mı́nimo Local) Seja f(·) : C ⊂ R
n 7→ R. Um ponto xxx∗ é um

mı́nimo local de f(·) sobre C se existe ǫ > 0 tal que

f(xxx∗) ≤ f(xxx) , ∀ xxx ∈ V (xxx∗, ǫ) ∩ C (2.21)

onde V (xxx∗, ǫ) , {xxx : ‖xxx− xxx∗‖ ≤ ǫ}. O ponto xxx∗ ∈ C é um mı́nimo local estrito se

vale a desigualdade estrita. �

Naturalmente, o conjunto C é o subconjunto do espaço R
n definido pelas res-

trições:

C , {xxx ∈ R
n | gi(xxx) ≤ 0 ; i = 1, . . . , p ; hj(xxx) = 0 ; j = 1, . . . , q} (2.22)

É posśıvel, a partir desta definição, construir a definição de mı́nimo global do
funcional. Se for posśıvel escolher ǫ > 0 tal que V (xxx∗, ǫ) ∩ C = C, então xxx∗ é um
mı́nimo global de f(·) sobre C. O mı́nimo global é ainda estrito se a desigualdade
for satisfeita de modo estrito.

2.3 Problema Exemplo

Consideremos o problema:

xxx∗ = arg min
xxx

f(xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:























g1(xxx) : 3x1 + 2x2 ≤ 12

h1(xxx) : x1 + x2 = 5

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(2.23)

que representa a minimização de uma função de duas variáveis f(x1, x2), sujeita a
uma restrição de desigualdade g1(xxx) e outra de igualdade h1(xxx). Em geral, como viu-
se no caṕıtulo anterior, problemas práticos podem ter mais do que uma restrição
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de igualdade e desigualdade. Entretanto, para facilitar a análise, consideraremos
apenas g1(·) e h1(·). Por ser uma função de apenas duas variáveis, f(x1, x2) pode
ser representada no plano (x1 × x2) através de curvas de ńıvel, conforme indicado
na Figura 2.6. As duas restrições, g1(·) e h1(·), estão também representadas na
Figura 2.6. O objetivo nesta seção é explorar conceitos intuitivos e geométricos
para caracterizar o mı́nimo de (2.23). Este problema exemplo será utilizado nas
seções seguintes para deduzir as condições necessárias e suficientes de otimização.

0.1

0.3

0.5

1

3

5

10

10

20

20

20

20

x1

x
2

Problema Exemplo
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5

6

1g 1h

Figura 2.6: Ilustração gráfica do problema exemplo.

2.3.1 Soluções Gráficas

As soluções gráficas serão apresentadas, separadamente, para três tipos de pro-
blemas: irrestritos, com restrição de igualdade, e com restrição de desigualdade,
seguindo o exemplo definido em (2.23). Em geral, esses três tipos de problemas,
analisados separadamente ou em conjunto, representam os tipos posśıveis de pro-
blemas de otimização.

Problemas Irrestritos

A partir da equação (2.23) pode-se definir o problema irrestrito da seguinte maneira:

xxx∗ = arg min
xxx

f(xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:
{

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(2.24)

que como o nome sugere, não possui nenhuma função de restrição imposta a f(·).
Neste caso, os limites inferiores e superiores de xxx definem a região fact́ıvel. Anali-
sando as curvas de ńıvel da função objetivo f(·), observa-se por inspeção que o valor
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mı́nimo ocorre para (x∗

1
= 3 e x∗

2
= 3), já que as curvas de ńıvel de f(·) diminuem

de valor a medida que se aproxima desse ponto, conforme indicado na Figura 2.7.
No ponto solução encontrado por inspeção, constata-se que f(xxx∗) = 0, para tanto
basta substituir os valores de x∗

1
= 3 e x∗

2
= 3 na equação de f(·).
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Figura 2.7: Solução gráfica do problema exemplo – irrestrito.

Restrição de Desigualdade

A partir de (2.25) pode-se definir o problema com restrição de desigualdade:

xxx∗ = arg min
xxx

f(xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:







g1(xxx) : 3x1 + 2x2 ≤ 12

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(2.25)

Neste caso, ao incluir a restrição de desigualdade g1(·) ≤ 0, força-se que a solução
do problema (2.25) esteja na região fact́ıvel, conforme indicado na Figura 2.8. A
região fact́ıvel passa a ser o conjunto dos pontos que satisfaz g1(·) ≤ 0 e os limites
superiores e inferiores de x1 e x2. A solução, em prinćıpio, poderia ser qualquer ponto
(x1, x2) pertencente a região fact́ıvel. Entretanto, por inspeção, pode-se identificar
que o mı́nimo é o ponto (x∗

1
, x∗

2
) definido na curva de ńıvel de f(·) que tangencia g1(·).

Observe que no ponto solução (x∗

1
, x∗

2
), ∇f(·) está, exatamente, no sentido oposto

de ∇g1(·). Essa relação entre os gradientes é a base para estabelecer as condições
de otimalidade de primeira ordem para problemas com restrições de desigualdade.

Restrição de Igualdade

A partir da equação (2.23), pode-se definir o problema com a restrição de igualdade:
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Figura 2.8: Solução gráfica do problema exemplo – restrição de desigualdade.

xxx∗ = arg min
xxx

f(xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:







h1(xxx) : x1 + x2 = 5

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(2.26)

Neste caso, ao incluir a restrição de igualdade h1(·), força-se que a solução do pro-
blema (2.26) esteja sobre a reta h1(·), uma vez que a solução do problema (2.26)
tem que satisfazer a equação de h1(·). A primeira observação a ser feita é que ao
reduzir os pontos solução posśıveis aos pontos contidos sobre a reta h1(·), está-se,
de fato, reduzindo a região fact́ıvel. A solução, em prinćıpio, poderia ser qualquer
ponto (x1, x2) sobre a reta h1(·). Entretanto, por inspeção, pode-se identificar que
o mı́nimo é o ponto (x∗

1
, x∗

2
) definido na curva de ńıvel de f(·) que tangencia h1(·),

conforme indicado na Figura 2.9. Observe que nesse ponto ∇f(·) está, exatamente,
no sentido oposto de ∇h1(·) (o caso geral requer que os gradientes estejam alinha-
dos). Essa relação entre os gradientes é a base para estabelecer as condições de
otimalidade de primeira ordem para problemas com restrições de igualdade.

Restrições de Desigualdade e Igualdade

O problema com ambas as restrições é apresentado em (2.27).
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Figura 2.9: Solução gráfica do problema exemplo – restrição de igualdade.

xxx∗ = arg min
xxx

f(xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:























g1(xxx) : 3x1 + 2x2 ≤ 12

h1(xxx) : x1 + x2 = 5

0 ≤ x1 ≤ 6 0 ≤ x2 ≤ 6

(2.27)

Este caso é, em prinćıpio, o caso geral que envolve a função objetivo e restrições de
igualdade e desigualdade. A região fact́ıvel passa a ser a região que satisfaz simulta-
neamente h1(·) = 0 e g1(·) ≤ 0, respeitando-se os limites superiores e inferiores de x1

e x2. Por inspeção, pode-se identificar que o mı́nimo (x∗

1
, x∗

2
) é o ponto de interseção

entre as curvas h1(·) e g1(·), uma vez que ambas restrições tem que ser satisfeitas.
Resolvendo-se o sistema de equações formado por h1(·) e g1(·), obtém-se (x∗

1
= 2

e x∗

2
= 3). Nesse ponto f(xxx∗) = 1. Observe que neste caso, no ponto solução, o

somatório dos gradientes de f(·), h1(·) e g1(·) não se anula automaticamente. Para
que isso aconteça é necessário que o ∇h1(·) ou o ∇g1(·) tenha o seu sentido invertido,
i.e. seja multiplicado por uma constante com sinal negativo. Veremos nas seções
seguintes que isso só se verifica com ∇h1(·). Essa relação entre os gradientes é a
base para estabelecer as condições de otimalidade de primeira ordem para o caso
geral envolvendo problemas com restrições de igualdade e desigualdade.

2.4 Condições Anaĺıticas: Problemas Irrestritos

Nesta seção, apresentaremos as condições anaĺıticas necessárias e suficientes que
permitem afirmar se a solução de um determinado problema de otimização é de
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Figura 2.10: Solução gráfica do problema exemplo – restrição de igualdade e desi-
gualdade.

fato a solução ótima. Essas condições serão utilizadas nos caṕıtulos seguintes, como
critérios de parada e convergência, quando serão estudados os métodos numéricos
determińısticos para problemas irrestritos e restritos. Similarmente à seção anterior,
utilizaremos conceitos intuitivos com o aux́ılio de interpretação geométrica para
apresentação das condições necessárias e suficientes. Por conveniência, suporemos
que a função objetivo f(·) possui apenas um mı́nimo e que a solução encontra-se no
interior da região fact́ıvel.

Para facilitar a dedução anaĺıtica, utilizaremos como exemplo o mesmo problema
(2.23) da seção anterior, envolvendo uma função objetivo f(·) de duas variáveis e
apenas uma restrição de desigualdade g(·) e outra de igualdade h(·). Embora o
problema de otimização inclua apenas uma restrição de desigualdade e outra de
igualdade, a análise que apresentaremos a seguir pode ser generalizada.

O problema irrestrito pode ser definido como:

xxx∗ = arg min
xxx

f(xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:
{

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(2.28)

Conforme já observado na seção anterior, a Figura 2.7 ilustra as curvas de ńıvel
da equação (2.28) no plano x1 × x2, ao passo que a Figura 2.11 ilustra o gráfico 3D
da mesma função. Um plano tangente ao ponto (x1 = 3, x2 = 3) foi desenhado para
realçar o ponto de mı́nimo da função. A Figura 2.11 será utilizada para identificar
as propriedades de f(·) no ponto de mı́nimo.

Analisando a Figura 2.11, observa-se que o mı́nimo ocorre em (x∗

1
= 3, x∗

2
= 3),

e nesse ponto f(x1, x2) = 0. Se os valores de x1 e ou x2 variassem de um pequeno
valor, em qualquer direção, o valor da função f(·) certamente aumentaria, uma vez
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que xxx∗ é o ponto mı́nimo da superf́ıcie convexa que representa a função f(·).
Voltando ao exemplo, representaremos a variação na vizinhança do ponto ótimo

como ∆xxx, e a variação do valor ótimo da função como ∆f(·). Por observação direta
fica evidente que o mı́nimo deve ser um ponto que satisfaça:

∆f > 0 , ∀ ∆xxx (2.29)
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Figura 2.11: Solução gráfica 3D do problema irrestrito.

2.4.1 Condições de Primeira Ordem

O conceito desenvolvido em (2.29) pode ser aplicado no limite, isto é, para incre-
mentos infinitesimais dx1 e dx2 sobre xxx∗. A função f(·) pode ser aproximada por
um plano tangente no ponto solução, por exemplo utilizando os primeiros termos
de uma série de Taylor. A partir do ponto de mı́nimo, qualquer variação no plano
tangente não mudará o valor da função f(·), uma vez que o valor da função f(·) é
constante no plano; consequentemente df = 0. Por outro lado, observa-se também
que qualquer variação no plano, a partir do ponto mı́nimo, implica que dx1 e dx2

não são zero. Matematicamente, essa variação pode ser expressa por:

df =
∂f

∂x1

dx1 +
∂f

∂x2

dx2 = 0 (2.30)

ou

df =

[

∂f

∂x1

∂f

∂x2

] [

dx1

dx2

]

= 0 (2.31)

A equação (2.31) deve ser satisfeita para todos os pontos do plano. Sabendo-se
que dx1 6= 0 e dx2 6= 0, obtém-se consequentemente:
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∂f

∂x1

= 0 ;
∂f

∂x2

= 0 (2.32)

ou, em outras palavras, o gradiente de f(·) no ponto mı́nimo deve ser zero. Mate-
maticamente:

∇f(x∗

1
, x∗

2
) = 0 (2.33)

A equação (2.33) representa a condição necessária, ou condição de primeira or-

dem para problemas irrestritos. Essa equação é utilizada para identificar as soluções
posśıveis de um problema de otimização. Considerações adicionais devem ser im-
postas para assegurar se a solução encontrada pela condição de primeira ordem é
de fato ótima, neste caso um mı́nimo, as quais serão tratadas posteriormente. Por-
tanto, para um problema geral de otimização, as condições necessárias de primeira
ordem podem ser expressas por:

∇f(xxx∗) = 0 (2.34)

A equação (2.34) é utilizada para determinar os valores de xxx∗ tanto anaĺıtica
quanto numericamente.

Proposição 2.13 (Condições Necessárias de 1a Ordem) Seja Ω ⊂ R
n e f

uma função diferenciável sobre Ω. Se xxx∗ é um mı́nimo local de f sobre Ω, então
tem-se que:

∇f(xxx∗) = 0 (2.35)

�

2.4.2 Condições de Segunda Ordem

As condições de segunda ordem são normalmente conhecidas como condições su-

ficientes. Como o nome sugere, essas condições envolvem a derivada segunda da
função. As condições de segunda ordem são obtidas através da expansão de Taylor
da função. Se xxx∗ é a solução ótima e ∆xxx representa uma variação no ponto solução,
a qual resulta em uma variação em ∆f , então:

∆f = f(xxx∗ +∆xxx)− f(xxx∗) = ∇f(xxx∗)T∆xxx+
1

2
∆xxxTH(xxx∗)∆xxx (2.36)

Para avaliarmos (2.36), ∆f deve ser maior do que zero, conforme já observado
em (2.29). Aplicando as condições necessárias de primeira ordem (2.35), o primeiro
termo do lado direito de (2.36) é zero. Isso resulta na seguinte inequação:

1

2
∆xxxTH(xxx∗)∆xxx > 0 (2.37)

onde H(xxx∗) é a matriz Hessiana da função f no ponto mı́nimo xxx∗. Para que (2.37)
seja verdadeira, a matrix H(xxx∗) deve ser positiva definida. Há três maneiras para
determinar se H é positiva definida:

1. Para todos os valores posśıveis de ∆xxx, ∆xxxTH(xxx∗)∆xxx > 0.
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2. Todos os autovalores de H(xxx∗) devem ser positivos.

3. Os determinantes de todas as submatrizes que envolvem a diagonal principal
de H(xxx∗) devem ser positivos.

Das três condições, apenas as duas últimas podem ser testadas. Isso é discutido
a seguir. Porém, a última condição não é tão trivial para ordens elevadas.

Exemplo

Seja o problema de minimização definido por:

xxx∗ = arg min
xxx

f(xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:
{

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(2.38)

As condições necessárias de primeira ordem, equação (2.35), requerem:

∂f(·)

∂x1

= 2(x1 − 3) = 0 (2.39)

∂f(·)

∂x2

= 4(x2 − 3) = 0 (2.40)

As equações (2.39) e (2.40) podem ser facilmente resolvidas, resultando na
solução x∗

1
= 3 e x∗

2
= 3. No ponto solução a função f(·) assume o valor f(xxx∗) = 0

e não há outro ponto na região fact́ıvel em que f(xxx) < 0. Com isso, conclui-se
que as condições necessárias de primeira ordem foram satisfeitas. Entretanto, se a
função objetivo f(·) fosse mais complexa, com três ou mais variáveis, e não fosse
posśıvel representá-la através de curvas de ńıvel, não poderiamos a priori, apenas
com base nas condições de primeira ordem, afirmar que o ponto encontrado trata-se
do mı́nimo da função. Afinal, o ponto em questão poderia representar o máximo de
f(·) ou um ponto de inflexão, por exemplo um ponto de sela. Portanto, é necessário
avaliar as condições de segunda ordem.

As condições de segunda ordem requerem que a matriz Hessiana seja positiva
definida, que neste caso pode ser obtida facilmente:

H =

[

2 0
0 4

]

(2.41)

Examinando-se as três maneiras para determinar seH é positiva definida, obtém-
se:

1. Não é posśıvel testar todos os ∆xxx

2. Cálculo dos autovalores de H :

∣

∣

∣

∣

2− λ1 0
0 4− λ2

∣

∣

∣

∣

= (2− λ1)(4− λ2) = 0



D
R
A
FT

20 Notas de Aula de Otimização

Os autovalores são λ1 = 2, λ2 = 4 e a matriz é positiva definida.

3. Cálculo dos determinantes de todas as submatrizes que envolvam a diagonal
principal de H :

|2| > 0

[

2 0
0 4

]

= 8 > 0

A matriz é positiva definida.

Com isso, conclui-se que as condições de segunda ordem são satisfeitas e que
x∗

1
= 3 e x∗

2
= 3 é de fato o ponto de mı́nimo da função. Apresenta-se a seguir as

condições necessárias de segunda ordem para um caso geral.

Proposição 2.14 (Condições Necessárias de 2a Ordem) Seja Ω ⊂ R
n e f(·)

uma função duas vezes diferenciável sobre Ω. Se xxx∗ é um mı́nimo local de f(·) sobre
Ω, então tem-se que:

i. ∇f(xxx∗) = 0

ii. H(xxx∗) > 0

�

Com esse exemplo, conclui-se a dedução anaĺıtica das condições necessárias e
suficientes que um ponto deve satisfazer para ser considerado um mı́nimo de uma
função f(·) sem restrições. Apresenta-se, a seguir, a proposição que resume esta
seção.

Proposição 2.15 (Otimização Irrestrita) Seja f(·) ∈ C2 e xxx∗ ∈ R
n. Se forem

simultaneamente satisfeitas:

i. ∇f(xxx∗) = 0

ii. H(xxx∗) > 0

então xxx∗ é um mı́nimo local estrito de f(·) sobre R
n.

2.5 Condições Anaĺıticas: Problemas com Res-

trição de Desigualdade

O problema sujeito à restrição de desigualdade pode ser definido como:

xxx∗ = arg min
xxx

f(xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:







g1(xxx) : 3x1 + 2x2 ≤ 12

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(2.42)
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A Figura 2.8, da seção anterior, ilustra a solução gráfica para este problema com
restrição de desigualdade. Pode-se observar que no ponto solução o vetor gradiente
da função objetivo e o da função restrição estão na mesma direção e em sentidos
opostos. Examinando outros pontos fact́ıveis na Figura 2.8, pode-se afirmar que essa
relação entre ∇f(·) e ∇g(·) só é verificada no ponto solução. Existe, portanto, no
ponto solução uma relação proporcional entre ∇f(·) e ∇g(·). Representanto a cons-
tante de proporcionalidade por β1, pode-se expressar a relação entre os gradientes
por:

∇f(·) = −β1∇g1(·) ou ∇f(·) + β1∇g1(·) = 0 (2.43)

A expressão (2.43) pode ser obtida com critérios mais rigorosos usando o método
de multiplicadores de Lagrange.

2.5.1 Condições de Primeira Ordem

Método de Lagrange

No método de Lagrange, o problema original (2.42) é transformado com a introdução
de uma função Lagrangeana f(·), que consite na função objetivo original f(·) so-
mada a restrição de desigualdade g1(·) ponderada pelo multiplicador β1. Todavia, a
restrição de desigualdade precisa ser tratada como uma restrição de igualdade; para
que isso possa ser considerado basta somar uma variável de folga z2

1
a g1(·).

Então, um problema composto por uma função objetivo f(xxx), de duas variáveis
x1 e x2, e apenas uma função de restrição de desigualdade g1(xxx), similar ao problema
original (2.42), poderia ser expresso de maneira genérica por:

xxx∗ = arg min
xxx

f(xxx, β1, z
2

1
) = f(xxx) + β1[g1(xxx) + z2

1
]

sujeito a:







g1(xxx) + z2
1
= 0

xmin
1

≤ x1 ≤ xmax
1

e xmin
2

≤ x2 ≤ xmax
2

(2.44)

Considerando o Lagrangeano em (2.44) como uma função irrestrita, as condições
de primeira ordem tem que ser satisfeitas, ou seja:

∂f (·)

∂x1

=
∂f(·)

∂x1

+ β1

∂g1(·)

∂x1

= 0 (2.45)

∂f (·)

∂x2

=
∂f(·)

∂x2

+ β1

∂g1(·)

∂x2

= 0 (2.46)

∂f (·)

∂z1
= 2β1z1 = 0 (2.47)

∂f(·)

∂β1

= g1(·) + z2
1
= 0 (2.48)

que representa um sistema de quatro equações e quatro incógnitas, x1, x2, β1 e
z1. As equações (2.47) e (2.48) podem ser combinadas, basta multiplicar (2.47)
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por z1 e obtém-se 2β1z
2

1
= 0. Da expressão (2.48) tem-se que z2

1
= −g1(·). Assim,

elimina-se a variável de folga z1 e obtém-se β1g1(·) = 0. Então o sistema de equações
(2.45)–(2.48) pode ser reduzido e reescrito como:

∂f (·)

∂x1

=
∂f(·)

∂x1

+ β1

∂g1(·)

∂x1

= 0 (2.49)

∂f (·)

∂x2

=
∂f(·)

∂x2

+ β1

∂g1(·)

∂x2

= 0 (2.50)

β1g1(·) = 0 (2.51)

Em linhas gerais, as condições de primeira ordem para um problema com res-
trição de desigualdade podem ser resumidas da seguinte maneira:

∇f(·) + β1∇g1(·) = 0 (2.52)

β1g1(·) = 0 (2.53)

A generalização para p restrições de desigualdade será apresentada no final do
caṕıulo.

Voltando ao problema exemplo e substituindo os valores no sistema de equações
(2.49)–(2.51), obtém-se:

∂f (·)

∂x1

= 2x1 − 6 + 3β1 = 0 (2.54)

∂f (·)

∂x2

= 4x2 − 12 + 2β1 = 0 (2.55)

β1g1(·) = β1(3x1 + 2x2 − 12) = 0 (2.56)

Neste caso, as equações (2.54)–(2.56) representam um sistema de três equações
simultâneas e três incógnitas, e soluções não triviais. Para que a equação (2.56)
seja satisfeita é necessário que β1 = 0 ou que g1(·) = 0. O sistema de equações
simultâneas (2.54)–(2.56) requer que as condições no multiplicador β1 e na restrição
g1(·) sejam satisfeitas simultaneamente. Isso resulta nos seguintes casos:

1. Caso a: β1 = 0 [g1 < 0]

2. Caso b: β1 6= 0 [g1 = 0]

Observa-se claramente, no caso b, que se β1 6= 0, correspondendo a g1 = 0, então
a restrição g1(·) transforma-se em uma igualdade.

O sistema de equações (2.54)–(2.56) deve ser resolvido considerando-se os casos
a e b. Fica por conta do leitor mostrar que, no exemplo em questão, o caso a leva
a uma solução inviável. Para o caso b, obtém-se x∗

1
= 2.18, x∗

2
= 2.73 e β∗

1
= 0.55.

Observando a Figura 2.8, solução geométrica obtida na seção anterior, nota-se que
a solução anaĺıtica encontrada usando o multiplicador de Lagrange indica que é
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necessário multiplicar o ∇g1(·) por β1 = 0.55 para que o somatório de ∇f(·) e
∇g1(·) seja zero no ponto solução.

Como no caso irrestrito da seção anterior, é preciso investigar as condições de
segunda ordem, ou condições suficientes, para ter segurança em relação à solução
encontrada pelas condições necessárias.

2.5.2 Condições de Segunda Ordem

No ponto determinado pelas condições de primeira ordem, qualquer variação ∆xxx
implicará um aumento na função f(·). Variações ∆xxx não são arbitrárias. Elas
tem que satisfazer as restrições de desigualdade no ponto solução. As condições de
segunda ordem requerem que as equações seguintes sejam satisfeitas:

∆f(·) = f(xxx∗ +∆xxx)− f(xxx∗) = ∇f(xxx∗)T∆xxx+
1

2
∆xxxT [H(xxx∗)]∆xxx > 0 (2.57)

∇g1(·)
T∆xxx = 0 (2.58)

Na equação (2.57) o termo [H(xxx∗)] representa a matriz Hessiana da função La-
grangeana f calculada no ponto solução. As condições de primeira ordem requerem
que ∇f(xxx∗) = 0. Considerando um problema com duas variáveis e uma restrição de
desigualdade, tem-se:

∆f(·) =
1

2

[

∂2f(·)

∂x2

1

(∆x1)
2 + 2

∂2f(·)

∂x1∂x2

(∆x1)(∆x2) +
∂2f(·)

∂x2

2

(∆x2)
2

]

> 0 (2.59)

rearranjando os termos de (2.59) resulta em:

∆f(·) =
1

2

[

∂2f(·)

∂x2

1

(
∆x1

∆x2

)2 + 2
∂2f(·)

∂x1∂x2

(
∆x1

∆x2

) +
∂2f(·)

∂x2

2

]

(∆x2)
2 > 0 (2.60)

A equação (2.58) pode ser expressa por:

∆x1

∆x2

= −
∂g1(·)/∂x2

∂g1(·)/∂x1

(2.61)

Substituindo a equação (2.61) na equação (2.60) obtém-se:

∆f(·) =
1

2

[

∂2f(·)

∂x2

1

(
∂g1(·)/∂x2

∂g1(·)/∂x1

)2 − 2
∂2f(·)

∂x1∂x2

(
∂g1(·)/∂x2

∂g1(·)/∂x1

) +
∂2f(·)

∂x2

2

]

(∆x2)
2 > 0

(2.62)
que representa a condição de segunda ordem, ou condição suficiente, que deve ser
satisfeita.

A equação (2.62) deve ser avaliada no ponto de mı́nimo encontrado pela condição
de primeira ordem. Para assegurar que ∆f(·) > 0, deve-se avaliar a expressão entre
colchetes, já que o termo (∆x2)

2 será sempre positivo. Para o problema definido em
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(2.42), avaliando (2.62) obtém-se [ · ] = 44/9 > 0. Com isso, conclui-se que o ponto
x∗

1
= 2.18, x∗

2
= 2.73 é de fato o mı́nimo do problema.

Cabe destacar que a equação (2.62) não é fácil de ser avaliada, particularmente
se o problema de otimização for mais complexo, por exemplo envolvendo mais do
que duas variáveis e duas restrições, ou contendo restrições quadráticas ou de or-
dem superior. Do ponto de vista prático, como veremos nos caṕıtulos seguintes, as
condições de segunda ordem não serão utilizadas nos algoritmos.

Para concluir esta seção, apresenta-se a seguir a proposição que resume as
condições de primeira e segunda ordem que devem ser satisfeitas para assegurar
a solução de um problema de otimização com restrição de desigualdade.

Proposição 2.16 (Otimização Restrita – Desigualdade) Sejam f(·) ∈ C2 e

gi(·) ∈ C2, i = 1, . . . , p, e xxx∗ tal que gi(xxx
∗) ≤ 0, i = 1, . . . , p. Se existem multiplica-

dores β1, β2, . . . , βp tais que

i. βi ≥ 0 , i = 1, . . . , p

ii. βigi(xxx
∗) = 0 , i = 1, . . . , p

iii. ∇f(xxx∗) +

p
∑

i=1

βi∇gi(xxx
∗) = 0

iv. H(xxx∗) +

p
∑

i=1

βiGi(xxx
∗) > 0 sobre M = {yyy ∈ R

n : ∇gi(xxx
∗)′yyy = 0 , i ∈ I(xxx∗)},

I(xxx∗) = {i : gi(xxx
∗) = 0 , βi > 0}

são simultaneamente satisfeitos, então xxx∗ é um mı́nimo local estrito de f(·) sobre

gi(xxx) ≤ 0 , i = 1, . . . , p.

2.6 Condições Anaĺıticas: Problemas com Res-

trição de Igualdade

O problema sujeito à restrição de igualdade pode ser definido como:

xxx∗ = arg min
xxx

f(xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:







h1(xxx) : x1 + x2 = 5

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(2.63)

A Figura 2.26, da seção anterior, ilustra a solução gráfica para este problema. De
maneira similar ao caso anterior, observa-se que no ponto solução, o vetor gradiente
da função objetivo está na mesma direção e no sentido oposto do vetor gradiente
da função restrição. Examinando outros pontos fact́ıveis na Figura 2.26, i.e., outros
pontos sobre a reta h(·), uma vez que a restrição de igualdade tem que ser satisfeita,
pode-se afirmar que essa relação entre ∇f(·) e ∇h(·) só é posśıvel no ponto solução.
Existe, portanto, no ponto solução uma relação proporcional entre ∇f(·) e ∇h(·).
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Representando a constante de proporcionalidade por λ1, pode-se expressar a relação
entre os gradientes por:

∇f(·) = −λ1∇h1(·) ou ∇f(·) + λ1∇h1(·) = 0 (2.64)

Como discutido na seção anterior, a equação (2.64) pode ser obtida, com critérios
matemáticos mais rigorosos, usando o método de multiplicadores de Lagrange.

2.6.1 Condições de Primeira Ordem

Método de Lagrange

Neste caso a função Lagrangeana consite na função objetivo original f(·) somada
a restrição de igualdade h1(·) ponderada pelo multiplicador λ1 (para diferenciar
do multiplicador da função de desigualdade). Então, um problema de composto
por uma função objetivo f(xxx), de duas variáveis x1 e x2, e apenas uma função de
restrição de igualdade h1(xxx), similar ao problema original (2.63), poderia ser expresso
de maneira genérica por:

xxx∗ = arg min
xxx

f(xxx, λ1) = f(xxx) + λ1h1(xxx)

sujeito a:







h1(xxx) = 0

xmin
1

≤ x1 ≤ xmax
1

e xmin
2

≤ x2 ≤ xmax
2

(2.65)

Considerando o Lagrangeano em (2.65) como uma função irrestrita de duas
variáveis, as condições de primeira ordem tem que ser satisfeitas, ou seja:

∂f (·)

∂x1

=
∂f(·)

∂x1

+ λ1

∂h1(·)

∂x1

= 0 (2.66)

∂f (·)

∂x2

=
∂f(·)

∂x2

+ λ1

∂h1(·)

∂x2

= 0 (2.67)

∂f(·)

∂λ1

= h1(·) = 0 (2.68)

As equações (2.66)–(2.68) expressam as condições de primeira ordem, ou condições
necessárias, para o problema definido em (2.65). Essas expressões constituem um
sistema de três equações e três incógnitas, x1, x2 e λ1. A equação (2.68) representa
a restrição de igualdade.

Em linhas gerais, as condições de primeira ordem para um problema com res-
trição de igualdade podem ser resumidas da seguinte maneira:

∇f(·) + λ1∇h1(·) = 0 (2.69)

h1(·) = 0 (2.70)

A generalização para q restrições de igualdade será apresentada no final do caṕıtulo.
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Substituindo os valores do problema original, obtém-se:

∂f(·)

∂x1

= 2x1 − 6 + λ1 = 0 (2.71)

∂f (·)

∂x2

= 4x2 − 12 + λ1 = 0 (2.72)

h1(·) = x1 + x2 = 5 (2.73)

As equações (2.71)–(2.73) representam um sistema de três equações e três in-
cógnitas, cuja solução resulta em x∗

1
= 2, 33, x∗

2
= 2, 67 e λ∗

1
= 1, 34. Observando

a Figura 2.9, nota-se que a solução anaĺıtica encontrada usando o multiplicador
de Lagrange coincide com a solução geométrica obtida na seção anterior. Como
no caso irrestrito da seção anterior, é preciso investigar as condições de segunda
ordem, ou condições suficientes, para ter segurança em relação à solução encontrada
pelas condições necessárias. Essa análise é similar a desenvolvida na seção anterior
(deixada como exerćıcio para o leitor) e leva a conclusão que a solução encontrada
é de fato o mı́nimo do problema.

Antes de concluir a seção, analisaremos uma interpretação geométrica associada
à introdução dos multiplicadores de Lagrange.

2.6.2 Interpretação Geométrica dos Multiplicadores de La-
grange

A interpretação geométrica dos multiplicadores de Lagrange indica que, no ponto
solução, λ expressa a relação da variação da função objetivo em relação à variação
da restrição. Consideremos:

f(·) = f(·) + λ1h1(·) (2.74)

Diferenciando obtém-se

df(·) = df(·) + λ1dh1(·) (2.75)

que resulta em

df(·) =
∂f (·)

∂x1

dx1 +
∂f (·)

∂x2

dx2 +
∂f (·)

∂λ1

dλ1 (2.76)

No ponto solução, as condições de primeira ordem requerem que df(·) = 0.
Consequentemente,

λ1 = −
df(·)

dh(·)
= −

∆f(·)

∆h(·)
(2.77)

A equação (2.77) indica claramente, como queria-se demonstrar, que o mul-
tiplicador de Lagrange λ1 é a relação entre a variação da função objetivo ∆f e a
variação da função restrição de igualdade ∆h. Essa relação não afeta a determinação
da solução ótima, tendo, entretanto, um papel importante na discussão de análise

de sensibilidade.
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Para concluir esta seção, apresenta-se a seguir a proposição que resume as
condições de primeira e segunda ordem que devem ser satisfeitas para assegurar
a solução de um problema de otimização com restrições de igualdade.

Proposição 2.17 (Otimização Restrita – Igualdade) Sejam f(·) ∈ C2 e hj(·) ∈
C2, j = 1, . . . , q e xxx∗ tal que hj(xxx

∗) = 0, j = 1, . . . , q. Se existem multiplicadores

λ1, λ2, . . . , λq tais que

i. ∇f(xxx∗) +

q
∑

j=1

λj∇hj(xxx
∗) = 0

ii. H(xxx∗)+

q
∑

j=1

λjHj(xxx
∗) > 0 sobreM = {yyy ∈ R

n : ∇hj(xxx
∗)′yyy = 0 , j = 1, . . . , q}

são simultaneamente satisfeitos, então xxx∗ é um mı́nimo local estrito de f(·) sujeito
a hj(x) = 0, j = 1, . . . , q.

2.7 O Problema Geral de Otimização

O problema geral de otimização é definido incluindo simultaneamente as restrições
de desigualdade e igualdade:

xxx∗ = arg min
xxx

f(xxx) = (x1 − 3)2 + 2(x2 − 3)2

sujeito a:























g1(xxx) : 3x1 + 2x2 ≤ 12

h1(xxx) : x1 + x2 = 5

0 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 6

(2.78)

Usando o método de multiplicadores de Lagrange, um problema de otimização
similar ao apresentado em (2.78), composto por uma função objetivo f(xxx), de duas
variáveis x1 e x2, e apenas uma função de restrição de desigualdade g1(xxx) e uma
restrição de igualdade h1(xxx), pode ser expresso de maneira genérica por:

xxx∗ = arg min
xxx

f(xxx, β1, λ1, z
2

1
) = f(xxx) + β1[g1(xxx) + z2

1
] + λ1h1(xxx)

sujeito a:























g1(xxx) + z2
1
= 0

h1(xxx) = 0

xmin
1

≤ x1 ≤ xmax
1

e xmin
2

≤ x2 ≤ xmax
2

(2.79)

Considerando a função Lagrangeana f(·) como uma função irrestrita, as condições
de primeira ordem para este caso podem ser obtidas por:
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∂f(·)

∂x1

=
∂f(·)

∂x1

+ β1

∂g1(·)

∂x1

+ λ1

∂h1(·)

∂x1

= 0 (2.80)

∂f(·)

∂x2

=
∂f(·)

∂x2

+ β1

∂g1(·)

∂x2

+ λ1

∂h1(·)

∂x2

= 0 (2.81)

∂f (·)

∂z1
= 2β1z1 = 0 (2.82)

∂f(·)

∂β1

= g1(·) + z2
1
= 0 (2.83)

∂f(·)

∂λ1

= h1(·) = 0 (2.84)

que são uma associação das subseções anteriores referentes a discussão das condições
de primeira ordem para problemas com restrições de desigualdade e igualdade. Como
discutido no caso do problema com restrições de desigualdade, as equações (2.82) e
(2.83) podem ser combinadas eliminando-se a variável z1. Assim, as equações (2.80)
a (2.84) podem ser reduzidas a quatro expressões:

∂f(·)

∂x1

=
∂f(·)

∂x1

+ β1

∂g1(·)

∂x1

+ λ1

∂h1(·)

∂x1

= 0 (2.85)

∂f(·)

∂x2

=
∂f(·)

∂x2

+ β1

∂g1(·)

∂x2

+ λ1

∂h1(·)

∂x2

= 0 (2.86)

β1g1(·) = 0 (2.87)

h1(·) = 0 (2.88)

A equação (2.87) requer que duas possibilidades sejam testadas:

1. Caso a: β1 = 0 [g1 < 0]

2. Caso b: β1 6= 0 [g1 = 0]

Assim, as equações (2.85)–(2.88) correspondem a um sistema de quatro equações
e quatro incógnitas, x1, x2, β1 e λ1, e representam as condições de primeira ordem
que devem ser satisfeitas para um problema com uma restrição de desigualdade e
uma restrição de igualdade.

Em linhas gerais, as condições de primeira ordem podem ser resumidas da se-
guinte maneira:

∇f(·) + β1∇g1(·) + λ1∇h1(·) = 0 (2.89)

β1g1(·) = 0 (2.90)
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h1(·) = 0 (2.91)

A generalização para p restrições de desigualdade e q restrições de igualdade
será apresentada no final da seção.

Voltando ao problema exemplo, as condições de primeira ordem resultam em:

∂f (·)

∂x1

= 2x1 − 6 + λ1 + 3β1 = 0 (2.92)

∂f(·)

∂x2

= 4x2 − 12 + λ1 + 2β1 = 0 (2.93)

β1g1(·) = β1(3x1 + 2x2 − 12) = 0 (2.94)

∂f (·)

∂λ1

= x1 + x2 − 5 = 0 (2.95)

Duas soluções devem ser examinadas. A primeira, Caso a (β1 = 0 e [g1 < 0]),
requer a solução de um sistema de três equações e três incógnitas, x1, x2 e λ1, já
que a equação (2.94) é eliminada. A segunda, Caso b (β1 6= 0 [g1 = 0]), é um
sistema de quatro equações e quatro incógnitas, x1, x2, β1 e λ1, envolvendo as
equações (2.92)–(2.95). A solução do caso a fornece x1 = 7/3, x2 = 8/3 e λ1 = 4/3,
porém a restrição de desigualdade é violada, inviabilizando a solução encontrada.
Resolvendo-se a segunda opção obtém-se x1 = 2, x2 = 3, β1 = 2 e λ1 = −4.

A Figura 2.12, a seguir, ilustra a solução gráfica e anaĺıtica do caso geral. Ob-
serve que no ponto solução (x1 = 2; x2 = 3) o somatório do gradiente da função
objetivo e das funções de restrição, ponderadas pelos respectivos multiplicadores de
Lagrange, se anula. Em outras palavras, ∇f(·) + β1g1(·) + λ1h1(·) = 0.

2.7.1 Condições de Karush-Kuhn-Tucker

Para concluir esta seção, apresenta-se a seguir a proposição conhecida como condições
de Karush-Kuhn-Tucker, as quais devem ser satisfeitas para assegurar a solução de
um problema geral de otimização.

Proposição 2.18 (Condições Necessárias de Karush-Kuhn-Tucker para Oti-
malidade) Seja xxx∗ um ponto regular das restrições do problema de otimização:

xxx∗ = arg min
xxx

f(xxx)

sujeito a:







gi(xxx) ≤ 0, i = 1, . . . , p

hj(xxx) = 0, j = 1, . . . , q

(2.96)

sendo que f(·), g(·), h(·) ∈ C1. Para xxx∗ ser um ótimo local do problema, deve existir

um conjunto de multiplicadores de Karush-Kuhn-Tucker βββ∗ ∈ R
p e λλλ∗ ∈ R

q, com
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Figura 2.12: Solução anaĺıtica do caso geral.

β∗

i ≥ 0 tal que:

∇f(xxx∗) +

p
∑

i=1

β∗

i ∇gi(xxx
∗) +

q
∑

j=1

λ∗

j∇hj(xxx
∗) = 0

βi ≥ 0 e β∗

i gi(xxx
∗) = 0 ∀ i = 1, . . . , p

hj(xxx) = 0 ∀ j = 1, . . . , q

(2.97)

sendo que xxx ∈ R
n, f(·) : Rn 7→ R

1, gi(·) : R
n 7→ R

p e hj(·) : R
n 7→ R

q. �
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2.8 Exerćıcios

1. Conceitue um mı́nimo local, mı́nimo global e direções viáveis [3].

2. Considere a função f(x) = xe−2x. Calcular todos os pontos de mı́nimo e
máximo local, e também os pontos de inflexão. O que pode ser afirmado
a respeito do ponto de mı́nimo e máximo global dessa função. Justifique
analiticamente a resposta [4].

3. Calcular a derivada primeira e segunda da função, definida a seguir, em x = 0
[5]:

f(xxx) = x4

1
+ x1x2 + (1 + x2)

2 (2.98)

Mostre que H(000) não é positiva definida. Verifique que o mı́nimo local é
xxx∗ = (0.6959;−1.3479)T .

4. Calcular os pontos estacionários da função [5]:

f(xxx) = 2x3

1
− 3x2

1
− 6x1x2(x1 − x2 − 1) (2.99)

Quais pontos são mı́nimos locais e quais são máximos locais?

5. Mostre que a função f(xxx) = (x2−x2

1
)2+x5

1
possui apenas um ponto estacionário

que não é máximo local ou mı́nimo local [5].

6. O problema [3]:

minimize f(xxx) = 2x2

1
+ x1x2 + x2

2
+ x2x3 + x2

3
− 6x1 − 7x2 − 8x3 + 9

(2.100)
possui um ponto de mı́nimo local em xxx∗ = (6/5, 6/5, 17/5)T . Verifique se as
condições necessárias para um mı́nimo local são satisfeistas nesse ponto. Esse
mı́nimo local é também um ponto de mı́nimo global?

7. O problema [5], [3]:

minimize f(xxx) = 100(x2 − x2

1
)2 + (1− x1)

2

sujeito a: g(xxx) : (x2

1
+ x2

2
) ≤ 2

(2.101)

possui um ponto de mı́nimo local em xxx∗ = (1, 1)T . Verifique se as condições
necessárias para um mı́nimo local são satisfeistas nesse ponto. Mostre que
H(xxx) é singular se, e somente se, xxx satisfizer a condição: x2 − x2

1
= 0.005.

8. Considere o problema [4]:

minimize f(xxx) = x2

1
+ 2x2

2

sujeito a: h(xxx) : (x1 + x2 − 2) = 0
(2.102)
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Encontrar um ponto que satisfaça as condições de Karush-Kuhn-Tucker e ve-
rificar se esse ponto é a solução ótima. Resolva o problema novamente substi-
tuindo a função objetivo por f(xxx) = x3

1
+ x3

2
.

9. Considere o problema [4]:

minimize f(xxx) = x4

1
+ x4

2
+ 12x2

1
+ 6x2

2
− x1x2 − x1 − x2

sujeito a:







g1(xxx) : x1 + x2 ≥ 6
g2(xxx) : 2x1 − x2 ≥ 3
x1 ≥ 0; x2 ≥ 0

(2.103)

Escreva as expressões para as condições de Karush-Kuhn-Tucker e mostre que
(x1, x2) = (3, 3) é o único ponto solução.

10. Suponha o problema de uma variável: max x2, com −1 ≤ x ≤ 2. Mostre que
as condições de Karush-Kuhn-Tucker são satisfeitas nesse problema em x = 1,
x = 0 e x = 2, embora o único ponto de ótimo global seja x = 2.

11. Resolver graficamente os seguintes problemas:

(i)
maximize f(xxx) = x1

sujeito a:







g1(xxx) : (1− x1)
3 − x2 ≥ 0

g2(xxx) : x1 ≥ 0
g3(xxx) : x2 ≥ 0

(2.104)

(ii)
minimize f(xxx) = x2

1
+ 4x2

2

sujeito a:

{

g1(xxx) : x1 + x2 ≥ 0
g2(xxx) : 2x1 + x2 ≥ 0

(2.105)

(iii)
minimize f(xxx) = −x1x2

sujeito a:







h1(xxx) : 20x1 + 15x2 − 30 = 0
g1(xxx) : x

2

1
/4 + x2

2
− 1 ≤ 0

0 ≤ x1 ≤ 3; 0 ≤ x2 ≤ 3

(2.106)

Para cada um dos gráficos, desenhe as direções dos vetores gradiente da função
objetivo e das restrições ativas no ponto ótimo. Verifique se as condições de
Karush-Kuhn-Tucker são satisfeitas no ponto solução.
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[1] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 2 edi-
tion, 1989.

[2] P. Venkataraman. Applied Optimization with Matlab Programming. John Wiley,
1 edition, 2002.

[3] G.R. Mateus e H.P.L. Luna. Programação Não-Linear. V Escola de Computação,
1 edition, 1986.

[4] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming: Theory

and Algorithms. John Wiley, 3 edition, 2006.

[5] R. Fletcher. Practical Methods of Optimization. John Wiley, 2 edition, 1987.

33


