Universidade Federal de Minas Gerais
Escola de Engenharia
Departamento de Engenharia Elétrica

Notas de Aula'de Otimizacao

Jaime A. Ramirez
Felipe Campelo
FredericooGG. Guimaraes
Lucas S. Batista
Ricardo H. C. Takahashi







Sumario

Sumario

Lista de Figuras

2 Condicoes de Otimalidade

2.1
2.2

2.3

24

2.5

2.6

T

2.8

Introducao . . . . . . . ..
Caracterizacao de Fungoes . . . . .0 o . .. Lo
2.2.1 Funcao e Funcional . . . . . . . . . . L
2.2.2  Superficie de Nivel e Regiao Subnivel .. . . . . ... ... ..
2.2.3 Unimodalidade e Multimodalidade . ..« . . . . ... .. ..
2.2.4 Baciasde Atracdo . e . . . ... .o
2.2.5 Continuidade e Diferenciabilidade . . . . . ... .. .. .. ..
2.2.6  Convexidade, Quasi-Convexidade e Nao Convexidade . . . . .
2.2.7 Minimo Local e Minimo Global . . w0 . ... .. .. .. ..
Problema Exemplo . . . . . ... .. a0 Lo
2.3.1 Solugbes Graficas . . . .. . ... ...
Condigoes Analiticas: Problemas Irrestritos. . . . . . .. . ... ...
2.4.1 <« Condicoes de Primeira Ordem . . . . . . ... ... ... ...
242 Condigoes de Segunda Ordem . . . . . . ... ... ... ...
Condigoes Analiticas: Problemas com Restricao de Desigualdade . . .
2.5.1 Condigoes de Primeira Ordem . . . . . ... ... ... ....
2.5.2 Condicoes de Segunda Ordem . . . . . . . ... .. ... ...
Condigoes Analiticas: Problemas com Restri¢ao de Igualdade . . . . .
2.6.1 Condicoes dé Primeira Ordem . . . . . ... ... ... ....
2.6.2 Interpretagao Geométrica dos Multiplicadores de Lagrange . .
O Problema Geral de Otimizacao . . . . . . . . . ... .. ... ...
2.7.1 Condicoes de Karush-Kuhn-Tucker . . . . .. ... .. .. ..
Exercicios . . . . . ..o






Lista de Figuras

2.1 Superficie que representa o grafico da fungao quadrética (2.5).

2.2 Graéfico ilustrando uma regiao sub-nivel R(f,a) - regiao hachurada -
da funcao quadratica. Indica-se, também, varias curvas de nivel, i.e.
curvas para as quais a funcao quadréatica possui um mesmo valor a.
Destaca-se a curva de nivel a« =50. . . .. . . ... ... ... ...

2.3 Valor de « para o qual a regiao de subnivel é conexa. . . . .. .. .4

2.4 Valor de « para o qual a regiao de subnivel é desconexa. . . . . . ..

2.5 Representagao: (a) Conjunto convexo, (b) Cenjunto néo convexo . . .

2.6 Tlustracao grafica do problema exemplo. . ... . . .. .. ... ...

2.7 Solugao grafica do problema exemplo — irrestrito. .. . . . . . . . . ..

2.8 Solugao grafica do problema exemplo — restricao de desigualdade.

2.9 Solugao grafica do problema exemplo.— restricao de igualdade.

2.10 Solugao grafica do problema exemplo - restricao de igualdade e desi-
gualdade. . . . . . ...

2.11 Solugao grafica 3D do problema irrestrito. <. . . . . ... ... ...

2.12 Solugao analitica do caso geral. & . . . . . ... ... ...

iii



v

LISTA DE FIGURAS

S
<
S



Capitulo 2

Condicoes de Otimalidade

2.1 Introducao

No capitulo anterior, vimos, de maneira intuitiva a definicao de funcao objetivo
e fungoes de restricao de igualdade e desigualdade, e as diferentes estratégias e
principios que podem ser utilizados para resolver problemas de otimizacao. Abordou-
se também as diferentes caracteristicas que as funcoes objetivo e de restricao podem
assumir e a implicacao dessas caracteristicas na possivel estratégia a ser utilizada
na solucao do problema de otimizagao.

Neste capitulo discutiremos a caracterizagao da funcao objetivo, das fungoes de
restricao, e as condicoes de otimalidade que nos auxiliarao encontrar a solucao para
o problema de otimizacao definido matematicamente como:

*

" = arg min f(2)

gi(x) <0,i=1,...,p (2.1)
sujeito a:
hi(x)=0,7=1,...,q

sendo que £ €R™, f(-) :R:— R ¢;(-) : R" — RP e hy() : R" — RY.

A escolha de técnicas adequadas para tratar o problema definido em (2.1) de-
pende da natureza das funcoes f(x), g:(x), hj(x). Nao hd uma técnica de otimizagao
que seja universal, no sentido de ser a melhor técnica para otimizar quaisquer
fungoes, e a escolha das técnicas, frequentemente, basea-se em informacoes sobre
o problema em questao.

Para nos orientar nessa caracterizacao, apresentaremos os seguintes pontos, re-
lacionadas eom a questao de o qué sao as solugdes do problema (2.1):

1. Dado o funcional f(-) o que sao os pontos de minimo desse funcional, ou seja,
o que sao as solugoes do problema de otimizagao?

2. O que sao os pontos de minimo local desse funcional, se sao dadas também as
restricoes g;(x) < 0e hj(z) =07

3. Dado um ponto & € R", que tipo de testes podem ser realizados para deter-
minar se esse ponto é ou ndo um ponto de minimo de f(-), nos dois casos
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anteriores?

Respostas a essas questoes serdo fornecidas tanto no sentido local (minimos
locais) quanto global (minimos globais).

Antes porém de deduzir as condigoes de otimalidade do problema (2.1), é ne-
cessario agregar alguma informacao que seja util para se decidir como proceder para
encontrar tais solugoes. Algumas caracterizacgoes tteis, definidas neste capitulo, sao:

1. Funcao, funcional, continuidade e diferenciabilidade;
2. Curvas de nivel, superficie de nivel, regiao subnivel;
3. Convexidade, quasi-convexidade, e nao convexidade;

4. Unimodalidade e multimodalidade.

Cada uma dessas informacoes a respeito da funcae, se estiver disponivel, permite
a agregacao de um certo tipo de informacao de cardter global que auxilia o processo
de otimizacao.

A deducao das condicoes de otimimalidade serao utilizadas para a compreensao
e concepcao dos algoritmos que utilizam a estratégia de direcao de busca para a
solucao de problemas de otimizacao. Leitura complementar pode ser encontrada
em [1]- [2].

2.2 Caracterizacao de Funcoes

2.2.1 Funcao e Funcional
Funcao

Uma fungao éuma relagao que associa de maneira inica membros de um conjunto A
com membros de um conjunto B. Em termos mais formais, uma funcao do conjunto
A para o conjunto B ¢ um objeto f tal que todo elemento “a” que pertence ao
conjunte A6 associado de.maneira tinica com o objeto f(a) que pertence ao conjunto

By f(a) € B. Em termos matematicos:

Defini¢ao 2.1 (Funcgao) Sejam A e B dois conjuntos com membros a;, ..., a, €
biy. .., b,, respectivamente. Uma func¢ao f que associa de maneira unica membros
de A.em B ¢ definida como:
f:A—B (2.2)
O

Funcional

Um funcional é uma funcao que retorna um tunico valor, i.e. um nimero escalar.
Em termos matematicos:

Definigao 2.2 (Funcional) Se f(-) é um funcional entdo:

f:R"— R (2.3)
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2.2.2 Superficie de Nivel e Regiao Subnivel

A caracterizacao de funcoes adotada neste capitulo se fundamenta nos conceitos de
superficie de nivel e de regiao subnivel.

Superficie de Nivel

Definigao 2.3 (Superficie de Nivel) Seja f(-) : C C R" — R. A _superficie de
nivel S(f, ), associada ao nivel o, é definida como:

S(f,a) ={z el f(z) = o} (2.4)

g

O conceito e definicao de superficie de nivel pode ser ilustrado usando wma
funcao quadratica. Para esse fim, vamos utilizar a seguinte fungao:

f&) = (x = 20)'Qz — 20)

Q:[O?i% 013} "30:“} -

que estd ilustrada na Fig. 2.1.
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Figura 2.1: Superficie que representa o grafico da fungao quadratica (2.5).

As curvas de nivel estao representadas no plano x; X x5 na Fig. 2.1. Cada curva
contém os pontos que possuem o mesmo valor de funcao.
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Regiao Sub-Nivel

Definicao 2.4 (Regiao Sub-Nivel) Seja f(-) : C C R" — R. A regiago de sub-
nivel R(f,«), associada ao nivel v, € definida como:

R(f,a) ={z e C| f(z) <o} (2.6)

U

O conceito de regiao de sub-nivel para a fungao quadrética (2.5) esta ilustrado
na Fig. 2.2 a seguir.

250

Figura 2.2: Gréfico ilustrando uma regiao sub-nivel R(f, @) - regiao hachurada - da
fung¢do quadratica. Indica-se, também, varias curvas de nivel, i.e. curvas para as
quais a funcao quadratica possui um mesmo valor a. Destaca-se a curva de nivel
a = 50.

Normalmente S(f, «) corresponde a uma fronteira de R( f, o), embora seja possivel
escolher. o de forma que isso nao ocorra. Claramente é valida uma relacao de or-
denacgao das regioes de sub-nivel de uma funcao.

Proposicao 2.1 Seja f(-) : C C R" — R. As regides de sub-nivel dessa fung¢ao
obedecem a:

R(f, Oél) D) R(f, 042) & 01 > (e (27)
O
Pode-se pensar os problemas de otimizacao como sendo equivalentes a um pro-

blema de determinar pontos que estejam sucessivamente no interior de regices de
sub-nivel cada vez menores (de menor valor de «). Em linhas gerais, se constroem
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Figura 2.3: Valor de a para o qual a regiao de subnivel é conexa.

algoritmos que produzem tais sequéncias de pontos. Consequentemente, produz-se
uma “contragao” do conjunto definido pelas regioes de sub-nivel, sendo a solugao
atingida quando a regiao de sub-nivel se degenerar no ponto de étimo.

As regioes de sub-nivel, analisadas sob o ponto de vista topolégico, definem uma
categorizacao importante para as fungoes.

2.2.3 Unimodalidade e Multimodalidade

Definigao 2.5 (Fungao Unimodal) Seja f(-) : C C R® — R. Diz-se que f(-) é
unimodal se R(f,a) é eonexo para todo a € R. Diz-se ainda que f(-) € estritamente
unimodal se, além disso, R(f,«) € um conjunto compacto para todo « € R. [

Por simetria, define-se ainda:

Definicao 2.6 (Fungao Multimodal) Seja f(-) : C C R" — R. Diz-se que f(-)
¢ multimodal se existe a € R tal que R(f, ) ndo é conexo. O

As Figs. 2.3/e 2.4 mostram respectivamente uma regiao de subnivel conexa e
uma regiao de'subnivel desconexa. Para esta fungao existe um valor de o para o
qual R(f, @) nao é um conjunto conexo, caracterizando uma fung¢ao multimodal.

NoTA 2.1 Note-se que uma fun¢ao unimodal pode possuir miltiplos minimos, desde que
o conjunto deste seja conexo, e uma funcdo estritamente unimodal também pode possuir
maultiplos minimos, desde que o conjunto destes seja conexo compacto. O primeiro caso
ocorre, por exemplo, para a funcdo

f(@) = [ o m[égHg} (2:8)
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Figura 2.4: Valor de a para o qual a regiao de subnivel é desconexa.

para a qual todos os pontos que pertencem ao eiro v1 = 0 (esses pontos formam um
conjunto conexo mas ndao compacto) constituem minimos. Essa observacdo revela uma
diferenca fundamental das nogdes de funcao unimodal e funcao multimodal aqui definidas
em relagdo as usualmente encontradas na literatura. Os autores acreditam que no formato
apresentado neste texto essas definicoes ganham maior funcionalidade para articularem a
teoria de otimizacao.

%

2.2.4 Bacias de Atracao

Ao redor de.minimos locais, sempre havera regides nas quais a fungao se comportard
de maneira unimodal. Tais regioes sao definidas como bacias de atra¢ao associadas
a‘tais minimos. Para estabelecer essa definicao, é necessario definir preliminarmente
a regiao conexa de sub-nivel.

Definicao 2.7 (Regiao Conexa de Sub-Nivel) Seja f(-) : C CR" = R, seja a
regiao de sub-nivel R(f,«), associada ao nivel a, e seja um ponto o € R(f,a). A
regidgo conexa de sub-nivel R(f, a,xq) € definida como o maior subconjunto conezo
de R(f, ) que.contém x. O

Agora€ possivel definir bacia de atragao.

Definicao 2.8 (Bacia de Atragao) Seja f() : C C R" — R, e seja z* € C
um minimo local de f(-). A bacia de atrag¢ao de £* € definida como a maior regiao
coneza de sub-nivel associada a x*, sendo o o nivel correspondente, tal que a funcao
restrita a essa reqiao

fG): R. (f,a",2") —»R (2.9)
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¢ unimodal. A bacia de atracao € dita estrita se nessa regido a funcao € estritamente
unimodal. O

2.2.5 Continuidade e Diferenciabilidade

Suposicoes de continuidade e de diferenciabilidade das funcoes sao importantes na
definicao de alguns métodos de otimizagao. De maneira intuitiva, uma fungao
continua é aquela para a qual uma pequena variagao na entrada gera uma pequena
variacao no resultado da funcao, isto é, a funcao nao possui “saltos”s Uma definicao
formal é dada a seguir.

Definigao 2.9 (Fungao continua) Uma funcdo f(-): C @R™ — R ¢é continua se
i Ty € C:

1. f(zo) € definido;
2. lim f(z) = f(zo).

r—xo

n

Defini¢ao 2.10 (Funcgao diferenciavel) Uma func¢ao f(-): C G R™ — R € dife-
rencidvel se ¥V xo € C' existe o vetor gradiente:

w(x):[g—; 2 L (2.10)

0

Essas suposigoes nos permitem extrair propriedades interessantes a respeito de
suas superficies'de nivel e bacias de atragao.

Proposicao 2.2 Seja f(+) : C CR” — R. Se f(:) € continua no dominio C, entdo

dist(S(f, 1), S(f,a2)) >0V (a1, a2) | |og —az| >0 (2.11)

sendo dist(-,-) a funcdo distancia. O

Corolario 2.1 Superficies de nivel de funcoes continuas nao se tocam nem se cru-
zam. U

Proposigao 2.3 Seja f(-) : C C R™ — R. Se f(:) € diferencidvel no dominio
C, entao toda superficie de nivel S(f,a) é suave, sendo o hiperplano tangente a
superficie em cada ponto perpendicular ao gradiente da fun¢ao no ponto. O

A hipotese de diferenciabilidade de uma funcdo permite elaborar estratégias
de otimizagao baseadas no fato de que o gradiente de um fungao (que, no caso de
fungoes diferencidveis, é sempre bem definido) indica quais sao as diregoes do espago
para as quais, partindo-se de um ponto, ocorre localmente a diminuicao da funcao.
Isso equivale a determinacao das diregoes para as quais se caminha para regioes
de sub-nivel inferiores. A proposicao a seguir formaliza esse fato, que deriva da
proposicao anterior.
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Proposicao 2.4 Seja f(-) : C C R" — R uma funcgao diferencidvel no dominio C,
seja xo um ponto pertencente a superficie de nivel S(f,a), e seja V f(xg) o gradiente
de f(-) no ponto xy. Seja ainda um vetor d € R™. Entdo, se

d-Vif(zg) <0 (2.12)
entao existe € > 0 tal que:
U

Dizemos que d é uma dire¢do minimizante de f(-) no pento .

Por fim, o subgradiente é uma generalizacao do vetor gradiente para o caso de
funcoes nao diferenciaveis.

Definigao 2.11 (Subgradiente) Seja f(-) : R® — R.. Um funcional linear f* é
um subgradiente de f(-) no ponto zq se:

f(@) > flmo) B (@ —30) , V& (2.14)
O

Por exemplo, seja a func¢ao f(z) = |z]. A derivada desta‘funcao é:

1, x>0

f(a) = {_1’ T (2.15)

No ponto 2= 0 a derivada nao é definida;entretanto pode-se definir o subgra-
diente como qualquer nimeroreal no intervalo [—1, 1].

A Fig. 7 ilustra o conceito de subgradiente para uma funcao de duas variaveis.
Qualquer.vetor no cone formado pelos vetores v; e vo é um subgradiente de f(-) no
ponto o, em que o vetor gradiente nao é definido.

2.2.6 Convexidade, Quasi-Convexidade e Nao Convexidade
Conjunto Convexo

Definigao 2.12 (Conjunto Convexo) Diz-se que um conjunto C' € R™ é convezxo
se para quaisquer vetores x, y € C,

az+ (1—a)y € C (2.16)
para todo o € [0, 1]. O

Em outras palavras, um conjunto C' é dito convexo se todos os pontos do seg-
mento de reta que une dois pontos quaisquer de C' também pertencem a C. Isso
estd ilustrado na Fig. 2.5.

Outro tipo de informacao que pode ser 1til em processos de otimizacao diz
respeito a convexidade das fungoes.
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(a)

Figura 2.5: Representagao: (a) Conjunto convex

Fungao Convexa

Defini¢ao 2.13 (Fungao Convexa) Diz-se que uma 0 f(-): C CR"—= R
definida sobre um conjunto convexo isquer €, y € C,
flaz+ (1 —a)y) (2.17)
para todo o € [0,1]. Se para quaisquer endox #y el <a<1l,a
desigualdade € estrita, entao f(-) € estrit O

Como no caso de conjuntos convexos, é possivel obter fungoes convexas a partir de
combinagoes convexas.

Proposigao 2.6 (Combinagoes Convexas) Sejam f;(-) : C; C R" — R fungoes
convezas definidas sobre conjuntos convexos C; , 1 =1,...,m. Entao:

'A matriz Hessiana é obtida a partir da derivada segunda de f(-) em relacdo a .
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i. afi(+) é convexa sobre C;, ¥V av >0
m m
it. Zazfz() ¢ convexa sobre ﬂCZ- para o; >0, i=1,....m
i=1 i=1
]

Proposicao 2.7 Seja f(:) : C C R" — R uma fung¢ao convera sobre' C' convero.
Entao a regiao de sub-nivel R(f,«) é convexa para todo o € R. g

A reciproca nao é verdadeira.
A convexidade de R(f,«) define um novo tipo de funcéo, as fungoes quasi-
CONVETAS.

Definigao 2.14 (Fungao Quasi-Convexa) Seja f(:) : C C R" — R uma fung¢ao
tal que suas regioes de sub-nivel R(f,a) sdo convexas para todo o € R. Neste caso,
diz-se que f(-) € quasi-convexa no dominio C. O

Proposicao 2.8 Se f(:) : C C R" = R € uma funcao quasi-conveza, entdio:
flaz+ (1 - a)y) < max{f(@), f@} W o yeC, Va1  (218)
O

Outro resultado envolvendo conjuntos e fungoes convexas pode ser obtido a partir
da defini¢ao de Epigrafo:

Definigao 2.15 (Epigrafo) O epigrafo de uma funcio f(-) : C C R" — R ¢
definido como:

[f,.C]=A{(z,0) e R"xR : z€C, f(z) <0} (2.19)
U

Proposicao 2.9 Uma funcao f(-) : C C R™ — R definida sobre C convexo é
conveza se, e somente se, [f,C| é um conjunto convezo. O

Como todo conjunto convexo, o epigrafo de uma fungao convexa admite hiperplanos
suporte em qualquer ponto de sua fronteira.

A convexidade de fungbes pode ser relacionada com as regioes de sub-nivel,
superficies de nivel e bacias de atracao.

Proposicao 2.10 Todas as regioes de sub-nivel de uma fun¢ao convexa num dominio
CONVeTo SG0 conjuntos convexos. U

Proposicao 2.11 Uma fun¢ao convexa em um dominio convexro possui uma unica
bacia de atracao, a qual é um conjunto convezo. O
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Proposicao 2.12 Seja uma func¢ao convexa f(-) : C C R™ — R, seja um ponto
qualquer £y € R™, e seja s(xg) € R™ um vetor subgradiente da func¢ao no ponto.
Entao a regigo de sub-nivel que possui o ponto xy em sua fronteira estd contida no
semi-espaco fechado negativo definido pelo vetor subgradiente no ponto xzy, ou seja:

E;={z eR" | (x — ) - s(xzg) <0}
(2.20)
R(fv f(x())) - Es

O

2.2.7 Minimo Local e Minimo Global

Introduzimos o conceito de minimo local como o ponte x*, para o qual qualquer
vetor  na vizinhanca e de * implica em f(z*) < f(&). Matematicamente:

Definigao 2.16 (Minimo Local) Seja f(-) :.C' C R" == R. Um ponto * é um
minimo local de f(-) sobre C' se existe € > 0 tal que

flz) < flx) , YzeV(enC (2.21)

onde V(x*,¢) £ {z : ||z — z*| < €} O ponto x* € C é um minimo local estrito se
vale a desigualdade estrita. U

Naturalmente, o conjunto C' é o subconjunto de espaco R" definido pelas res-
tricoes:

CE2{zeR" Jg@)<0;i=1,....p; hj(x)=0; j=1,...,q} (2.22)

E possively a partir desta definicao, construir a definicao de minimo global do
funcional. Se for possivel escolher.e > 0'tal que V(z*, ¢) N C = C, entdo z* é um
minimo global de f(:).sobre C. O minimo global ¢ ainda estrito se a desigualdade
for satisfeita de modo estrito.

2.3 Problema Exemplo
Consideremos o problema:

' = arg min f(x) = (z1 — 3)* + 2(z9 — 3)*

gl<$) . 3371 + 232‘2 <12
(2.23)

sujeito a: < hi(x) 1wy + 212 =05

0<21<6; 0<a2<6

que representa a minimizagao de uma fungao de duas varidveis f(xy,z2), sujeita a
uma restrigdo de desigualdade g;(x) e outra de igualdade hi(z). Em geral, como viu-
se no capitulo anterior, problemas praticos podem ter mais do que uma restrigao
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de igualdade e desigualdade. Entretanto, para facilitar a andlise, consideraremos
apenas ¢1(-) e hy(-). Por ser uma funcao de apenas duas varidveis, f(z1,x2) pode
ser representada no plano (z; X xs) através de curvas de nivel, conforme indicado
na Figura 2.6. As duas restri¢oes, ¢i1(-) e hy(-), estdo também representadas na
Figura 2.6. O objetivo nesta segao é explorar conceitos intuitivos e geométricos
para caracterizar o minimo de (2.23). Este problema exemplo serd utilizado nas
secoes seguintes para deduzir as condi¢oes necessarias e suficientes de otimizacao.

Problema Exemplo

x2
w
@
o

Figura 2.6: Ilustracao grafica do problema exemplo.

2.3.1 Solucoes Graficas

As solucoes graficas serao. apresentadas, separadamente, para trés tipos de pro-
blemas: irrestritos, com restrigio de igualdade, e com restricao de desigualdade,
seguindo o exemplo definido em (2.23). Em geral, esses trés tipos de problemas,
analisados separadamente ou em conjunto, representam os tipos possiveis de pro-
blemas de otimizacao.

Problemas Irrestritos

A partir da equagao (2.23) pode-se definir o problema irrestrito da seguinte maneira:

z* = arg min f(z) = (z; — 3)* + 2(zo — 3)?
(2.24)
sujeitoa:{ 0<21<6; 02, <6

que como o nome sugere, nao possui nenhuma fungao de restri¢ao imposta a f(-).
Neste caso, os limites inferiores e superiores de x definem a regiao factivel. Anali-
sando as curvas de nivel da fungao objetivo f(-), observa-se por inspecao que o valor
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minimo ocorre para (2 = 3 e x5 = 3), jd que as curvas de nivel de f(-) diminuem
de valor a medida que se aproxima desse ponto, conforme indicado na Figura 2.7.
No ponto solugao encontrado por inspegao, constata-se que f(z*) = 0, para tanto
basta substituir os valores de 27 = 3 e x3 = 3 na equacao de f(-).

Solucéo do Problema Irrestrito

solucéo

Figura 2.7: Solucao grafica'do problema exemplo — irrestrito.

Restricao de Desigualdade
A partir de (2:25) pode-se definir o problema com restricao de desigualdade:

¢ — arg min f(x) = (1 — 3)* + 2(z9 — 3)?

g1(x) : 32y + 215 < 12 (2.25)
sujeito a:
0<x<6; 0<x,<6
Neste caso, ao incluir a restrigao de desigualdade g;(-) < 0, forga-se que a solucao
do problema (2.25) ‘esteja na regiao factivel, conforme indicado na Figura 2.8. A
regiao factivel passa a ser o conjunto dos pontos que satisfaz ¢;(-) < 0 e os limites
superiores e inferiores de x1 e x5. A solucao, em principio, poderia ser qualquer ponto
(x1,z2) pertencente a regiao factivel. Entretanto, por inspecao, pode-se identificar
que o minimo é o ponto (7, z3) definido na curva de nivel de f(-) que tangencia g;(+).
Observe que no ponto solugdo (z7,z3), Vf(-) estd, exatamente, no sentido oposto
de Vgi(-). Essa relacao entre os gradientes é a base para estabelecer as condigoes
de otimalidade de primeira ordem para problemas com restrigoes de desigualdade.

Restricao de Igualdade

A partir da equagao (2.23), pode-se definir o problema com a restri¢ao de igualdade:
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Solugdo com a Restricdo de Desigualdade

6 T T T T T
\2\0

x2
w

Figura 2.8: Solucao grafica do problema exemplo — restricao de desigualdade.

g" = arg min f(@).= (2= 3)2 4 2(as — 3)*

h1<$) X T = 5 (226)
sujeito a:

Neste caso, ao incluir a restrigao de igualdade hy(+), for¢a-se que a solu¢ao do pro-
blema (2.26) esteja sobre a reta hi(-), uma vez que a solugao do problema (2.26)
tem que satisfazer a equacao de hi(-). A primeira observagao a ser feita é que ao
reduzir os pontos solucao pessiveis aos pontos contidos sobre a reta hi(-), esta-se,
de fato, reduzindo a regiao factivel. A solucao, em principio, poderia ser qualquer
ponto (x1,xs) sobre a reta hi(-). Entretanto, por inspecdo, pode-se identificar que
o minimo é o ponto (7, x3) definido na curva de nivel de f(-) que tangencia hy(-),
conforme indicade na Figura 2.9. Observe que nesse ponto V f(-) estd, exatamente,
no sentido opesto de Vhy(-) (o caso geral requer que os gradientes estejam alinha-
dos). Essasrelagao entre os gradientes é a base para estabelecer as condigoes de
otimalidade de primeira ordem para problemas com restri¢oes de igualdade.

Restricoes de Desigualdade e Igualdade

O problema com ambas as restrigoes é apresentado em (2.27).



CONDIGOES DE OTIMALIDADE 15

Solugao com a Restrigdo de Igualdade

Figura 2.9: Solucao grafica do problema exemplo - restricao de igualdade.

£" = arg min f(x)=A(x; — 3)* + 2(z2 — 3)?

g1(x) : 3wy + 275 < 12
(2.27)

sujeito a:d hi(x) x4 293 =05

Este caso é, em prineipio, 0 caso geral que envolve a funcao objetivo e restricoes de
igualdade e desigualdade. A regiao factivel passa a ser a regiao que satisfaz simulta-
neamente hy(-) = 0 e g;(+) < 0, respeitando-se os limites superiores e inferiores de x4
e . Por inspegdo, pode-se identificar que o minimo (z7, z%) é o ponto de interse¢ao
entre as curvas nyi(+) e ¢g1(-), uma vez que ambas restrigoes tem que ser satisfeitas.
Resolvendo-se o sistema de equagoes formado por hi(-) e gi(), obtém-se (z = 2
e @y = 3). Nesse ponto f(z*) = 1. Observe que neste caso, no ponto soluc¢ao, o
somatério dos gradientes de f(-), hi(-) e ¢1(-) ndo se anula automaticamente. Para
que isso acontega énecessario que o Vhy(-) ou o Vg (+) tenha o seu sentido invertido,
i.e. seja multiplicado por uma constante com sinal negativo. Veremos nas secoes
seguintes que isso s6 se verifica com Vhi(-). Essa relacao entre os gradientes é a
base para estabelecer as condicoes de otimalidade de primeira ordem para o caso
geral envolvendo problemas com restrigoes de igualdade e desigualdade.

2.4 Condicoes Analiticas: Problemas Irrestritos

Nesta secao, apresentaremos as condigoes analiticas necessarias e suficientes que
permitem afirmar se a solu¢ao de um determinado problema de otimizagao é de
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Solugéo Geral do Problema Exemplo

6 T T T T T
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x2
w
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3 4 5 6

x1

Figura 2.10: Solucao grafica do problema exemplo ~ restricao de igualdade e desi-
gualdade.

fato a solugao 6tima. Essas condicoes serao utilizadas nos capitulos seguintes, como
critérios de parada e convergéncia, quando serao estudados os métodos numéricos
deterministicos para problemas irrestritos e restritos. Similarmente a se¢cao anterior,
utilizaremos conceitos intuitivos com o auxilio de interpretacao geométrica para
apresentacao das cendicoes necessarias e suficientes. Por conveniéncia, suporemos
que a funcao objetivo f(-) pessui apenas um minimo e que a solugao encontra-se no
interior da regiao factivel.

Para facilitar a deducao analitica, utilizaremos como exemplo o mesmo problema
(2.23) da segao anterior; envolvendo uma fungao objetivo f(-) de duas variaveis e
apenas-uma. restricao de desigualdade ¢(-) e outra de igualdade h(-). Embora o
problema de otimizacao inclua apenas uma restricao de desigualdade e outra de
igualdade, a andlise que apresentaremos a seguir pode ser generalizada.

O problema irrestrito pode ser definido como:

z* = arg min f(z) = (z; — 3)* + 2(zy — 3)?
(2.28)
sujeitoa:{ 0<z;<6; 0<2,<6

Conforme ja observado na segao anterior, a Figura 2.7 ilustra as curvas de nivel
da equagao (2.28) no plano x; X xs, ao passo que a Figura 2.11 ilustra o grafico 3D
da mesma func¢ao. Um plano tangente ao ponto (z; = 3, xo = 3) foi desenhado para
realcar o ponto de minimo da funcao. A Figura 2.11 sera utilizada para identificar
as propriedades de f(-) no ponto de minimo.

Analisando a Figura 2.11, observa-se que o minimo ocorre em (z7 = 3, =5 = 3),
e nesse ponto f(z1,x2) = 0. Se os valores de z; e ou x5 variassem de um pequeno
valor, em qualquer diregao, o valor da fungao f(-) certamente aumentaria, uma vez
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que z* é o ponto minimo da superficie convexa que representa a fungao f(-).

Voltando ao exemplo, representaremos a variagao na vizinhanca do ponto étimo
como Az, e a variacao do valor 6timo da fungao como Af(-). Por observacao direta
fica evidente que o minimo deve ser um ponto que satisfaca:

Af>0, V Az (2.29)

Problema Irrestrito

30

il
il
QO
G,
ity
ottty
Tl
ll':"""lll'll;';:l’l,;l’ll;l’ll;l'll
s

= 15

=

R
R
“‘\‘\\\\\\\\\{‘\‘S‘\\\“
R
R

Figura 2.11: Solucao grafica.3D do problema irrestrito.

2.4.1 Condigoes de Primeira Ordem

O conceito desenvolvido em (2.29) pode ser aplicado no limite, isto é, para incre-
mentos infinitesimais dr; e drs sobre *. A funcao f(-) pode ser aproximada por
um plano tangente no ponto solucao, por exemplo utilizando os primeiros termos
de uma série de Taylor. A partir do ponto de minimo, qualquer variacao no plano
tangente nao mudard o valor da fungao f(-), uma vez que o valor da funcao f(-) é
constante no plano; consequentemente df = 0. Por outro lado, observa-se também
que qualquer variagao no plano, a partir do ponto minimo, implica que dz; e dzo
nao sao zero. Matematicamente, essa variacao pode ser expressa por:

) )
df = a—idatl + a—id@ =0 (2.30)
ou
CT0f Of ] [de ]
g [Z o[ oo

A equacao (2.31) deve ser satisfeita para todos os pontos do plano. Sabendo-se
que dxy # 0 e dry # 0, obtém-se consequentemente:
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of . O _

8.’171 N ’ 61’2 N
ou, em outras palavras, o gradiente de f(-) no ponto minimo deve ser zero. Mate-
maticamente:

0 (2.32)

Vf(zt ak) =0 (2.33)

A equagao (2.33) representa a condigdo necessaria, ou condi¢ao de primeira or-
dem para problemas irrestritos. Essa equacao é utilizada para identificar as solucoes
possiveis de um problema de otimizacao. Consideracoes adicionais devem ser im-
postas para assegurar se a solugao encontrada pela condicao de primeira ordem é
de fato 6tima, neste caso um minimo, as quais serao tratadas posteriormente. Por-
tanto, para um problema geral de otimizacao, as condigdes necessarias de primeira
ordem podem ser expressas por:

Vf(z*) =0 (2.34)

A equacdo (2.34) é utilizada para determinar os valores de z* tanto analitica
quanto numericamente.

Proposicao 2.13 (Condicoes Necessarias de 1la Ordem) Seja Q@ C R" e f
uma funcao diferencidvel sobre ). ‘Se x* é um minimo local de f sobre ), entdo
tem-se que:

Vf(z*) =0 (2.35)

0

2.4.2 Condicoes de Segunda Ordem

As condigoes de segunda-ordem s@e normalmente conhecidas como condicoes su-
ficientes. Como o nome sugere, essas condicoes envolvem a derivada sequnda da
fungae:"As condicoes de segunda ordem sao obtidas através da expansao de Taylor
da funcao. Se &* é a solugao ¢tima e Ax representa uma variagao no ponto solugao,
a qual resulta em uma variagao em Af, entao:

Af = fl@ + Az) — f(z") = V(") Az + %AxTH(x*)Az (2.36)

Para avaliarmes (2.36), Af deve ser maior do que zero, conforme j& observado
em (2.29). Aplicando as condigoes necessarias de primeira ordem (2.35), o primeiro
termo do lado direito de (2.36) é zero. Isso resulta na seguinte inequagao:

1
éAa:TH(a:*)Ax >0 (2.37)

onde H(z*) é a matriz Hessiana da fungao f no ponto minimo z*. Para que (2.37)
seja verdadeira, a matrix H(z*) deve ser positiva definida. H4 trés maneiras para
determinar se H é positiva definida:

1. Para todos os valores possiveis de Az, Az H(z*)Az > 0.
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2. Todos os autovalores de H(z*) devem ser positivos.

3. Os determinantes de todas as submatrizes que envolvem a diagonal principal
de H(z*) devem ser positivos.

Das trés condigoes, apenas as duas ultimas podem ser testadas. Isso é discutido
a seguir. Porém, a tultima condigao nao é tao trivial para ordens elevadas.

Exemplo

Seja o problema de minimizagao definido por:

£" = arg min f(x) = (z1 — 3)* + 2(z9 =3)?

(2.38)
sujeitoa:{0§x1§6; 0<xy <6
As condigoes necessarias de primeira ordem, equacao (2.35), requerem:
of(-)
=2 —3) = 2.39
S =2 £3) < (239
of(-)
—= =4(22—3) =0 2.40
=z -3) (2.40)

As equagoes (2.39) e (2.40) podem ser. facilmente resolvidas, resultando na
solugdo z} = 3 e x5 = 3. No ponto solugao a fungao f(-) assume o valor f(z*) =0
e nao ha outro ponto na regiao factivel em’que f(z) < 0. Com isso, conclui-se
que as condicOes necessarias de primeira, ordem foram satisfeitas. Entretanto, se a
fungao objetivo f(.)fosse mais complexa, com trés ou mais varidveis, e nao fosse
possivel representa-la através de curvas de nivel, nao poderiamos a priori, apenas
com base nas.condicoes de primeira ordem, afirmar que o ponto encontrado trata-se
do minimo da fungéo. Afinal, o ponto em questao poderia representar o méximo de
f(+) ou um ponto de inflexao, por exemplo um ponto de sela. Portanto, é necessario
avaliar as condicoes de segunda ordem.

As condigoes. de segunda ordem requerem que a matriz Hessiana seja positiva
definida, que neste caso pode ser obtida facilmente:

0 4

Examinando-se as trés maneiras para determinar se H é positiva definida, obtém-
se:

H:{Q O] (2.41)

1. Nao épossivel testar todos os Az

2. Célculo dos autovalores de H:

= (2= M\)(4— ) =0

2—X 0
04— X
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Os autovalores sao A\; = 2, Ay = 4 e a matriz é positiva definida.

3. Célculo dos determinantes de todas as submatrizes que envolvam a diagonal
principal de H:

12| >0

20
[04}—8>0

A matriz é positiva definida.

Com isso, conclui-se que as condigoes de segunda ordem sao satisfeitas e que
x} = 3 e xs =3 é de fato o ponto de minimo da fungdo. Apresenta-se a seguir as
condicoes necessarias de segunda ordem para um caso-geral.

Proposicao 2.14 (Condigoes Necessarias de2a Ordem) Seja 2 C R” e f(+)
uma funcao duas vezes diferencidvel sobre ). Se x* é um minimo local de f(-)ssobre
Q, entao tem-se que:

i. Vf(z*) =0
ii. H(z*) >0

U

Com esse exemplo, conclui-se a dedugdo analitica das condicOes necessarias e
suficientes que um ponto deve satisfazer para ser considerado um minimo de uma
funcao f(-) sem restrigdes. Apresenta-se, a seguir, a proposicdo que resume esta
secao.

Proposigao 2.15 (Otimizagao Irrestrita) Seja f(-) € C? e z* € R™. Se forem
simultaneamente satisfeitas:

i Vf(x*) =0
ii. Hx*) >0

entao x* ¢ um minimo local estrito de f(-) sobre R™.

2.5 Condicoes Analiticas: Problemas com Res-
tricao de Desigualdade

O problema sujeito a restricao de desigualdade pode ser definido como:

g* = arg min f(x) = (z1 — 3)* + 2(z9 — 3)?

sujeito a:
0<z <6; 0<22<6
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A Figura 2.8, da secao anterior, ilustra a solucao grafica para este problema com
restricao de desigualdade. Pode-se observar que no ponto solucao o vetor gradiente
da funcao objetivo e o da funcao restricao estao na mesma direcao e em sentidos
opostos. Examinando outros pontos factiveis na Figura 2.8, pode-se afirmar que essa
relagao entre Vf(-) e Vg(-) s6 é verificada no ponto solu¢ao. Existe, portanto, no
ponto solu¢do uma relagao proporcional entre Vf(+) e Vg(). Representanto a cons-
tante de proporcionalidade por (31, pode-se expressar a relagao entre os gradientes
por:

V() ==6:Va() ou V() +5HVal()=0 (2.43)
A expressao (2.43) pode ser obtida com critérios mais rigerosos usando o método
de multiplicadores de Lagrange.

2.5.1 Condicoes de Primeira Ordem
Método de Lagrange

No método de Lagrange, o problema original (2.42) ¢ transformado com a introdugao
de uma funcdo Lagrangeana f(-), que consite na fungdo objetivo original f(-) so-
mada a restrigdo de desigualdade g;(-) ponderada pelo multiplicador /3;. Todavia, a
restricao de desigualdade precisa ser tratada como uma restrigao-de igualdade; para
que isso possa ser considerado basta somar uma variavel de folga 22 a g (-).

Entao, um problema composto por uma fungée objetivo f(z), de duas varidveis
T e T, e apenas uma funcao de restricao de desigualdade g;(z), similar ao problema
original (2.42), poderia ser expresso de maneira genérica por:

= arg mzin [z, b1, 27) = f(x) + Bulgr () + 7]

g(x)+27 =0 (2.44)
sujeito a:
lnlnzn S x S xrlnaaz e xgun S Z9 S x;naa:
Considerando o Lagrangeaneem (2.44) como uma fungao irrestrita, as condigdes
de primeira ordem tem que ser satisfeitas, ou seja:

7090450 -
T s 240
agjl') = 2812, =0 (2.47)
887;1') —q()+22=0 (2.48)

que representa um sistema de quatro equagoes e quatro incégnitas, x1, o, 1 €
z1. As equagoes (2.47) e (2.48) podem ser combinadas, basta multiplicar (2.47)
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por z; e obtém-se 23,27 = 0. Da expressao (2.48) tem-se que 27 = —g;(-). Assim,
elimina-se a variavel de folga z; e obtém-se 51¢;(-) = 0. Entéao o sistema de equagoes
(2.45)—(2.48) pode ser reduzido e reescrito como:

af() _0f() | ,9q() _

8201 N 8201 +61 8$‘1 =0 (249)

af() _9f()  ,99() _

61’2 n 61’2 _'_61 8372 =0 <250)
Brgi(-) =0 (2.51)

Em linhas gerais, as condicoes de primeira ordem para um problema com res-
tricao de desigualdade podem ser resumidas da seguinte maneira:

V() +BVal() =0 (2.52)

Brgi(-) =0 (2.53)

A generalizacao para p restricoes de desigualdade sera apresentada no final do
capiulo.

Voltando ao problema exemplo e substituindo os valores no sistema de equagoes
(2.49)—(2.51), obtém-se:

of ()

oo 2r1,—6 + 38, =0 (2.54)
Of(-

8];(2) = 4xy — 124268, =0 (2.55)

Br91(-) = Br(B8a{ + 212 — 12) = 0 (2.56)

Neste caso, as equagoes (2.54)—(2.56) representam um sistema de trés equagoes
simultaneas e trés incégnitas, essolugdes nao triviais. Para que a equacao (2.56)
seja satisfeita é necessario que B; = 0 ou que gi(-) = 0. O sistema de equagoes
simultaneas (2.54)—(2.56) requer que as condi¢bes no multiplicador f3; e na restri¢ao
g1(+) sejam satisfeitas simultaneamente. Isso resulta nos seguintes casos:

1. Caso a: 51 =0 [g1 < 0]
2. Caso b: B #0 [g1 = 0]

Observa-se claramente, no caso b, que se 31 # 0, correspondendo a g; = 0, entao
a restri¢ao g;(-) transforma-se em uma igualdade.

O sistema de equagoes (2.54)—(2.56) deve ser resolvido considerando-se os casos
a e b. Fica por conta do leitor mostrar que, no exemplo em questao, o caso a leva
a uma solugao invidvel. Para o caso b, obtém-se =] = 2.18, x5 = 2.73 e 7 = 0.55.
Observando a Figura 2.8, solugao geométrica obtida na secao anterior, nota-se que
a solucao analitica encontrada usando o multiplicador de Lagrange indica que é
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necessario multiplicar o Vg;(-) por f; = 0.55 para que o somatério de Vf(-) e
Vg1(+) seja zero no ponto solugao.

Como no caso irrestrito da secao anterior, é preciso investigar as condigoes de
segunda ordem, ou condicoes suficientes, para ter seguranca em relacao a solugao
encontrada pelas condicoes necessarias.

2.5.2 Condicoes de Segunda Ordem

No ponto determinado pelas condi¢oes de primeira ordem, qualquer variacao Ax
implicard um aumento na funcdo f(-). Variagbes Az nao sao’arbitrarias. Elas
tem que satisfazer as restri¢oes de desigualdade no ponto solu¢ao. As condigoes de
segunda ordem requerem que as equacoes seguintes sejam satisfeitas:

AF() = TFla* +A2) - T@) = VF@") Az 44 A" Az >0 (257)

V() 'Az =0 (2.58)

Na equacgao (2.57) o termo [H (z*)] representa a matriz Hessiana da funcao La-
grangeana f calculada no ponto solucio. As condictes de primeira ordem requerem
que Vf(z*) = 0. Considerando um problema com duas varidveis'e uma restriciao de
desigualdade, tem-se:

(Aaxy)® + 2%8(22(&1)(&2) T 881;(%')

1 [aﬂﬂ-)

AF(-) 2 | o2 (Ax2)2]>0 (2.59)

rearranjando os termos de (2.59) resulta em:

o L[ Axy ., L PFC) Axy PF()
Af(')_i[ 027 Wbz, T 2omou, By 03

] (Azy)* >0 (2.60)

A equagao (2.58) pode ser expressa por:

AZL‘l . 891()/8202

- _ 2.61
ASL’Q agl()/ﬁxl ( )
Substituindo a‘equagao (2.61) na equacao (2.60) obtém-se:
= _A[Pf() 09:() /05y OF() Dgi(-)/0xs.  O°F() 2
Af) = 2| 0x2 <8g1(~)/8x1 B 283:18:62 0q1(+) /04 + 03 (Az2) (> 0 |
2.62

que representa a condicao de segunda ordem, ou condigao suficiente, que deve ser
satisfeita.

A equagao (2.62) deve ser avaliada no ponto de minimo encontrado pela condigao
de primeira ordem. Para assegurar que Af(-) > 0, deve-se avaliar a expressdo entre
colchetes, j4 que o termo (Az,)? serd sempre positivo. Para o problema definido em
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(2.42), avaliando (2.62) obtém-se [ - | = 44/9 > 0. Com isso, conclui-se que o ponto
x] = 2.18, x5 = 2.73 é de fato o minimo do problema.

Cabe destacar que a equacao (2.62) nao é facil de ser avaliada, particularmente
se o problema de otimizacao for mais complexo, por exemplo envolvendo mais do
que duas variaveis e duas restrigoes, ou contendo restricoes quadraticas ou de or-
dem superior. Do ponto de vista pratico, como veremos nos capitulos seguintes, as
condicoes de segunda ordem nao serao utilizadas nos algoritmos.

Para concluir esta segao, apresenta-se a seguir a proposicao que resume as
condigoes de primeira e segunda ordem que devem ser satisfeitas para assegurar
a solugao de um problema de otimizagao com restricao de desigualdade.

Proposigao 2.16 (Otimizagao Restrita — Desigualdade) Sejam f(-) € C? e
g()eC? i=1,....p, ex* tal que g;(x*) <0, i=1,...,p. Se eristem multiplica-
dores B1, Ba, ..., By tais que

i Bi>0,i=1,....p

i. Bigi()=0,i=1,...,p

iii. V(") +> BiVgi(x) =0

iv. H@") + Y BiGi(x*) > 0 sobre M = {geR": Vg,{z*)y =0, i€ I(z")},
i=1

sao simultaneamente satisfeitos, entio x* € um minimo local estrito de f(-) sobre

2.6 Condicoes Analiticas: Problemas com Res-
tricao de Igualdade

O problema sujeito a restricao de igualdade pode ser definido como:

Tt = arg mzin f(z) = (71 — 3)* + 2(xy — 3)?

hi(z):x1+x9=5 (2.63)
sujeito a:
0<21<6; 0<a2<6

A Figura 2.26, da se¢ao anterior, ilustra a solucao grafica para este problema. De
maneira similar ao caso anterior, observa-se que no ponto solugao, o vetor gradiente
da fungao objetivo esta na mesma direcao e no sentido oposto do vetor gradiente
da fungao restricao. Examinando outros pontos factiveis na Figura 2.26, i.e., outros
pontos sobre a reta h(-), uma vez que a restrigao de igualdade tem que ser satisfeita,
pode-se afirmar que essa relacao entre V f(+) e Vh(-) s6 é possivel no ponto solugao.
Existe, portanto, no ponto solugdo uma relagao proporcional entre Vf(:) e Vh(-).
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Representando a constante de proporcionalidade por A;, pode-se expressar a relacao
entre os gradientes por:

Como discutido na segao anterior, a equagao (2.64) pode ser obtida, com critérios
matematicos mais rigorosos, usando o método de multiplicadores de Lagrange.

2.6.1 Condicoes de Primeira Ordem
Método de Lagrange

Neste caso a funcao Lagrangeana consite na fungao objetivo original f(:) somada
a restricao de igualdade hi(-) ponderada pelo multiplicador A; (para diferenciar
do multiplicador da funcdo de desigualdade). Entao, um-problema de composto
por uma funcao objetivo f(z), de duas varidveis #7 e x5, e apenas uma fungao de
restrigao de igualdade hy (), similar ao problema original (2.63), poderia ser expresso
de maneira genérica por:

g = arg min flx, ) = f(x) + \Mhi(@)

sujeito a:
Considerando o Lagrangeano em (2.65) como uma fungao irrestrita de duas
variaveis, as condi¢oes de primeira ordem tem que ser satisfeitas, ou seja:

agx(l') S 86{;(1') + Alag;(l') —0 (2.66)
ag;-) = aé;;(-) + Alag;(.) —0 (2.67)
orC) _, .\ _
G =h()=0 (2.68)

As equagoes (2.66)—(2.68) expressam as condicoes de primeira ordem, ou condigoes
necessarias, para o/problema definido em (2.65). Essas expressoes constituem um
sistema de trés equagoes e trés incégnitas, x1, o e A;. A equagao (2.68) representa
a restricao deigualdade.

Em linhas gerais, as condigoes de primeira ordem para um problema com res-
tricao de igualdade podem ser resumidas da seguinte maneira:

V() + MVhi() =0 (2.69)

hi()) =0 (2.70)

A generalizacao para ¢ restrigoes de igualdade sera apresentada no final do capitulo.
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Substituindo os valores do problema original, obtém-se:

af ()

of(-
;;):4h—12+Ap:0 (2.72)

As equagoes (2.71)—(2.73) representam um sistema de trés equagoes e trés in-
cognitas, cuja solugao resulta em z7 = 2,33, x5 = 2,67 e A\j7= 1,34. Observando
a Figura 2.9, nota-se que a solucao analitica encontrada<usando o multiplicador
de Lagrange coincide com a solugao geométrica obtida na secao anterior.. Como
no caso irrestrito da secao anterior, é preciso investigar as condicoes de segunda
ordem, ou condigoes suficientes, para ter seguranca’em relagao a solugao encontrada
pelas condicoes necessarias. Essa andlise é similar a desenvolvida na secao anterior
(deixada como exercicio para o leitor) e leva‘a conclusao que a solugao encontrada
é de fato o minimo do problema.

Antes de concluir a se¢ao, analisaremos uma interpretacao geométrica associada
a introducao dos multiplicadores de Lagrange.

2.6.2 Interpretacao Geométrica dos Multiplicadores de La-
grange
A interpretagao geométrica dos multiplicadores de Lagrange indica que, no ponto

solucao, A\ expressa a relacao da variacao da funcao objetivo em relagao a variagao
da restricao. Censideremos:

FEr= /() + M) (2.74)
Diferenciando obtém-se

df(-) = df(-) + Mdh(:) (2.75)
que resulta em _ B B
of () of(-) of ()
8[]}1 d[L‘l + axz d[L‘Q + a)\l d)\l

No ponto solicdo, as condicdes de primeira ordem requerem que df(-) = 0.
Consequentemente,

07() =

(2.76)

dh(-) Ah(-)

A equagdo (2.77) indica claramente, como queria-se demonstrar, que o mul-
tiplicador de Lagrange \; é a relagao entre a variacao da funcao objetivo Af e a
variacao da funcgao restricao de igualdade Ah. Essa relacao nao afeta a determinacgao
da solucao 6tima, tendo, entretanto, um papel importante na discussao de andlise
de sensibilidade.
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Para concluir esta secao, apresenta-se a seguir a proposi¢ao que resume as
condicoes de primeira e segunda ordem que devem ser satisfeitas para assegurar
a solugao de um problema de otimizagao com restricoes de igualdade.

Proposigao 2.17 (Otimizagao Restrita —Igualdade) Sejam f(-) € C? e h;(-) €
C* j=1,...,q ex* tal que hj(z*) =0, j = 1,...,q. Se existem multiplicadores
AL, A2, ..., A tais que

j=1

q
. H(x*)+z NHj(x") > 0sobre M ={y € R" : Vh;(z")y=0, j=1,...,q}
j=1

sao simultaneamente satisfeitos, entdo x* é um minimo local estrito de f(-) sujeito
ahj(z)=0,j=1,...,q.

2.7 O Problema Geral de Otimizacao

O problema geral de otimizagao é definido incluindo simultaneamente as restri¢oes
de desigualdade e igualdade:

£" = arg min f(x)= (x4 — 3)? +2(xy — 3)?

gl(.'zr) 23T+ 225 < 12
(2.78)

sujeito a: < hy(x) 1 vy T2 =5
0<x1<6; 0<a2<6

Usando o método de multiplicadores de Lagrange, um problema de otimizacao
similar ao apresentado em (2.78), composto por uma fungao objetivo f(z), de duas
variaveis x; e xq, € apenas.ima funcao de restricao de desigualdade g;(z) e uma
restrigao de igualdade hq(x), pode ser expresso de maneira genérica por:

Tt = arg II}till ?(xvﬁlv )‘17 Z%) = f((lf) + Bl[gl(x) + Z%] + )\1h1($)

(2.79)
sujeito a: ¢ hi(z) =0

man max min max
o <z < 2 e " < xy < a5

Considerando a fungao Lagrangeana f(-) como uma funcao irrestrita, as condigoes
de primeira ordem para este caso podem ser obtidas por:
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af() _ of() () 9h()

v om 83;1 thpo = =0 (2.80)
087;) _ aafx(; +6lag;(2.) . Alag;i.) . -
% =262 =0 (2.82)

8675(1') =qi(-)+2 =0 (2.83)

aa?A(l') =fu() =0 (2.84)

que sao uma associacao das subsecgoes anteriores referentes a discussao das condigoes
de primeira ordem para problemas com restrigoes de desigualdade e igualdade. Como
discutido no caso do problema com restri¢oes de desigualdade;.as equagoes (2.82) e
(2.83) podem ser combinadas eliminando-se a varidvel z1. Assim, as equagoes (2.80)
a (2.84) podem ser reduzidas a quatro expressoes:

af() _ of() 9g1(-) Ohi() _

al‘l N 8901 A 61 al‘l b >\1 al‘l K4 (285)

ag;: = ag;;) + By ag;(Q.) - Alag;i') =0 (2.86)
Bigi(-) =0 (2.87)

A equagao (2.87) requer que duas possibilidades sejam testadas:

1. Caso a: 1 =0 [g1 < 0]

2. Caso b: B1 #0 [g1 = 0]

Assim, as equagoes (2.85)—(2.88) correspondem a um sistema de quatro equagoes
e quatro inecognitas, x1, w2, f1 € A\, e representam as condigoes de primeira ordem
que devem ser satisfeitas para um problema com uma restricao de desigualdade e
uma restricao de igualdade.

Em linhas gerais, as condigoes de primeira ordem podem ser resumidas da se-
guinte maneira:

V() +68Val() +MVhi() =0 (2.89)

Brgi(-) =0 (2.90)
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hi(-) =0 (2.91)

A generalizacao para p restricoes de desigualdade e ¢ restricoes de igualdade
serd apresentada no final da secao.
Voltando ao problema exemplo, as condigoes de primeira ordem resultam em:

of ()

o 201 =6+ A + 361 =0 (2.92)
O0) _ gy — 124 A + 28 = 0 (2.93)
6262
Brgi(+) = Bi(3w1 + 229 — 12)= 0 (2.94)

of()
8)\1

Duas solugoes devem ser examinadas. A primeira, Caso a (81 = 0 e [¢g1 < 0]),
requer a solucao de um sistema de trés equacoes e trés incognitas, xi, o € Ay, ja
que a equagao (2.94) é eliminada. A ‘segunda, Caso b (81 # 0'[g; = 0]), é um
sistema de quatro equacoes e quatro incégnitas, zi, xs, [ € A;, envolvendo as
equagoes (2.92)-(2.95). A solucao do caso a fornece.x1 = 7/3, xo = 8/3 e A\; = 4/3,
porém a restricao de desigualdade é violada, inviabilizando a solucao encontrada.
Resolvendo-se a segundaropgao obtém-se vy =2, 1o =3, f1 =2 e A\; = —4.

A Figura 2.12, a‘seguir, ilustra a solugao gréfica e analitica do caso geral. Ob-
serve que no ponto solucao (z; = 2; ro = 3) o somatério do gradiente da funcao
objetivo e das func¢oes de restricao, ponderadas pelos respectivos multiplicadores de
Lagrange, se anula. Em outras palavras; Vf(-) + £191(-) + Ahi() = 0.

2.7.1 Condicoes de Karush-Kuhn-Tucker

Para concluir esta secao, apresenta-se a seguir a proposi¢ao conhecida como condicoes
de Karush-Kuhn-Tucker, as quais devem ser satisfeitas para assegurar a solucao de
um problema geral de otimizacao.

Proposicao 2.18 (Condicoes Necessarias de Karush-Kuhn-Tucker para Oti-
malidade) Sejax* um ponto regular das restri¢oes do problema de otimizacao:

*

x* = arg min f(x)

gi(x) <0,i=1,...,p (2.96)
sugeito a:

sendo que f(-), g(-), h(-) € C'. Parax* ser um étimo local do problema, deve existir
um conjunto de multiplicadores de Karush-Kuhn-Tucker B* € RP e A* € R?, com
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Solugéo Geral do Problema Exemplo

5
10
4 2 B1vVa4
VENY T
5 N
28\ 4o Vi

. —
- N
0 :
0\2\ i ‘ \
3 4 5 6

0 1 2

x1

Figura 2.12: Solugao analitica do caso geral.

B >0 tal que:
P q
Vi) + Y B Vo) +)  AVh(@) =0
i=1 j=1

Bi>0 e Big@)=0Vi=1,...p (2.97)

h](m)zo V]ZI,,(]

sendoquex-€ R", f(-):R" — R, g;(-) : R" = R? ¢ h;(-) : R™ — RY. O
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2.8 Exercicios

1. Conceitue um minimo local, minimo global e dire¢oes vidveis [3].

2. Considere a funcio f(r) = ze 2®. Calcular todos os pontos de minimo e

maximo local, e também os pontos de inflexdao. O que pode ser afirmado
a respeito do ponto de minimo e maximo global dessa funcao. Justifique
analiticamente a resposta [4].

3. Calcular a derivada primeira e segunda da funcao, definida aseguir, em x =0

[5]:
flx) =2t + 220 + (1 + 25)? (2.98)

Mostre que H(0) nao é positiva definida. Verifique que o minimo local é
x* = (0.6959; —1.3479)7.

4. Calcular os pontos estaciondrios da funcao {5]:
f(x) = 223 — 323 —6x w9(x1 — 15 = 1) (2.99)
Quais pontos sao minimos locais e quais sao maximos locais?

5. Mostre que a fungdo f(z) = (#a—2%)*+z} possui apenas um ponto estaciondrio
que nao é maximo local ou minimo local [5].

6. O problema [3]:

minimize f(z) = 223 + 1129 + &3 + w3 +15 — 627 — Twe — 83+ 9

(2.100)
possui_um ponto de minimo local em &* = (6/5,6/5,17/5)T. Verifique se as
condigoOes necessarias para um minimo local sao satisfeistas nesse ponto. Esse
minimo local é também um ponto de minimo global?

7. O problema [5], [3]:
minimize f(z) = 100(zy — 2%)% + (1 — x1)?

sujeito a: g(x) : (22 + 22) <2 (2.101)

possti um ponto de minimo local em z* = (1,1)7. Verifique se as condicoes
necessarias para um minimo local sao satisfeistas nesse ponto. Mostre que
H(z) é singular se, e somente se, z satisfizer a condigao: x5 — 7 = 0.005.

8. Considere o problema [4]:

minimize f(z) = 23 + 223

sujeito a: h(z) : (x; + 29 —2) =0 (2.102)
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10.

11.

NOTAS DE AULA DE OTIMIZAGAO

Encontrar um ponto que satisfaca as condigoes de Karush-Kuhn-Tucker e ve-
rificar se esse ponto é a solucao 6tima. Resolva o problema novamente substi-
tuindo a fungao objetivo por f(zx) = x3 + 3.

. Considere o problema [4]:

minimize f(z) = 7 + x5 + 1227 + 623 — 2175 — 21 — 39

g1<$) X+ Xo > 6 (2103)
sujeito a: g2(x) 1 2wy — w9 > 3
21 20; 29 20

Escreva as expressoes para as condicoes de Karush-Kuhn-Tucker e mostre que
(x1,22) = (3,3) é o tnico ponto solugao.

Suponha o problema de uma varidvel: max 4%, com —1 < z < 2. Mostre qte
as condicoes de Karush-Kuhn-Tucker sao satisfeitas nesse problema em x/= 1,

x =0 e x = 2, embora o unico ponto de 6timo global seja x = 2.

Resolver graficamente os seguintes problemas:

(i)

maximize f(&) = 1z,

gi(z)t (I =21)>~ 22 > 0 (2.104)
sujeito a: g2() : x1 >0
g3(x) 129 >0

(i)

minimize f(z)= z} + 422

2.105
sujeito a: g(x):z1+23>0 (2.105)
" (@) 2w + e >0
(iii)
minimize f(x) = —x125
h1(.’l§ 22021 + 1529 —30=0 (2.106)

sujeito a: ¢ gi(z):2?/4+23-1<0
0<2,<3; 0<z,<3

Para ¢ada um dos graficos, desenhe as direcoes dos vetores gradiente da funcao
objetivo e das restricoes ativas no ponto 6timo. Verifique se as condigoes de
Karush-Kuhn-Tucker sao satisfeitas no ponto solucao.
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