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no interior da regiao restante. O gradiente nesse ponto também é
calculado, trazendo a informacao de que o ponte £* nao se encontra
abaixo da reta perpendicular ao gradiente que passa nesse ponto. A
seguir um novo ponto x3 € escolhido, e o processo se repete, levando
a conclusao de que =* nao se encontra a esquerda da reta que passa
por esse ponto. Observa-se que a cada passo.vai diminuindo a regiao
onde é possivel que z se encontre. Oprocesso termina quando a regiao
“possivel” é suficientemente pequena.

Superficie'que representa o grafico de uma funcao multlmodal f (z)
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Capitulo 1

Introducao

Neste capitulo, iremos discutir, de maneira preliminar, o que sao os problemas de
Otimizacdo, com base sempre em funcoes matemadticas simples, de apenas duas
variaveis, que permitem portanto sua representa¢ao grafica em trés dimensoes.  Ire-
mos mostrar como diferentes tipos de funcoesirao requerer diferentes estratégias de
otimizacao e, de maneira intuitiva, iremos discutir os principies que se encontram
por tras dos métodos de otimizacao que serao estudados em detalhe nos préximos
capitulos. Leitura complementar pode ser encontrada em [1] - [2].

1.1 O Jogo da Otimizacao

A Otimizagao, sob o ponto de vista pratico; trata do conjunto de métodos capazes
de determinar as melhores configuragoes possiveis para a construcao ou o funciona-
mento de sistemas de interesse para o ser humano. Estamos falando da aplicagao
de uma mesma-teoria, com um mesmo conjunte de métodos e ferramentas, quando:

e um engenheiro eletricista procura 0 melhor projeto possivel para um motor
elétrico;

e um engenheiro de controle e automacao procura o melhor ajuste possivel para
os controles de um determinado processo industrial;

e um engenheiro de producao busca a melhor configuragao possivel para enca-
dear as etapas de fabricacao de um produto;

e um matematico computacional estuda modelos quantitativos de epidemias,
procurando’determinar as melhores politicas de vacinacao;

e um cientista da computacao estuda o desempenho de uma rede de computado-
res, e tenta estabelecer a melhor estratégia de trafego de informacao possivel,
visando maximizar o fluxo global de informacao nessa rede;

e um economista procura o melhor portfolio de investimentos, que maximiza a
expectativa de retorno financeiro;

e um veterinario ou zootecnista procura determinar a melhor politica de compras
e vendas das cabecas de um rebanho de gado.



2 NoTAS DE AULA DE OTIMIZAGAO

Apesar dos contextos completamente distintos, todos estes problemas (e muitos ou-
tros) uma vez formulados matematicamente, possuem exatamente a mesma estru-
tura, e sua solucao é obtida essencialmente através da utilizacao do mesmo conjunto
de técnicas: a Otimizacao.

1.1.1 Formulagao do Problema de Otimizacao

Evidentemente, em cada contexto distinto, ha um conjunto de informacgoes que
cada especialista de cada area deve conhecer, que lhe permite obter uma descricao
matematica de cada problema, a partir da situacao concreta em questao. Uma vez
construido o modelo do problema!, chegamos sempre? & formulaciao caracteristica
do problema de otimizagao:

z* = arg min f(x)

gi(x) <0ji=1,...,p (1.1)
sujeito a:
h]<z> :()7.] = 17“'7q

Vamos primeiro entender o que significa essa expressao. Como convencao que ado-
taremos ao longo de todo este livro, as variaveis em negrito significam grandezas ve-
toriais (ou seja, que representam conjuntos de varios valores) enquanto as varidveis
sem negrito significam grandezas escalares (que representam um tnico valor).

O projeto de um auto-falante

Por exemplo, suponhamos que um engenheiro esta projetando um auto-falante como
indicado nas Figs. 1.1 e 1.2/ Utilizaremos este exemplo para definir conceitualmente
o significado da equagao(1.1).

O objetivo é encontrar o auto-falante com menor volume (e possivelmente menor
pre¢o) que satisfaca algumas caracteristicas de desempenho e de construgao; por
exemplo: (i) densidade de fluxe magnético no entreferro (varidvel z9) maior do que
um valor pré-determinado, (i) materiais que compoem as regides do “ferro” e “ima”
tais que seja possivel obter o desempenho especificado e o menor volume. FEssas
caracteriticas sao definidas, usualmente, por quem contrata o projeto.

Matematicamente, o problema do auto-falante pode ser definido por:

min f () = volume

sujeito a: g1 (z) : |B| > Buin (12

onde B significa a densidade de fluxo magnético. Este exemplo sera discutido deta-
lhadamente ao final do capitulo.

10 leitor ndo deve se enganar: a construcdo do modelo matemético do problema muitas vezes é
a parte mais dificil de todo o processo. Estamos saltando esta parte porque a Otimizacao comega
exatamente quando o modelo da situacao esta pronto.

20K, voce estd certo: quase sempre.
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Figura 1.1: Tlustracao de um alto-falante constituido por uma estrutura composta
por “ferro” (parte azul escuro) e “im&” (parte azul claro).

X8 x2 Air

Pure fron

Figura 1.2: Tlustracao do alto-falante em 2D com indicacao das regices de “ferro”,
“ima” e das variaveis = de projeto.



4 NoTAS DE AULA DE OTIMIZAGAO

O vetor de variaveis de otimizacao

O vetor x é o wvetor de varidveis de otimiza¢do, que representa o conjunto das
variaveis cujos valores procuramos especificar através do processo de otimizacao.

No exemplo do projeto do auto-falante, o objetivo é encontrar os valores (di-
mensoes) das dezesseis varidveis &, que seria neste caso representado por:

T=| . (1.3)

Uma vez especificados esses dezesseis valores, para construir o auto-falante basta
“seguir a receita” implicita em x: obter as pecas de “ferro” e “ima” com as dimensoes
especificadas.

Nos optamos pelo exemplo do auto-falantey pois é muito 1util para ilustrar o
fato de que os elementos do vetor £ possuem usualmente um significado bastante
concreto, ligado a estrutura do problema que esta sendo representado. De maneira
genérica, se o vetor  possui n variaveis reais, dizemos que x € R".

Nem sempre o vetor de varidaveis de otimizacao é composto de variaveis reais.
Muitas vezes, as variaveis sao numeros. inteiros, por exemplo, quando estamos esta-
belecendo quantas maquinas serao utilizadas para trabalhar em determinada etapa
de um processo de fabricacao. Outras vezes as wariaveis sdo até mesmo bindrias:
por exemplo, ao se estudar o problema da formacao de-uma malha vidria ligando
diversas cidades, deve-se decidir se determinada estrada ligando diretamente duas
cidades sera ou nao_econstruida (s6 existiriam, nesse caso, as opgoes sim ou ndo).

A diferenca mais importante entre os problemas de otimizacao, que conduz a
técnicas de resolucao com fundamentacgoes bastante distintas, é aquela que separa os
problemas em que as variaveis de otimizacao sao reais dos problemas que apresentam
variaveis de otimizagao discretas (binarias ou inteiras). Neste livro, iremos estudar
apenas os problemas com varidveis reais.

A funcao objetivo

A préxima entidade presente na expressao (1.1) que devemos discutir é a chamada
fung@o objetivo, f(-). Essa entidade representa o indice de desempenho do sistema,
cujo valor, por convencgao, queremos minimizar para atingirmos o desempenho étimo.

Um 1indice gque muito frequentemente desejamos minimizar é o custo de fa-
bricacao de um equipamento. No exemplo em questao, o volume do alto-falante estéd
associado a0 custo; ou seja quanto menor o volume do alto-falante menor também
serd a quantidade de material utilizado (imas permanentes sado caros), e consequen-
temente menor sera o custo final do equipamento. Por essa razao, nesse exemplo,
f(-) = volume. As especificacoes possiveis do volume do alto-falante estdo contidas
no vetor , ou seja, para cada conjunto de diferentes valores que esse vetor assumir
havera um custo de fabricacao diferente envolvido.

Um outro exemplo que poderia ser imaginado consiste na fabricacao de um mo-
tor: de cada maneira diferente que o mesmo for projetado, tera custos de fabricacao
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diferentes. Nesse caso, a funcao objetivo f(x), serd uma fungao que, para cada con-
junto de valores que estiver especificado no vetor z, ird fornecer o custo de fabricacao
do equipamento descrito por esse vetor.

Devido a essa interpretacao de custo financeiro, muitas vezes a funcao objetivo
é chamada, dentro de livros de otimizagao, de fun¢do custo.

Outros indices de desempenho de sistemas que muitas vezes queremos minimizar
sao: consumo de combustivel (em automéveis, por exemplo), ruido de funcionamento
(em motores), probabilidade de defeitos (em todo tipo de equipamento), etc. Todos
eles, claramente, dependem de como o equipamento foi construido, ou seja, sao
funcgoes do vetor x.

Muitas vezes, entretanto, desejamos mazximizar e nao minimizar-algum indice
de desempenho de um sistema. Queremos, por exemplo, maximizar a expectativa
de lucro em um portfolio de investimentos, assim como o tempo de vida 1util de
um equipamento, ou a capacidade de producao de uma fabrica. Para simplificar a
tarefa de elaborar a teoria matematica da Otimizacao, iremos manter a conven¢ao
de sempre formular um problema de otimizag¢aocomo um problema de minimizacao.
Nos casos em que deseja-se fazer uma maximizagao, devido ao significado do indice
de desempenho escolhido, basta minimizarmos a fungao’que se deseja maximizar
multiplicada por —1. Ou seja, se se deseja maximizar a funcdo p(z), basta fazer
f(x) = —p(x), de forma que ao determinarmos o vetor & que minimiza f(-), este
serd também, por consequéncia, o vetor.que maximiza p(-).

Em linguagem matemadtica, dizemos que.f(-) : R™ — R. Isso significa que
f(-) é uma fungdo de um vetor de n. varidveis reais (pertencente ao espagco R"),
e a prépria funcao f(-) retorna um valor que é real. As diferentes caracteristicas
que essa funcao pode ter, assim como asconsequéncias disso para a elaboragao de
estratégias de otimizagao sao os temas das proximas secoes deste capitulo.

A solucgao 6tima

Da maneira.como delimitamos o problema exemplo, supondo que o vetor de variaveis
deotimizacao & seja composto de variaveis reais, existem infinitas maneiras diferen-
tes de especificar o alto-falante a ser construido. Em outras palavras, ha um ntimero
infinito de valores que as variaveis z1, ..., 1 podem assumir, o que resulta em um
conjunto infinito de possibilidades de construgao do alto-falante.

Diante disso, qual é a melhor especificagao possivel, *, que o auto-falante pode
assumir; ou seja, qual é a especificagao que faz com que ele tenha o menor volume
e satisfaca a condicao B > B,,;;,,?

A resposta a tal pergunta é exatamente aquilo que a Otimizagao procura encon-
trar, por meio de suas técnicas. Em palavras:

O vetor dtimo x* € igual ao argumento da fun¢ao f(-) que faz com que
essa func¢ao atinja seu minimo wvalor.

Essa é a forma como deve ser lida a primeira linha da expressao (1.1). Posto isso,
como encontrar esse vetor £*7 Esse é o assunto deste livro.



6 NOTAS DE AULA DE OTIMIZAGAO

As restricoes

Para terminarmos de entender a formulagao contida na expressao (1.1), ainda falta
entendermos o significado da desigualdade e da igualdade a que esta sujeito o resul-
tado da otimizacao. Essas sao as chamadas restricoes do problema. Elas significam
o conjunto dos requisitos que o resultado do projeto deve atender para ser admissivel
enquanto solugao.

O exemplo em questao possui uma restrigao de desigualdade g;(z) que especifica
o valor minimo da densidade de fluxo magnético a ser observado na.regiao definida
pela variavel zg (entre ferro) para o qual o alto-falante tem desempenho satisfatério.

Outros tipos de restricao tém significado bastante ébvio;.mo exemplo do alto-
falante seria natural impor também que todas as varidveis sejam positivas, ou
x1,...,%16 > 0. Embora, se substituido na expressao da fungao objetivo, um va-
lor negativo de uma variavel x talvez possa levar a um “melhor valor” para essa
funcao, nao é possivel no mundo real construir alto-falantes que tenham dimensoes
negativas.

Outros tipos de restrigao, embora nao estejam relacionados com a impossibili-
dade de implementarmos a solugao encontrada, igualmente dizem que tal solugao nao
¢ admissivel, se violar a restricao. Um exemplo disso encontra-se no projeto de au-
tomoéveis: se queremos projetar o veiculo de minimo custo; nao podemos entretanto
construir um que cause emissao de gases poluentes acima dos limites estabelecidos
em lei. Todos os veiculos que emitirem poluentes acima de tais limites nao serao
considerados solugoes admissiveis, por mais barata que seja sua construcao. O pro-
blema de otimizagao, colocado dessa forma, passa a ser-o'de encontrar o projeto do
veiculo mais barato possivel dentre todos 0s que atenderem a restricao da emissao
de poluentes ser menor ou igual ao limite admissivel.

Os dois exemplos anteriormente citados se enquadram na situacao da restricao
de desigualdade, isto é, sao representaveis pela expressao:

Em'relacao a convencao de que as funcoes de restricao devam ser menores ou iguais
a zero, cabem comentarios similares aqueles apresentados a respeito da convencao
de estarmos minimizando, sempre, a funcao objetivo. Para as restricoes de desi-
gualdade, caso ocorram situagoes em que se deseja garantir que certa funcao seja
maior que ou igual a zero, basta garantir que essa funcao multiplicada por —1 seja
menor que ou igual a zero. Caso seja necessario ainda que certa fungao seja menor
ou igual a um ntmero diferente de zero, basta fazer com que essa fungao menos esse
niumero seja menor que ou igual a zero. Dessa forma, ao construirmos as técnicas
de otimizagdo, levaremos sempre em consideracao o formato convencionado da de-
sigualdade, assim simplificando a teoria.

Deve-se observar que agora a fungao g¢;(-) é, ela prépria, vetorial, retornando
multiplos valores, o que quer dizer que na realidade essa expressao sintética, veto-
rial, contém um conjunto de expressoes escalares, cada uma das quais representa
uma restrigdo diferente. Matematicamente, dizemos que g;(-) : R” — RP, o que
significa que para cada vetor de variaveis de otimizacao x € R" que for utilizado
como argumento da fungao g;(-), esta retorna um conjunto de p valores reais como
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resultado, ou seja, a expressao (1.4) é o mesmo que:
gi1(z) <0

g2(z) <0
(1.5)

gp(x) <0

sendo cada uma das p fungoes g;(-) uma fungao escalar, que retorna wm unico valor
real. Em problemas praticos, usualmente sera necessario lidar com diversas restri¢oes
simultaneamente. No exemplo do projeto do automovel, além de atender ao limite
legal de emissao de poluentes, provavelmente sera necessaria também a preocupacao
com o consumo de combustivel (que nao pode ultrapassar um maximo aceitavel),
com a poténcia do motor (que ndo deve ser menor que wmn minimo aceitével); etc.
O veiculo a ser projetado nao pode violar nemhuma dessas restricoes para ser consi-
derado uma solucao aceitavel.
Resta ainda falar das restricoes de igualdade, deseritas pela expressao:

hi@)=0,j=1,....q (1.6)

Esse tipo de restricao ocorre quando é necessario que certas varidveis assumam
precisamente certos valores. Por exemplo, se estamos projetando uma peca que deve
se encaixar precisamente num certo espaco disponivel num equipamento, do qual a
pega faz parte, queremos que a peca tenha exatamente o tamanho especificado, nem
mais nem menos: A peca pode até ser constituida de diversos sub-componentes,
cujos tamanhoes poderemos escolher, desde que a soma de todos os tamanhos tenha
o tamanho total especificado. Também essa expressao é vetorial: h;(-) : R — RY,
ou seja, a funcao vetorial representa na.realidade g diferentes equacoes.

Para concluir este tépico, definimos a seguinte nomenclatura, relacionada com
as restrigoes:

Regiao factivel: Conjunto‘dos pontos do espaco R™ que satisfazem, simultanea-
mente, a todas as restrigoes (tanto de desigualdade quanto de igualdade). As

vezes a regido factivel é chamada de conjunto factivel, ou de conjunto vidvel.

Regiao infactivel: Conjunto dos pontos do espago R™ que deixam de satisfazer
(ou sejaywiolam) pelo menos uma das restrigoes do problema.

Ponto factivel: Ponto pertencente a regido factivel.
Ponto infactivel: Ponto pertencente a regiao infactivel.
Restrigao violada: Cada uma das componentes do vetor g;(z) que apresentar valor

positivo, ou cada uma das componentes do vetor h;(x) que apresentar valor
nao-nulo serda chamada de restricao violada no ponto z.
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1.1.2 As Regras do Jogo

O problema da Otimizagao fica em parte definido pela expressao (1.1). Para delinear
o que vem a ser o campo de conhecimento da Otimizacao Nao-Linear, enunciamos
agora um conjunto de regras que dizem como é abordado esse problema: qual é a

informagao de que podemos fazer uso durante o processo de otimizacao, e qual é o
custo dessa informagao. Iremos supor, ao longo deste livro, que:

Regras de Acesso a Informagao

e Nao conhecemos expressoes matematicas explicitas que representem
a funcao objetivo f(-) e as fungdes de restrigao gi(-) e h;(-).

e Temos entretanto a possibilidade de descobrir. quanto valem as
fungoes objetivo e de restricao em qualquer ponto do espaco de
variaveis de otimizacao. Essa é a unica informacao que consegui-
remos adquirir, ao longo do processo de otimizagao, para nos guiar
em direcao a solugao desejada.

O leitor poderia perguntar: por queé introduzimos essa premissa aparentemente
arbitraria? O que impede que tenhamos em maes um modelo matematico de um
sistema qualquer, formulado em termos de expressoes matematicas explicitas, que se-
riam nossas funcoes objetivo e de restrices? Bem, nada impede isso, pelo contrario,
muitas vezes é isso.que ocorre. Entretanto, nessas situacoes, quando temos ex-
pressoes explicitas simples representando o sistema, podemos fazer (e usualmente
fazemos) uso de técnicas da chamada Andlise Matemdtica para determinar o minimo
da funcao objetivo; empregando ferramentas que nao estao no escopo daquilo que
usualmente chamamos Otimizacao. Um-procedimento simples que frequentemente
empregamos nesses casos, por exemplo, é o de derivar a funcao objetivo, e determi-
nar'os pontos em que o gradiente se anula. Quando é possivel fazer isso, os pontos
de minimo da fungao sao determinados de maneira direta e exata.

Ha entretanto situacoes.em que a utilizacao desse tipo de procedimento é muito
dificil, e em muitos casos impossivel.

Voltemos ao exemplo do auto-falante. Nao é possivel descrever ou calcular B
no entreferro (variavel zq) por meio de expressoes simples, envolvendo por exemplo
funcgoes trigonométricas ou polinomiais. O calculo de B envolve normalmente um
sistema de equagoes diferenciais parciais, cuja solugao é provavelmente muito dificil,
ou mesmo impossivel, de ser determinada analiticamente.

Nesse exemplo, seria necessario escrever um algoritmo para efetuar o céalculo
numérico da solugao desse sistema de equagoes. Cada vez que fizéssemos a avaliagao
da funcao de restrigdo ¢;(-) para um determinado vetor de varidveis de otimizacao
(que significa um determinado auto-falante), terfamos de executar o algoritmo e, com
base no resultado do mesmo, fazer o célculo da fungao g;(-). O mesmo raciocinio se
aplicaria a func¢do objetivo, se tivermos uma grandeza em f(-) cujo calculo envolva
a resolucao de um sistema de equagoes diferenciais parciais.
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Ora, uma funcao que inclui um algoritmo nao pode ser, em geral, explicitamente
representada por uma expressao matematica simples, nem pode ser por exemplo
derivada ou integrada de maneira explicita. A natureza da funcao objetivo, ou das
funcoes de restricao, agora deixa de ser a de uma expressao conhecida, que podemos
manipular utilizando todas as manipulagoes matematicas usuais.

A metafora mais adequada para compreendermos sua natureza é a de uma caiza
preta®, na qual podemos entrar com um vetor x, obtendo como resposta o valor de
f(z) associado a esse vetor?. Essa é a unica informacao disponivel para'ser.utilizada
pelos métodos de Otimizagao.

No exemplo do auto-falante, o cdlculo de B é obtido a partir de um programa de
calculo de campo magnético em que se passa como entrada um vetor & e se obtém
como resposta o valor para g;(-) associado a esse valor. Isso serd discutido no final
do capitulo.

Assim, as regras acima enunciadas simplesmente signifieam'que a teoria da. Oti-
mizacao é desenvolvida para o contexto dos problemas em que nao temos acesso a
uma expressao explicita da funcao objetivo e das funcoes de restricao. Obviamente,
nos casos de problemas em que conhecemos expressoes explicitas de todas as funcgoes,
as técnicas da Otimiza¢ao continuam sendo aplicaveis, com a ressalva de que possi-
velmente haveria maneiras mais simples ou mais precisas para a determinacao das
solucoes®.

Por fim, ha ainda a questao de quao dificil, ou quao demorada, é a obtencao
da informacao dos valores da funcao objetivo e das funcoes de restrigao: muitas
vezes, para calcularmos o valor da funcdo objetive.em um tnico ponto (ou seja,
para um unico vetor ) um bom computador'de tltima geragdo pode demorar horas
ou dias. Esse é o caso, por exemplo, de um modelo detalhado da estrutura da
asa de um aviao; a‘engenharia, a economia, as ciéncias naturais, estao repletas de
situagoes assim. Dessa forma, nao seria pratico prescrever métodos de otimizagao
que dependessem. de calcular essa fungao objetivo alguns milhares ou centenas de
milhares de vezes: talvez/nao seja viavel avaliar essas fungoes mais que algumas
dezenas ou centenas devezes. Uma outra regra entao se justifica:

Regra de Custo da Informacao

e Os métodos de otimizacao serao comparados entre si de acordo com
o0s critérios:

— Nuamero de avaliagoes da funcao objetivo e das fungoes de res-
tricao que sao requeridas para determinagao da solucao. Quanto
menos avaliagoes forem necesséarias, melhor sera considerado o

30 conceito de caiza preta, nas ciéncias, diz respeito a objetos cujas entradas e saidas podem
ser observadas, mas cujo interior é inacessivel.

40 leitor deve notar que, embora nao saibamos qual é a expressdo analitica de uma funcio que
corresponde a caixa preta, tal funcao existe. Se o leitor se lembrar de como a Matematica define
fungoes, vera que essa caixa preta atende a todos os requisitos para ser uma funcao.

5Se houver, entretanto, um ntimero muito grande de restricdes ou varidveis no problema, é
possivel que as técnicas de Otimizacao ainda sejam as mais adequadas para a determinacao do
ponto de 6timo, mesmo havendo expressoes analiticas para as fungoes objetivo e de restrigoes.
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flx)

Modelo
Computacional
do sistema

Resultado
dtimo?

Algoritmo de
otimizagdo

Figura 1.3: Diagrama do processo de otimizacao. A rotina de otimizacao fornece ©
vetor de variaveis de otimizagao, &, para as rotinas que avaliam a fungao objetivo e
de restri¢oes. Essas rotinas devolvem os valores de f(x), g;(®) e h;(x) para a rotina
de otimizagao. A rotina de otimizagao, com essas avalia¢oes, calcula um novo vetor
de variaveis de otimizacao a ser avaliado, e assim por diante, até que seja encontrada
uma aproximacao da solucao étima x*.

método.

— Precisao e robustez. Quanto_mais a solucao fornecida pelo
método se aproximar da solicao exata do problema, melhor
seré considerado o método®.

Agora sabemos o que estaremos fazendo ao longo deste livro: iremos construir
algoritmos, que serao as’'implementagoes’ praticas dos métodos de otimiza¢ao, cujo
objetivo é determinar as solucoes do problema (1.1). Esses algoritmos irdo chamar
sub-rotinas que executam a avaliacao das funcoes objetivo e de restrigoes, devendo
entretanto fazer a chamada dessas sub-rotinas o menor nimero de vezes que for
possivel. O diagrama da Figura 1.3 ilustra essa ideia.

1.2 Otimizacao Sem Restricoes

Para comegar a estudar a interpretacao geométrica dos problemas de otimizacao,
iniciaremos analisando a situacao mais simples, do problema de minimizacao de
uma func¢ao objetivo sem nenhuma restricao:

*

z* = arg min f(x) (1.7)

50 termo precisio designa a capacidade de um algoritmo de, estando préximo da solucio exata
do problema, aproximar ainda mais tal solugdo exata. O termo robustez por sua vez designa a
capacidade do algoritmo de, estando distante da solucao exata do problema, atingir as proximidades
dessa solucdo. Assim, frequentemente um algoritmo é mais preciso e a0 mesmo tempo menos
robusto que outro, e vice-versa.
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Figura 1.4: Superficie que representa o grafico de uma fungao nao-linear de duas
variaveis reais. Essa superficie poderia representar uma’ fun¢ao f(z) cujo minimo
devesse ser determinado por um método de otimizagao. No “chao” do grafico,
encontram-se representadas as curvas de nivel da funcao.

Para viabilizar a representacao grafica do problema, estaremos supondo a partir
deste ponto que o vetor & possui apenas duas coordenadas; pertencendo, portanto, ao
espaco R?. Evidentemente, na maioria das situacoes de interesse pratico o niimero de
coordenadas desse vetor € maior que dois; entretanto, duas varidveis sao suficientes
para discutirmos.a maior parte das questoes conceituais que se encontram por detras
da concepcao dos métodos de otimizacao.

Embora‘estejamos supondo que a fungdo objetivo f(-) ndo seja conhecida num
contexto pratico de otimizagao, essa fungao é sempre um objeto matematico muito
bem definido. Assim, mesmo nao sendo possivel tracar explicitamente o grafico da
funcao objetivo; sabemos que isso ¢ impossivel devido as regras da otimizagao, ante-
riormente estabelecidas. Podemos afirmar que a superficie correspondente a fungao
existe, e é desta superficie que estaremos colhendo amostras durante o processo
de otimizacao, a cada vez que estivermos avaliando a fungdo objetivo. A Figura
1.4 mostra uma superficie que corresponde ao grafico de uma funcao nao-linear de
duas variaveis reais. Tal funcao poderia ser a funcao objetivo de um problema de
otimizacao.

Uma representacao que contém aproximadamente a mesma informacao que a da
Figura tridimensional 1.4, mas que utiliza apenas recursos graficos bidimensionais é
a das curvas de nivel da fungao. A Figura 1.5 mostra as curvas de nivel da mesma
funcao representada na Figura 1.4. Essa representacao, mais facil de ser manipulada
que a representacao tridimensional, é normalmente mais 1til que esta para ilustrar
conceitos relacionados aos métodos de otimizagao.

Uma metafora que pode ajudar a compreender o que é o processo de otimizagao
pode ser apresentada da seguinte forma: imaginemos (aqui a imaginagdo é o mais
importante) um ser matematico, o Otimizador. Ele vai ser langado de para-quedas
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Figura 1.5: Gréafico de curvas de nivel da mesma funcao nao-linear de duas variaveis
reais, f(x), que encontra-se representada na figura 1.4.

em um ponto qualquer sobre a superficie da figura 1.4, e deverd caminhar sobre
essa superficie, em busca do ponte mais baixo da mesma, o ponto de minimo. O
Otimizador, entretanto, devera caminhar com uma venda cobrindo seus olhos, sem
poder “olhar” para a superficie; a tinica informacgao que ele pode utilizar a respeito
dasuperficie € a.altura do ponto no qual ele estiver “pisando”. Ele pode, entretanto,
se “lembrar” das alturas dos pontos em que ele ja tiver pisado anteriormente, fazendo
uso dessa informagao ja adquirida para tomar a decisao de “para onde caminhar”.
Seu objetivo, além de chegar no ponto de minima altura sobre a superficie, é fazer
isso tendo utilizado 0 menor niimero possivel de “passos”. Essa situacao imaginaria
ilustra bem o que é o problema de otimizacao. Construir os chamados métodos de
otimiza¢ao corresponde, dentro de nossa metéfora, a formular as estratégias a serem
utilizadas pelo’Otimizador em sua busca pelo ponto de minimo.

Algumas caracteristicas da fungao objetivo (ou seja, da superficie que esté as-
sociada a essa fungao) definem que tipos de estratégias seriam efetivas para a oti-
mizacao dessa funcao. Por exemplo, a funcao ser diferencidvel implica na possibili-
dade de se tentar sua otimizacao fazendo uso do cédlculo, pelo menos aproximado,
de seu gradiente, que pode ser estimado numericamente a partir de amostras de
valores da fungao. Se a fungao for unimodal, ou seja, se tiver um unico ponto de
minimo, as estratégias para a determinacao desse minimo serao bem diferentes da-
quelas que seriam empregadas caso a fungao fosse multimodal, ou seja, caso tivesse



INTRODUGAO 13

varios minimos locais’.

Com o objetivo de subsidiar a escolha de métodos adequados para a otimizacao
de funcgoes, podemos definir a seguinte classificacao das fungoes:

(i) Modalidade: unimodal ou multimodal

(ii) Diferenciabilidade: diferencidvel ou nao-diferencidvel
(iii) Convexidade: convexa, quasi-convexa, nao-convexa
(iv) Linearidade: linear ou nao-linear

(v) Escala: uni-escala ou multi-escala

Passamos a mostrar agora algumas superficies “tipicas”, que exibem de maneira
clara essas propriedades que “fazem a diferenga” (o significado dessa classificagao
deve ficar claro & medida em que essa discussao for apresentada). Com esses exem-
plos de superficies, discutiremos de maneira qualitativa possiveis estratégias para a
otimizacao de fun¢oes com tais caracteristicas. Essas estratégias serao depois des-
dobradas, nos capitulos posteriores, os quais serao dedicados a discutir em detalhe
os métodos de otimiza¢ao correspondentes a essas estratégias.

1.2.1 Estratégias de Diregcao de Busca

Vamos considerar em primeiro lugar a funcao.cujo grafico’é¢ mostrado na figura 1.6,
e cujas curvas de nivel estao representadasna Figura 1.7.

Para construir essa‘fungao, nés utilizamos um esquema bastante simples: o de
uma funcao quadrdtica. A “receita” para.a montagem do grafico da figura 1.6 é
dada por:

f@)=(z — z0)Qz — x0)

Q:{o??) 013} ’”OI{H -

Claramente, o grafico dessa fungao deve ser um paraboléide com minimo no ponto .
O Otimizador, entretanto, como ja concordamos, nao sabe disso: ele deve descobrir
qual é o ponto de minimo da funcao objetivo utilizando apenas “amostras” de valores
dessa funcao. Uma estratégia razoavel de procedimento para o Otimizador seria:

Método do Gradiente

Passo 1: O Otimizador, localizado inicialmente em um ponto aleatério
sobre o mapa da funcao, toma amostras da funcao proximas de onde
ele se encontra atualmente. Com essas amostras, ele descobre em
qual direcao a funcao decresce mais rapidamente, pelo menos sob

"Falamos de minimos locais para designar pontos que sio de minimo para uma vizinhanca ao
seu redor, e de minimos globais para designar o ponto em que a fungao objetivo atinge seu minimo
valor em todo o dominio considerado.
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Figura 1.6: Superficie que representa o grafico de uma fungao quadratica f(z) de
duas varidveis reais. No “chao” do grafico, encontram-se representadas as curvas de

nivel da funcao.

Figura 1.7: Grafico de curvas de nivel da mesma fungao quadratica de duas variaveis
reais, f(x), que encontra-se representada na Figura 1.6.
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o ponto de vista da informagcao localmente disponivel para ele. Em
terminologia matemaética, o Otimizador calcula uma aproximacao
numérica do gradiente da funcao no ponto atual, que é o oposto da
direcao em que a funcao decresce mais rapidamente.

Passo 2: O Otimizador caminha em linha reta, na direcao contraria ao
gradiente da funcao, continuando a andar enquanto estiver sentindo
que a fungao esta decrescendo, parando de andar, portanto, assim
que percebe que a fungao volta a crescer nessa direcao.

Passo 3: O Otimizador decide agora se ele para, ou seja, se ele considera
que ja se encontra suficientemente proximo do ponte de minimo da
funcao, ou se ele continua a busca, retornando-ao Passo 1, para
escolher nova direcao de caminhada.

O método do gradiente, assim esbocado, éuim dos métodos de otimizagao mais
primitivos, tendo sido proposto nos primérdios da teoria de otimizacao, estando hoje
obsoleto. Esse método é, entretanto, o protétipo mais simples de toda uma familia
de métodos, os métodos de direcao de busca, que incluem importantes métodos hoje
utilizados, que sempre tém a estrutura assim descrita:

Métodos de Direcao de Busca

Passo 1: O Otimizador toma amostras da func¢ao nas proximidades de
onde elese encontra atualmente. Com essas amostras, ele descobre
em qual direcao a fungao decresce mais rapidamente, pelo menos sob
o ponto de vista da informacao localmente disponivel para ele. Em
terminologia matematica, o Otimizador calcula uma aproximacao
numérica dogradiente da funcao no ponto atual, que é o oposto da
direcao em que a funcao decresce mais rapidamente.

Passo 2: Levando em consideracao o gradiente calculado no ponto atual,
assim como todo o historico de gradientes anteriormente calculados
e de valores de funcao objetivo amostrados em pontos que o Oti-
mizador visitou anteriormente, ele tenta “adivinhar” qual seria a
direcao mais provavel em que o minimo da funcao devesse estar.

Passo 3: O Otimizador caminha em linha reta, na direcao em que ele
supde que o minimo esteja, continuando a andar enquanto estiver
sentindo que a funcao esta decrescendo, parando de andar, por-
tanto, assim que percebe que a funcao volta a crescer nessa direcao.

Passo 4: O Otimizador decide agora se ele para, ou seja, se ele considera
que ja se encontra suficientemente proximo do ponto de minimo da
funcao, ou se ele continua a busca, retornando ao Passo 1, para
escolher nova direcao de caminhada.
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Qualquer estratégia de “direcao de busca” ira funcionar para determinar o
minimo da fung¢ao mostrada na Figura 1.6, pois esta funcao é bastante simples.
Para esses métodos funcionarem, os requisitos que encontram-se implicitos sobre a
funcao sao:

e A funcao é unimodal, ou seja, tem um tnico minimo global, no interior de
uma tnica bacia de atracao®. Dessa forma, o Otimizador nao precisa se preo-
cupar com a possivel existéncia de outros minimos diferentes daquele que ele
localizar.

e A funcao é diferencidvel, ou seja, nao s6 é possivel calcular, de forma signi-
ficativa, aproximagoes do gradiente da funcao em qualquer ponto do espago,
como, principalmente, o gradiente da funcao contém informagao significativa
sobre a forma como a fungao varia nas vizinhangas do pounto em que tiver sido
calculado. Dessa forma, o Otimizador consegue encontrar direcoes para.as
quais possa caminhar, nas quais ele consegtie observar a diminui¢ao do valor
da fungao objetivo.

Consideremos agora a funcao mostrada na Figura 1.8, que tem suas curvas de
nivel mostradas na Figura 1.9. Essa funcao, muito menos simples que a fungao
quadratica anteriormente considerada, continua sendo adequadamente otimizada
por métodos de diregao de busca: ela é unimodal (possui um nico minimo, o ponto
T = [ 11 }/, no interior de uma tnica bacia de-atracao), e é diferenciavel (possui
gradiente bem definido em todos os pontos).

Essa funcao ja é capaz de “confundir” um Otimizador que utilizar simplesmente
uma estratégia de gradiente: quando o Otimizador chega no fundo do “vale” exis-
tente na topografia da funcao, e tem de encontrar o ponto mais baixo desse vale, o
padrao de mudanca da diregao do gradiente torna o método do gradiente muito inefi-
ciente. Outros métodos de direcao de busea; no entanto, nao encontram dificuldades
para minimizar esta fungao.

1.2.2 Estratégias de Exclusao de Regioes

Consideremos agora a fungao f(z), ainda unimodal, porém agora nao mais dife-
renciavel, cujo grafico estd mostrado na Figura 1.10, e cujas curvas de nivel estao
representadas na Figura 1.11. Este tipo de funcao em geral traz dificuldades para
as estratégias de otimizagao do tipo diregcoes de busca.

Ao contrario«do que pode parecer a primeira vista, a dificuldade nao esta na
impossibilidade de calcularmos o gradiente da funcao: na imensa maioria das vezes,
uma fungao nao diferencidvel de interesse pratico é diferencidvel em quase todo
ponto. Esse é o caso da fungao representada na Figura 1.10: seu gradiente deixa de
existir apenas em algumas regioes especificas, que estao situadas em algumas linhas
sobre o mapa da funcao. Em todos os outros pontos, o gradiente é bem definido e
pode ser calculado. Assim, se um Otimizador estivesse otimizando uma funcao nao

8Uma bacia de atrac¢do é a regido ao redor de um minimo local na qual as curvas de nivel da
funcao sao fechadas, ou seja, a regiao na qual um método de direcao de busca ird convergir para
tal minimo.
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Figura 1.8: Superficie que representa o grafico de uma funcao unimodal diferenciavel
f(z) de duas varidveis reais, mostrada em duas vistas diferentes. No “chao” dos
graficos, encontram-se representadas as curvas de nivel da funcao.
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Figura 1.9: Grafico de curvas de nivel da mesma funcao unimodal diferenciavel de
duas variaveis reais, f(z), que encontra-se representada na figura 1.8.
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Figura 1.11: Gréfico de curvas de nivel da mesma funcao naoe diferenciavel de duas
variaveis reais, f(x), que encontra-se representada na Figura 1.10.

diferenciavel e encontrasse um ponto no qual fosse impossivel calcular o gradiente,
bastaria ele se deslocar um pouco do ponto, para outro ponto préoximo: 1a o gradiente
poderia ser calculado, e o processo de otimizacao poderia prosseguir.

O problema com as funcoes nao diferenciaveis, quando submetidas a métodos
de direcao de busca, é que o célculo da dire¢cao de busca, na qual o Otimizador deve
caminhar, é feito a partir da informagao obtida pelo célculo do gradiente (o gradiente
atual e o gradiente em pontos anteriores). O Otimizador, ao caminhar nessa diregao,
espera que a diregao tenha validade nao apenas pontual: ele espera poder caminhar
uma certa distancia sobre essa direcao, até que a fungao objetivo pare de decrescer,
e ele tenha de mudar de direcao. Ora, se a fungao objetivo muda de comportamento
repentinamente nos locais onde a funcao é nao-diferenciavel, a informacao da direcao
de busca, obtida com o uso de gradientes pode ser inteiramente inadequada para
representar.o comportamento da funcdo, mesmo a pequenas distancias do ponto
atual. A otimizacao por esses métodos pode assim se tornar inviavel. Tal dificuldade,
por outro lado, nao é associada a um ou outro caso especifico de método de direcao
de busca: ela é intrinseca a toda a familia dos métodos de direcao de busca. A
dificuldade é ilustrado na Figura 1.12.

Fungoes nao-diferenciaveis estao longe de ser raras, dentro dos modelos de sis-
temas que temos interesse em otimizar. Por essa razao, justifica-se a formulagao
de uma familia de métodos diferente, que nao esteja sujeita a tal dificuldade: os
métodos de exclusao de regioes. Para formular a nova estratégia, como estamos
abrindo mao da premissa de diferenciabilidade da funcao objetivo, introduzimos em
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Figura 1.12: Nao-diferenciabilidade atratora, representada pela linha tracejada.
Acima dessa nao-diferenciabilidade, os gradientes dafuncao sao representados. por
g1, € abaixo por g,. Exatamente na nao-diferenciabilidade, o gradiente da fungéo
muda subitamente (ou seja, o gradiente é descontinuo sobre essa linha). A Fi-
gura mostra ainda a trajetoria de um Otimizador que utiliza uma estratégia de
diregoes de busca, percorrendo uma sequéncia de pontos ;. Quando atinge a nao-
diferenciabilidade atratora, o Otimizador passa a se mever segundo passos muito
pequenos. Uma ampliacao desse movimento é mostrada na Figura a direita.

lugar desta a premissa de convezidade dessa fungao®.
A propriedade associada a convexidade que iremes utilizar na nova estratégia
de otimizacao pode ser entendida da seguinte forma:

e Uma curva de nivel de uma fungao convexa sempre delimita uma regiao con-
vexa em seu interior.

e O vetor gradiente, por sua vez, é sempre perpendicular a curva de nivel que
passa pelo ponto onde o vetor foircalculado.

e Assim, a reta perpendicular ao vetor gradiente que passa no ponto onde esse
vetor foi calculado é tangente a curva de nivel.

e Devido a convexidade da regiao no interior da curva de nivel, esta regiao sem-
pre fica inteiramente localizada em apenas um dos lados dessa reta tangente
(essa reta nao corta a regiao no interior da curva de nivel), ou seja, do lado
oposto aquele para onde aponta o vetor gradiente.

Isso significa que, se calcularmos o gradiente de uma funcao convexa num ponto,
podemos ter certeza que o ponto de minimo dessa funcao, que se localiza necessaria-
mente no interior da curva de nivel fechada que passa nesse ponto, esta no semi-plano
oposto ao do vetor gradiente, delimitado pela reta perpendicular ao vetor gradiente.
Esse conceito ¢ ilustrado na Figura 1.13.

O procedimento do Otimizador agora é descrito por:

9% claro que as vezes as funcdes a serem otimizadas serdo convexas e as vezes nao serdo. Se niao
forem, os métodos de exclusao de regioes poderao falhar.
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Métodos de Exclusdo de Regides

Passo 1: O Otimizador adquire informacao em alguns pontos proximos
do atual, e faz uma estimativa do gradiente da funcao objetivo
nesse ponto (se ele estiver exatamente sobre um ponto em que a
funcao é nao-diferencidvel, admitamos, para simplificar, que ele se
movimenta para algum ponto préximo do atual, em que a fungao é
diferencidvel).

Passo 2: Com base no gradiente, o Otimizador descobrequal é a reta
tangente a curva de nivel que passa pelo ponto atual, e descarta
todo o semi-plano que se encontra do lado dessa‘reta para o qual o
vetor gradiente aponta (o Otimizador tem certeza de que o minimo
da func@o nao estd nesse semi-plano).

Passo 3: O Otimizador se move para algum ponto no interior da regiao
que ainda nao esta descartada, de preferéncia para um ponto apro-

ximadamente “no meio” dessa regiao'?.

Passo 4: O Otimizador decide se existem indicios suficientes de que o
novo ponto ja esteja suficientemente préoximo do minimo da fungao,
caso em que o processo termina, ou se a otimizagao deve continuar.
Nesse ultimo caso, retorna ao Passo 1.

Deve-se observar.que agora a convergencia da sequéncia de pontos para o ponto
de minimo da fun¢ao objetivo ocorre em virtude da diminuicao sistematica que é
feita, a cada iteracao do método, da regiao em que esse ponto de minimo pode estar
localizado. Com o avancar das iteracoes, @ regiao fica cada vez menor, e o novo
ponto, que é escolhido dentro dessa regiao, tende a ficar cada vez mais préximo
do ponto de minimo. Nao hé a possibilidade, agora, de uma nao-diferenciabilidade
impedir a convergéncia do método.

Uma sequencia de iteragdes‘de um método de exclusao de regiao é ilustrada na
Figura 1.13.

1.2.3 Estratégias de Populagoes

Grande parte dasfuncoes objetivo que queremos otimizar na pratica, infelizmente,
nao ¢ unimodal. Por consequéncia, tanto as estratégias de direcao de busca quanto
as estratégias de exclusao de regioes irao falhar em sua otimizacao'*. Uma funcao
desse tipo é mostrada na Figura 1.14, e suas curvas de nivel sao mostradas na Figura
1.15.

De fato, essa funcao possui diversas bacias de atracao diferentes, associadas a
diferentes minimos locais. Na tentativa de se fazer a otimizacao desta funcao por
meio de um mecanismo de direcao de busca, por exemplo, o resultado sempre sera o

10A maneira exata de escolher o novo ponto varia de método para método.
HDeve-se lembrar que se uma funcao nao é unimodal, ela também nao pode ser convexa.
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Figura 1.13: Iteracoes de um método de exclusao de regioes, mostradas sobre as
curvas de nivel de uma fungao cujo minimo‘exato é £*. Suponha-se que, a priori, se
sabe que o minimo da func¢ao se encontrana regiao delimitada pelo hexdgono. Apds
avaliar o gradiente da fungdo em x;, o Otimizador pode concluir que o minimo z*,
cuja localizagao ainda nao € conhecida, encontra-se abaixo da reta perpendicular a
esse gradiente, que passa nesse ponto. Um novo ponto x5 é escolhido no interior da
regiao restante. O gradiente nesse ponto também ¢é calculado, trazendo a informagao
de que o ponto £* nao se encontra abaixo da reta perpendicular ao gradiente que
passa nesse ponto. A seguir um novo ponto 3 é escolhido, e o processo se repete,
levando a conclusao de que x* nao se encontra a esquerda da reta que passa por
esse ponto.. Observa-se que a cada passo vai diminuindo a regiao onde é possivel
que z se encontre. O processo termina quando a regiao “possivel” é suficientemente
pequena.
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Figura 1.14: Superficie que representa o gréfico de uma fuun¢ao multimodal f(x) de
duas variaveis. No “chao” do grafico, encontram-se representadas as curvas de nivel
da funcao.

Figura 1.15: Gréfico de curvas de nivel da mesma funcao multimodal de duas
variaveis reais, f(x), que encontra-se representada na Figura 1.14.
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ponto de minimo local associado a bacia de atragao onde a busca tiver sido iniciada.
Para se atingir o minimo global com algum grau de certeza, é necessario “investigar”
a funcao em suas diferentes bacias de atracao.

A estratégia a ser adotada envolve agora o trabalho nao mais de um tnico
Otimizador sozinho: um grupo de Otimizadores serda agora chamado a cooperar,
para tentar descobrir a localizacao do ponto de minimo da funcao. Essa estratégia
é descrita a seguir:

Métodos de Populacoes

Passo 1: Um grupo de Otimizadores encontra-se espalhado pela regiao
onde acredita-se que se encontre o ponto de minimo da fungao.
Cada um dos Otimizadores avalia a funcao-objetivoino ponto onde
ele se encontra.

Passo 2: Os Otimizadores se comunicam; e trocam informacgoes a res-
peito dos valores da fungao objetivo em cada ponto.

Passo 3: Um pequeno sub-grupo do grupo de Otimizadores, que estiver
nas melhores localizacoes fica parado. Os demais Otimizadores se
movimentam, com movimentos que simultaneamente: (i) os fagam
se aproximarem dos otimizadores melhor localizades; e (ii) os fagam
explorarem outras regioes, diferentes daquelas ja visitadas anterior-
mente pelo grupo de Otimizadores.

Passo 4: Cada um dos Otimizadores avalia a funcao objetivo no ponto
para onde foi.

Passo 5: Os otimizadores decidem se o processo de otimizacao ja pro-
duziu melhoria suficiente na funcao objetivo, caso em que o processo
se interrompe; do contrario, eles retornam ao Passo 2.

H& diferentes maneiras de realizar cada um dos passos do esquema descrito
acima. Cada combinacao dessas diferentes férmulas leva a um método especifico
diferente.

Esse tipo de estratégia pode ser pensado como um mecanismo 1til para localizar
nao exatamente o minimo global da fungao objetivo, mas sim a bacia de atragao
na qual este se encontra. Como usualmente os esquemas de “populagoes” requerem
um numero muito maior de avaliagoes da funcao objetivo até atingirem o ponto
de minimo<da fungao objetivo, estas técnicas sao muito “caras” comparado aos
esquemas de direcoes de busca ou de exclusao de regides. Assim sendo, a ideia é que
o esquema de populagoes apenas conduza o Otimizador as proximidades do ponto de
minimo global. Uma vez dentro da bacia de atragao do minimo global, o Otimizador
passa a adotar uma estratégia por exemplo de direcao de busca, que o leva muito
mais rapidamente ao minimo da funcao. Esse raciocinio funcionaria corretamente,
por exemplo, na otimizacao da fungao ilustrada na Figura 1.14. A Figura 1.16 mostra
sucessivas aproximacoes do ponto de minimo global da fun¢ao, que terminam por
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Figura 1.16: Superficie que representa o grafico da mesma fun¢ao multimodal f(z)
de duas varidveis mostrada na Figura 1.14, em sucessivas aproximagcoes da regiao
onde se encontra seu minimo global. Acima, estao representados os graficos da
superficie, e abaixo as correspondentes curvas de nivel na mesma regiao. Deve-se
observar que, na regiao mais proxima ao minimo, a fungao tem a “aparéncia”’ de
uma fun¢ao unimodal.
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“se parecer” com uma funcao convexa e unimodal, nas proximidades do ponto de
minimo. Na regiao correspondente a iltima aproximacgao mostrada na Figura, um
método de diregoes de busca ou de exclusao de regioes funcionaria. O método de
populagoes entao poderia ser paralisado assim que houvesse indicios suficientes de
que determinado ponto se encontra no interior da bacia de atragao do minimo global,
sendo iniciado um outro método de otimizacao nesse ponto.

Essa l6gica de mudanca de um método de populacao para outro tipo de método
nem sempre funciona. Um exemplo de situacao em que tal esquema nao funciona-
ria é a fungao representada na Figura 1.17. Nessa figura, vemos im exemplo de
funcao em que ocorre o fenomeno das maltiplas escalas. Essa fungaoe, olhada a uma
“orande distancia”, parece ter algumas bacias de atragao. Olhada “de perto”, ela
revela uma estrutura muito mais complexa, com a presenc¢a de dezenas de peque-
nas “sub-bacias” onde parecia estar cada uma das bagcias de atracao inicialmente
aparentes. Um método de direcao de busca que fosse iniciado no interior dessa
“srande bacia” aparente iria quase certamente falhar na busca do minimo global, fi-
cando provavelmente detido em algum dos multiplos minimos locais existentes nessa
regiao. Fungoes desse tipo vao requerer a utilizagao de um esquema de populacao
para realizar sua otimizacao, do principio ao fim, sem a-possibilidade de mudanca
para outro tipo de método.

1.3 Otimizacao com Restricoes de Desigualdade

A préxima situagao a ser estudada aqui é aquela em queyna formulagao do problema
de otimizacao, aparecem as chamadas restricoes de desigualdade:

z* = arg min f(z)
(1.9)

sujeitoa: {g;(x) <0,4,...,p

Essa descricao do problema significa, conforme ja foi visto, que o ponto de étimo x*
a ser'determinado deve satisfazer as p desigualdades:

(1.10)

1.3.1 Interpretacao geométrica de uma restricao de desi-
gualdade
Examinemos primeiro o que significa uma dessas desigualdades apenas, por exemplo

a primeira:
g1(x) <0 (1.11)
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Figura 1.17: Superficie que representa o grafico de uma funcao multimodal f(z)
de duas varidveis que apresenta a caracteristica de maltiplas escalas. Sucessivas
aproximacoes da regiao onde se encontra seu minimo global irao revelar sucessivas
estruturas de menor escala, que possuem muiltiplas bacias de atracao dentro de
cada bacia de atracao maior. Acima, estao representados os graficos da superficie,
e abaixo as correspondentes curvas de nivel na mesma regiao. Deve-se observar
pelo primeiro par de graficos, que onde esperariamos encontrar uma tunica bacia

de atracao, encontramos, no exame mais detalhado, uma estrutura com multiplas
pequenas “sub-bacias”.

27
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Admitamos que a fungao g;(-) seja continua. Se isso for verdade, essa fun¢ao nunca
muda “bruscamente” de valor. Por exemplo, para passar de um valor negativo para
um valor positivo, necessariamente ela tem de passar pelo valor zero. Isso significa
que, considerando todo o espago R™ dos z, se houver um subconjunto P; C R" para
cujos pontos & a fungao ¢ (+) fica positiva, e outro subconjunto N; C R" para o qual
a funcdo g;(-) fica negativa, entdo tem de haver um conjunto G; C R" para o qual
a funcao se anula, e que separa P; de V.
Matematicamente, definimos o conjunto P; da seguinte forma:

P2z | gi(z) > 0} (1.12)

Em palavras, essa expressao deve ser lida como: O conjunto Py ¢ definido como (=)
o conjunto dos pontos x tais que (| ) a fung¢ao g(-) avaliada nesses pontos seja
maior que zero. De forma similar, sao definidos os conjuntos G; e N:

G = {z | g1(z) = 0}
(1.13)
ME2{z|g@) < 0}

A Figura 1.18 ilustra tais conjuntos, para um espaco de-duas dimensoes.

Quando inserimos, no problema de otimizagao, a exigéncia de que g;(z*) <
0, queremos dizer que iremos aceéitar como solucoes do problema de otimizacao
apenas pontos que sejam pertencentes ao conjunto A; ou ao conjunto G;. Nao
serao admissiveis pontos pertencentes ao conjunto P;, que sera assim denominado
conjunto infactivel, ou regiao infactivel. Diz-se entao.que o conjunto factivel, ou a
regido factivel F; é a uniao de G; e Ni:

Fi=G UM (1.14)

Se aplicarmos agora um dos métodos de otimizacao irrestrita, discutidos nas
secOes anteriores, para a minimizacao da funcao f(z), ha duas possibilidades para
a localizacao do ponto de minimo: ele tem de estar em P; ou em F;. Se a ultima
hipdtese ocorrer, a solugao do problema sera o ponto de minimo encontrado. No
entanto, se 0 minimo irrestrito (ou seja, o minimo encontrado sem levar em consi-
deragao a restrigao g;(z*) < 0)sestiver na regiao infactivel Py, alguma modificagao
devera ser introduzida no mecanismo de otimizagao, para que seja possivel localizar
o ponto de étimo z* que minimiza a fungdo objetivo f(-) nos pontos pertencentes
ao conjunto factivel JFj.

Esse é, basicamente, o problema da otimizacao restrita com restricoes de desi-
gualdade: determinar o ponto * € F (ou seja, pertencente a regidao factivel) que
minimiza a fun¢ao f(-) nessa regiao (ou seja, que produz o menor valor dessa fungao,
quando comparado com os valores da funcao em todos os demais pontos da regiao
factivel).

1.3.2 Interpretacao geométrica de varias restricoes de desi-
gualdade

Antes de discutirmos como modificar os mecanismos de otimizacao para lidar com
problemas de otimizacao restrita, vamos procurar entender o que significa o sistema
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Figura 1.18: Na figura superior, é mostrada a superficie z = g;(2) com suas curvas
de nivel e sua intersegao com o plano z = 0. Na figura inferior, é mostrado o plano
x, onde se apresenta apenas a curva de nivel g;(z) = 0. Nesse plano, a regiao N;
corresponde aos pontos em que a fungao g;(-) é negativa; a regidao P; corresponde
aos pontos em que a funcao gi(+) é positiva; e a fronteira que separa essas regioes,
g1, corresponde aos pontos em que a funcao g;(-) se anula.
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Figura 1.19: A regiao JF; corresponde aos pontos em que a fungao ¢;(-) é negativa
(Figura superior esquerda). A regido JFy corresponde aos pontos em que a fungao
92(+) é negativa (Figura superior direita). A intersecao dessas duas regides, F,
corresponde aos pontos em que ambas as fungoes sao negativas, simultaneamente
(Figura inferior direita). A Figura inferior esquerda mostra as superficies z = ¢ (),
z = go(x), assim eomo sua interse¢ao com o plano z = 0 e suas curvas de nivel.
Pode-se observar também nesta Figura a regiao F.

de restrigoes na forma em que 0 mesmo usualmente aparece: um conjunto de vérias
desigualdades que devem ser simultaneamente satisfeitas. Escrevendo novamente o
sistema:

(1.15)

A Figura 1.19 mostra a situagao para duas restrigoes: a regiao factivel (ou seja, a
regiao dos pontos que simultaneamente atendem as duas restri¢oes) corresponde a
intersecao da regiao cujos pontos atendem a primeira restricao com a regiao cujos
pontos atendem a segunda restricao. Em geral, se F; designa a regiao em que a
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fungao g;(-) é menor ou igual a zero'?, temos que a regido factivel F do problema
envolvendo todo o conjunto de restrigoes (1.15) corresponde a intersegdo de todas
essas regioes:

F=FNFkn..NF (1.16)

O problema de otimizagao restrita com restricoes de desigualdade, em sua forma
geral, trata da questao de determinagao do ponto de minimo z* de uma fungao,
dentro de uma regido factivel F definida dessa forma. Nas subsecoes que se seguem,
mostraremos algumas formas do nosso Otimizador lidar com tal problema.

1.3.3 Barreiras e Penalidades

A primeira maneira de tentar adaptar os métodos de otimizacao, que foram formu-
lados para problemas de otimizagao irrestrita, para o caso agora em analise, com
restricoes de desigualdade, é a técnica das barreiras.e penalidades. A ideia é modifi-
car a funcao-objetivo, acrescentando um termo que, dentro da regiao factivel, afeta
pouco a funcdo, mas que nas proximidades dafronteira da regiao factivel (no caso
das barreiras) ou no exterior da regiao factivel (no caso das penalidades) muda bas-
tante a funcao, “impedindo” ou “penalizando” o Otimizador, ou seja, o algoritmo
de otimizacao, de sair da regiao factivel (método de barreiras) ou de permanecer na
regiao invidvel (método de penalidades).
Em termos matematicos, o problema de otimizacao original, definido por:

x* = argmin f(2)
(1.17)
sujeito a: {g;(z) <0

é substituido pelo problema:
z" =argmin f(z) + F(x) (1.18)

A fungao F'(-) deve ser muito pequena (ou zero) no interior da regido factivel,
detal forma que f(-) seja muito parecida com f(-) + F(-) em qualquer ponto deste
espago.

No caso de métodos de darreiras, a fungao F(-) deve crescer muito rapidamente
quando estamos perto da fronteira da regiao factivel. A ideia é que o Otimizador, ao
se aproximar dessa fronteira, verifique um siibito aumento da funcao f(z)+F(z) (que
é a fungdo que ele esta otimizando), de forma que ele ndo caminha em dire¢ao a essa
fronteira. O Otimizador, se tiver iniciado a busca no interior da regiao factivel, ird
sempre ficar nessa regiao, portanto'. Esse tipo de método ¢ denominado de barreira
porque a fungao F'(-) cria uma espécie de “barreira”, que impede que o Otimizador
atinja a fronteira da regiao factivel. A Figura 1.20 ilustra uma fungdo modificada
com uma barreira, para uma situacao de otimizacao em uma tunica variavel.

120bserve que essa notacdo, utilizando o indice 4, significa 0 mesmo que uma enumeracio de
todas as fungoes e regides: Fp correspondendo & regido em que g;(-) < 0, Fa correspondendo &
regidao em que go(-) < 0, e assim por diante.

BDeve-se tomar o cuidado, ao utilizar um método de barreira, para que o ponto inicial ja esteja
no interior da regiao factivel.
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Figura 1.20: Ilustracao de uma funcao de barreira, construida para garantir a res-
tricao de que a otimizacao deva ocorrer no interior de um circulo de raio igual a 1,
que seria a regiao factivel de um problema de otimizagao. Essa funcao, somada a
funcao objetivo, teria o papel de “impedit” a saida de um Otimizador do interior
desse circulo de raio 1 que corresponde a regiao factivel.

Os métodos de penalidades, por outro lado, sdo obtidos se se faz a funcao F'(-)
crescer rapidamente do lado de fora da regiao factivel, para valores que aumentam
a medida em que nos afastamos dessa regiao. A ideia, neste caso, é fazer com que o
Otimizador, ao sairda regiao factivel, encontre um crescimento da fungao f(x)+F(z)
que ele esta otimizando, de forma que ele tende a voltar ao interior da regiao. Esse
tipo de.método é denominado de penalidade porque a fungao F(-) faz com que o
Otimizador seja-apenado (ou seja, sofra uma penalidade) caso ultrapasse a fronteira
da regiao factivel, sendo tamto maior a penalidade quanto mais o Otimizador se
afastar dessa regiao. A Figura 1.21 ilustra uma funcao de penalidade.

A Figura 1.22 sobrepoe os graficos das Figuras 1.20 e 1.21, que mostram uma
func¢ae barreira e uma funcao penalidade para o tratamento da mesma restricao.

Deve-se notar que, uma vez que a funcao objetivo esteja modificada, seja por
uma funcao de barreira, seja por uma de penalidade, a resultante funcao modificada
pode ser otimizada utilizando os mesmos métodos que foram desenvolvidos para
o caso da otimizagao sem restrigoes. Tipicamente, serao empregados métodos de
direcoes de busca para resolver problemas formulados dessa maneira'®.

4 Deve-se notar que, em particular, as funcdes de barreira nio seriam funcionais se empregados
nem junto com métodos de exclusao de regioes nem junto com métodos de populagoes. J&a as
funcgoes de penalidade nao causariam essas dificuldades, e poderiam ser empregadas com qualquer
sistema de otimizagao. O leitor é convidado a explicar por queé isso ocorre.
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Figura 1.21: Ilustracao de uma funcao de penalidade. A regiao factivel corresponde
ao interior do circulo indicado em wermelho. A fungao de penalidade é igual a zero
no interior da regiao factivel, e cresce rapidamente a medida em que o ponto se
afasta dessa regiao.

Figura 1.22: Sobreposicao dos graficos das figuras 1.20 e 1.21, de forma a mostrar
uma funcao barreira e uma funcao penalidade para a mesma restricao. No caso,
a restricao define como regiao factivel o interior do circulo de raio 1 centrado na
origem.
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1.3.4 Composicao pelo Maximo

Embora seja possivel utilizar as funcoes de penalidade para lidar com as restrigoes
de problemas de otimizacao nos casos em que o mecanismo de otimizacao a ser
empregado é do tipo exclusao de regioes, hd uma forma mais natural de tratar as
restricoes nesse caso. Considera-se, primeiro, a seguinte fungao:

G(z) = max(g1(2), g2(x), . . ., gp(x)) (1.19)

A fungao G(-) é a chamada composi¢io pelo mdzimo das fungges g;(-). O leitor é
convidado a examinar a curva de nivel G(z) = 0. Essa curva de nivel corresponde
exatamente a fronteira da regiao factivel do problema. Cada curva de nivel G(z) =
a, para « > 0, corresponde a uma curva (ou hipersuperficie, em dimensoes maiores
que dois) fechada que é exterior as curvas correspondentesa valores menores de «,
e todas tém em seu interior a regiao factivel do problema (a curva correspondente a
a=0)".

Imagine-se agora a aplicacao de uma técnica de otimizacao por exclusao de
regices a fungao G(-). Se o Otimizador comegar, nesse ¢aso, em um ponto fora da
regiao factivel, a primeira exclusao sera de um semi-espago que garantidamente nao
contém a regiao factivel, ficando para continuar a ser examinado o semi-espago que
contém a regiao factivel. O processo continua até que, certamente, o Otimizador
finalmente cai dentro da regiao factivel.

Para fechar o procedimento a ser aplicado, uma vez.dentro da regiao factivel
do problema, aplica-se um passo convencional de “exclusao de regiao”, utilizando a
funcao objetivo f(-) para.determinar a exclusao. O significado desse passo é: apds
esse corte, o Otimizador permanece com o semi-espaco que contém a parcela da
regiao factivel na qual o ponto de 6timo do preblema se encontra (ou seja, elimina-
se a parcela da regiao factivel.em que o ponto de 6timo nao se encontra). Essas
operacoes sao ilustradas na Figura 1.23.

O algoritmo resultante da sequéncia dessas operagoes pode oscilar, levando o
Otimizador sucessivamente para dentro e para fora da regiao factivel. No entanto,
como no caso irrestrito, o volume da regiao considerada necessariamente diminui a
cada passo, sendo que o ponto de 6timo permanece nessa regiao. O Otimizador,
assim, termina arbitrariamente préximo do 6timo.

1.4 Otimizacao com Restricoes de Igualdade

Consideremos agora o problema de otimizagao com restri¢coes de igualdade:

z* = arg min f(x)
(1.20)
sujeito a: {h;(x) =0,j=1...,q

15Para fazermos essa afirmativa, na verdade, estamos assumindo que as fungoes g;(-) sejam todas
convezxas ou, pelo menos, quasi-convezas.
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Figura 1.23: Ilustragao da aplicacao do processo de exclusao de regiao em um pro-
blema de otimizagao restrita:“S&o mostradas, na figura, as curvas de nivel da fungao
objetivo f(z), ao redor do minimo irrestrito z;, e as curvas de nivel das restri¢oes
gi(z). Estas sdo mostradas no exterior da regiao factivel, sendo mostradas, em trago
mais grosso, as.curvas correspondentes a g;(z) = 0 (ou seja, as curvas que definem
as fronteiras da regiao factivel). O ponto de 6timo do problema é representado
por z*. S@o mostrados os vetores gradientes da fungao objetivo, V f(z), em um
ponto factivel, e gradiente de uma restri¢ao violada, Vg(z), em um ponto infactivel.
Deve-se observar que as retas normais a ambos os vetores gradiente definem cortes
do plane tais que o semi-plano oposto ao vetor gradiente, em ambos os casos, ne-
cessariamente contém a solugao z*. (No caso do corte feito no ponto infactivel, o
semi-plano opesto ao gradiente contém de fato toda a regiao factivel).
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Essa descricao do problema significa, conforme ja foi visto, que o ponto de étimo x*
a ser determinado deve satisfazer as ¢ equacoes:

hl(x*) =0
ho(z*) =0

(1.21)
hy(z*) =0

Num espaco de n dimensoes, cada uma dessas equacgoes pode ser interpretada
como uma descri¢do de um conjunto de pontos (os pontos & que a satisfazem) que
fazem parte de uma superficie de dimensao n — 1. /Por exemplo, num espago de
dimensao 3, uma equagao dessas significa uma superficie no sentido convencional,
dotada de duas dimensoes (algo como uma “follia” curvada). Essa superficie corres-
ponde ao conjunto dos pontos factiveis do problema de otimizacao, se ele envolver
apenas uma restricao de igualdade. No caso de g restrigcoes de igualdade, o conjunto
factivel corresponde a intersegao de todas as superficies (cada uma associada a uma
das restri¢oes de igualdade).

O espaco que estamos considerandoy na série de exemplos que vem sendo apre-
sentada neste capitulo, possui apenas duas dimensoes. Assim, o lugar geométrico
definido por uma equacgao do tipo:

hi(2)'=0 (1.22)

corresponde a um objeto de dimensao um, ou seja, uma linha (possivelmente curva).
Este serd o conjunto factivel de um problema de otimizagao que tiver (1.22) como
restricao. A Figura 1.24 mostra um exemplo dessa situagao.

Das técnicas mostradas anteriormente para tratar de problemas de otimizagao
com restrigoes de desigualdade, duas simplesmente nao funcionam para o caso de
restricoes de igualdade: o método de barreiras e o método de composicao pelo
maximo. A razao disso é que ambas as técnicas dependem da existéncia de pontos
que sejam interiores a regiao factivel do problema para funcionarem, e as regioes
factiveis de restricoes de igualdade nao possuem pontos interiores'®. A técnica de
penalidades, por sua vez, pode ser empregada.

1.5 Otimizacao Linear

Um caso especial particularmente importante do problema de otimizacao ocorre
quando tanto a funcao objetivo quanto as funcoes de restricio sao lineares!”. Esse

16Pontos interiores a uma regidio sdo pontos que pertencem a essa regidio e ndo estio em sua
fronteira. Claramente, todos os pontos factiveis de problemas de otimizagdo com restrigoes de
igualdade estao na fronteira da regiao factivel, isto é, possuem algum ponto vizinho fora dessa
regiao.

"No caso das restricdes, uma terminologia mais precisa iria dizer que sio afins e nio lineares.
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Figura 1.24: A linha corresponde ao lugar geométrico dos pontos que satisfazem
h(z) = 0. Essa linha é a regiao factivel de um problema de otimiza¢ao com essa
restricao.

¢ o chamado problema de otimizacao linear:

r* = argminc'x
(1.23)
sujeito a: {Az <b

sendo ¢ um yetor de dimengéo.n.(mesmo, tamanho que ), A uma matriz R™*" e b
um vetor de dimensao m.-Claramente, a funcao objetivo desse problema é a fungao
linear:

f(x) =crz1 + x4+ ...+, (1.24)

¢ o conjunto de restrigoes corresponde as m desigualdades:

a1, + a9 + ...+ a1y S bl
2171 + A22%2 + ... + G2, Ty < by

(1.25)
Am1T1 + Am2T2 +...+ Qmndn S bm

A otimizagao linear é particularmente importante por duas razoes: Primeiro, um
nimero muito grande de situacoes praticas ¢ modelado pela formulacao linear. Se-
gundo, devido a sua estrutura peculiar, problemas de otimizacao linear podem ser
resolvidos muito mais rapidamente que problemas de otimizacao nao-linear com o
mesmo numero de varidveis e o mesmo numero de restricoes. Assim, algoritmos
especializados para resolver apenas problemas lineares sao capazes de lidar com pro-
blemas muito grandes (muito maiores que aqueles que poderiam ser resolvidos no
caso nao-linear geral).
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Figura 1.25: Superficie correspondente a func¢ao objetivo linear f(z) = ¢z. Na figura
estao representadas também as curvas de nivel da funcao, que sao retas paralelas.

Vamos examinar essa estrutura peculiar que torna tao favoravel a otimizacgao
linear. No caso de duas variaveis de otimizacao, asuperficie répresentativa da fungao
linear é simplesmente um plano, e suas curvas de nivel sdo retas paralelas. Isso é
mostrado na Figura 1.25.

O problema de otimizagao de uma funcao linear nao faz sentido se nao estiver
acompanhado de restricoes, pois o ponto que minimiza tal funcao objetivo encontra-
se no infinito'®’ Examinemos o que sdo as réstricoes do problema de otimizacao
linear. Num‘espaco de n dimensoes, a desigualdade:

111 + a1 + ... + a1y S bl (126)

representa um semi-espago. A fronteira que separa a regiao factivel da infactivel
corresponde a um hiperplano nesse espaco. No caso de duas dimensoes, a desigual-
dade:

1121 + a12x2 < by (1.27)

define.um semi-plano como regiao factivel, e a fronteira dessa regiao factivel corres-
ponde a reta ajix1+ ajpxs = by. Consideremos agora varias restrigoes de desigual-

dade em duas dimensoes:
a1171 + 1902 < by

a9171 + G99x2 < by
(1.28)
Am1T1 + Aoy < by,

Como cada uma dessas restricoes de desigualdade define um semi-plano, as varias
restricoes de desigualdade correspondem a intersecao de varios semi-planos, o que
define um poliedro. Isso é mostrado na Figura 1.26.

1BEm outras palavras, ndo existe nenhum minimo local irrestrito de uma funcao objetivo linear.
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Figura 1.26: Regiao factivel F correspondente a varias restricoes lineares de desi-
gualdade. Cada reta que contém um dos.lados do poliedro factivel corresponde a
fronteira de uma restrigao de desigualdade.

Observemos agora, na Figura 1.27, a superposicao das curvas de nivel de uma
funcao objetivodinear com uma regiao factivel linear. O dado relevante a ser ob-
servado é que; num problema linear, o ponto de 6timo necessariamente se encontra
sobre um vértice do poliedro factivel.

O leitor deve se convencer de que seria impossivel, num problema linear, que
o minimo da funcao objetivo estivesse no interior da regiao factivel. Seria também
impossivel que esse minimo estivesse em um ponto da fronteira da regiao factivel
sem estar em um dos vértices dessa fronteiral®. Assim, uma possivel estratégia para
resolver problemas lineares seria fazer o Otimizador percorrer apenas o conjunto dos
vértices da regiao factivel, escolhendo dentre esses vértices aquele com menor valor de
funcao objetivo. E possivel implementar métodos bastante eficientes de otimizagao
com base em tal estratégia: esses sao os chamados métodos Simplex. Esse tipo de
logica, largamente empregada no contexto da otimizacao linear, é fundamentalmente

diferente dos procedimentos que podem ser utilizados na otimizacao nao-linear?.

9No entanto, seria possivel que houvesse multiplos minimos, incluindo pontos diversos da fron-
teira, dentre esses necessariamente pelo menos um dos vértices.

20Devemos entretanto informar o leitor que, recentemente, outras estratégias de otimizacao li-
near, denominadas métodos de pontos interiores, vém ganhando a preferéncia dos usudrios, es-
tratégias essas que tém semelhanca com métodos de otimizagao nao-linear.
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Figura 1.27: O vetor gradiente da funcao objetivo, V f(z), mostrado no ponto z, é
constante em todo o espago, pois a funcao objetivo é linear. As linhas tracejadas
correspondem as curvas de nivel da funcao objetivo, sendo que elas correspondem
a valores cada vez menores de funcao objetivo quando se caminha da direita para a
esquerda. Dessa forma, o ponto x indicado na figura é o de menor valor de fungao
objetivo dentro da regiao factivel F, correspondendo ao ponto em que a curva de
nivel de menor valor toca a regiao factivel.
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Figura 1.28: Tlustragao do auto-falante em 2D com indicacao das regioes de “Ferro”,
“Ima” e das variaveis x de projeto.

1.6 Estudos de Casos

1.6.1 O projeto de um auto-falante

Nesta subsecao discutiremos o projeto de um auto-falante.

Descricao do problema

O modelo, representado na Figural.28, consiste de trés materiais distintos: Ar, Ferro
e Ima. As propriedades fisicas de cada um destes materiais sao dadas na Tabela
1.1. As curvas de magnetizacao B-H do ferro e do ima foram obtidas através da
interpolagao quadratica’de pontos amestrados experimentalmente, conforme ilus-
trado_nas Figuras 1.29 e 1.30. Os pontos utilizados para gerar estas interpolacoes
foram obtidos na biblioteca de materiais do software de analise numérica FEMM 4.2
(Finite Element Method Magnetics), utilizado na construgao deste modelo.

Tabela 1.1: Materiais utilizados no modelo do auto-falante.

Denominacao Ar Ferro Ima
Material Air Pure Iron Ceramic 5 magnet
[ 1,0 * *

H. [A/m] 0,0 0,0 191262

o [MS/m] 0,0 10,44 0,0

Definicao do problema de otimizagao

O objetivo neste problema consiste na minimizacao do volume total de material
utilizado na construcao do auto-falante. Este objetivo é restrito pelo requisito de



42 NOTAS DE AULA DE OTIMIZAGAO

B, Tesla

251

154

054

H, AmpMeter

Figura 1.29: Curva de magnetizacao utilizada para.a modelagem do ntcleo de ferro.

um valor minimo da densidade de fluxo magnético na regiao definida pela variavel
x9. Matematicamente, o problemaspode é descrito por (1.29):

min f () = volume

sujeito a: g;(x) : |B| = Buin (1.29)

com B,,;, = 0,5 T e o volume representando a soma total do volume das partes do
alto-falante.

Os limites recomendados para as varidveis de otimizacao sao dados na Tabela
1.2. Esta tabela também fornece sugestoes de valores fixos, a serem utilizados em
casos de otimizagao parcial do modelo ou<«como ponto de partida para o teste de
algoritmos deterministicos.

O célculo da densidade de fluxo magnético B

O auto-falante descrito nas secoes anteriores foi modelado na forma de um script
LUA (www.lua.org), que por sua vez é interpretado pelo pacote de elementos finitos
FEMM 4.2 (www.femm.info). A implementagao atual é capaz de realizar simulagoes
em batelada, retornando um arquivo de saida contendo os valores de densidade de
fluxo magnético e volume do dispositivo. Este pacote & capaz ainda de gerar facil-
mente a visualizacao de linhas de campo e mapas de densidade de fluxo magnético.

Instrugoes de Uso

1. Software necessario:

e Finite Element Method Magnetics v.4.2
e Matlab

2. Arquivos necessarios (www.cpdee.ufmg.br/~ fcampelo/files/loudspeaker/):
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Figura 1.30: Curva de magnetizacao utilizadaspara a modelagem do ima de ceramica.

e loudspeaker.lua
e CallFEMM_LS.m

e LS fun.m

3. Opcgoes de problema:
e Otimizagao completa (16 varidveis)
e Otimizagao parcial (7 varidveis)

4. Forma de utilizacao:

e Copie todos. os arquivos comntidos em (/~ fcampelo/files/loudspeaker)/)
para um diretério local (p.ex., “C:\loudspeaker\” — este caminho nao
deve conter espagos em branco).

e Nas linhas 33-35 do arquivo loudspeaker.lua, insira o caminho escolhido.
e Nas linhas 5-8 do arquivo CallFEMM_LS.m, insira o caminho escolhido.

Para testar se os diretérios estao corretos, proceda da seguinte forma:

1. LUA script:

e Abra o FEMM 4.2;
e Selecione File - Open LUA Script - loudspeaker.lua

e Caso o arquivo loudspeaker.lua esteja correto, o FEMM deve executar
uma simulagao de teste (definida pelo arquivo loudspeaker.in contido em
/~ fcampelo/files/loudspeaker/) e fechar automaticamente.

2. Rotina Matlab:
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Tabela 1.2: Limites do espaco de busca.

Variavel min (mm) max (mm) fixo (mm)
T 3.0 12.0 5.0
T 1.0 4.0 3.0
T3 1.0 4.0 2.0
Ty 0.0 3.0 1.5
x5 5.0 15.0 7.0
g 2.0 5.0 40
7 1.0 10.0 2.0
g 1.0 3.0 240
2o 0.5 2.0 1.0
Ty 1.0 5.0 2.0
T12 2.0 2.0 2.0
T13 0.0 2.0 1.0
16 1.0 5.0 2.0

e Abra o Matlab e selecione o diretério contendo es arquivos do auto-
falante;

e Na janela de comando, digite:
>> X = [5.0,3.0,1.0,0.0,7.0,6.0,2:0,5.0,0.5,...
0.0,1.0,0.5,1:0;7.0,4.0,1.0)’;
>> Y = CallFEMM_LS(X)

e Caso o arquivo CallFEMM_LS.m esteja correto, o Matlab invocara uma
janela do FEMM, que executarda uma simulacao de teste e retornara o
foco para o Matlab.

Além da fungdo LS _fun.m, hid também as fungoes LS_vol.m e LS_B.m, capazes
de retornar as componentes de volume e de campo separadamente. As rotinas do
Matlab sao extensivamente comentadas e facilmente adaptaveis para uma ampla
gama, de algoritmos de otimizacao.

Resultados

A Tabela 1.3 mostra os resultados obtidos para o problema com 7 variaveis, que
indica um auto-falante com volume total V = 15.4696 ¢m?® e densidade de fluxo
B=04953T.

A Figura 1.31 ilustra uma configuracao possivel para o problema do auto-falante.
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Tabela 1.3: Resultado para o problema com 7 variaveis.

Varidvel | Resultado (mm) Fixo (mm)
T - 5.0
T 3.5089 —
x3 — 2.0
T4 — 1.5
Ts - 7.0
Zg 2.0053 —
Tr — 2.0
Tg — 2.0
Tg — 1.0
Z10 1.1941 —
11 1.0000 —
12 — 2.0
T13 — 1.0
T14 11.9946 —
15 5.0000 N
T16 — 2.0

S S

Figura 1.31: Resultado de uma configuragao possivel do alto-falante com ilustragao
das linhas equipotenciais de B



46

NOTAS DE AULA DE OTIMIZAGAO

S
<
S



Referéncias Bibliograficas

[1] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 2 edi-
tion, 1989.

[2] P. Venkataraman. Applied Optimization with Matlab. Programming. John Wiley,
1 edition, 2002.

47



