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das as curvas de ńıvel da função. . . . . . . . . . . . . . . . . . . . . 14
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na Figura à direita. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.13 Iterações de um método de exclusão de regiões, mostradas sobre as
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ńıvel na mesma região. Deve-se observar que, na região mais próxima
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de ńıvel da função objetivo f(xxx), ao redor do mı́nimo irrestrito xxxi,
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Caṕıtulo 1

Introdução

Neste caṕıtulo, iremos discutir, de maneira preliminar, o que são os problemas de
Otimização, com base sempre em funções matemáticas simples, de apenas duas
variáveis, que permitem portanto sua representação gráfica em três dimensões. Ire-
mos mostrar como diferentes tipos de funções irão requerer diferentes estratégias de
otimização e, de maneira intuitiva, iremos discutir os prinćıpios que se encontram
por trás dos métodos de otimização que serão estudados em detalhe nos próximos
caṕıtulos. Leitura complementar pode ser encontrada em [1] - [2].

1.1 O Jogo da Otimização

A Otimização, sob o ponto de vista prático, trata do conjunto de métodos capazes
de determinar as melhores configurações posśıveis para a construção ou o funciona-
mento de sistemas de interesse para o ser humano. Estamos falando da aplicação
de uma mesma teoria, com um mesmo conjunto de métodos e ferramentas, quando:

• um engenheiro eletricista procura o melhor projeto posśıvel para um motor
elétrico;

• um engenheiro de controle e automação procura o melhor ajuste posśıvel para
os controles de um determinado processo industrial;

• um engenheiro de produção busca a melhor configuração posśıvel para enca-
dear as etapas de fabricação de um produto;

• um matemático computacional estuda modelos quantitativos de epidemias,
procurando determinar as melhores poĺıticas de vacinação;

• um cientista da computação estuda o desempenho de uma rede de computado-
res, e tenta estabelecer a melhor estratégia de tráfego de informação posśıvel,
visando maximizar o fluxo global de informação nessa rede;

• um economista procura o melhor portfolio de investimentos, que maximiza a
expectativa de retorno financeiro;

• um veterinário ou zootecnista procura determinar a melhor poĺıtica de compras
e vendas das cabeças de um rebanho de gado.

1
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Apesar dos contextos completamente distintos, todos estes problemas (e muitos ou-
tros) uma vez formulados matematicamente, possuem exatamente a mesma estru-
tura, e sua solução é obtida essencialmente através da utilização do mesmo conjunto
de técnicas: a Otimização.

1.1.1 Formulação do Problema de Otimização

Evidentemente, em cada contexto distinto, há um conjunto de informações que
cada especialista de cada área deve conhecer, que lhe permite obter uma descrição
matemática de cada problema, a partir da situação concreta em questão. Uma vez
constrúıdo o modelo do problema1, chegamos sempre2 à formulação caracteŕıstica
do problema de otimização:

xxx∗ = arg min
xxx

f(xxx)

sujeito a:







gi(xxx) ≤ 0, i = 1, . . . , p

hj(xxx) = 0, j = 1, . . . , q

(1.1)

Vamos primeiro entender o que significa essa expressão. Como convenção que ado-
taremos ao longo de todo este livro, as variáveis em negrito significam grandezas ve-
toriais (ou seja, que representam conjuntos de vários valores) enquanto as variáveis
sem negrito significam grandezas escalares (que representam um único valor).

O projeto de um auto-falante

Por exemplo, suponhamos que um engenheiro está projetando um auto-falante como
indicado nas Figs. 1.1 e 1.2. Utilizaremos este exemplo para definir conceitualmente
o significado da equação (1.1).

O objetivo é encontrar o auto-falante com menor volume (e possivelmente menor
preço) que satisfaça algumas caracteŕısticas de desempenho e de construção; por
exemplo: (i) densidade de fluxo magnético no entreferro (variável x9) maior do que
um valor pré-determinado, (ii) materiais que compõem as regiões do “ferro” e “́ımã”
tais que seja posśıvel obter o desempenho especificado e o menor volume. Essas
caracteŕıticas são definidas, usualmente, por quem contrata o projeto.

Matematicamente, o problema do auto-falante pode ser definido por:

min f (xxx) = volume
sujeito a: g1 (xxx) : |B| ≥ Bmin

(1.2)

onde B significa a densidade de fluxo magnético. Este exemplo será discutido deta-
lhadamente ao final do caṕıtulo.

1O leitor não deve se enganar: a construção do modelo matemático do problema muitas vezes é
a parte mais dif́ıcil de todo o processo. Estamos saltando esta parte porque a Otimização começa
exatamente quando o modelo da situação está pronto.

2OK, você está certo: quase sempre.
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Figura 1.1: Ilustração de um alto-falante constitúıdo por uma estrutura composta
por “ferro” (parte azul escuro) e “́ımã” (parte azul claro).

Figura 1.2: Ilustração do alto-falante em 2D com indicação das regiões de “ferro”,
“́ımã” e das variáveis xxx de projeto.
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O vetor de variáveis de otimização

O vetor xxx é o vetor de variáveis de otimização, que representa o conjunto das
variáveis cujos valores procuramos especificar através do processo de otimização.

No exemplo do projeto do auto-falante, o objetivo é encontrar os valores (di-
mensões) das dezesseis variáveis xxx, que seria neste caso representado por:

xxx =











x1

x2

...
x16











(1.3)

Uma vez especificados esses dezesseis valores, para construir o auto-falante basta
“seguir a receita” impĺıcita em xxx: obter as peças de “ferro” e “́ımã” com as dimensões
especificadas.

Nós optamos pelo exemplo do auto-falante, pois é muito útil para ilustrar o
fato de que os elementos do vetor xxx possuem usualmente um significado bastante
concreto, ligado à estrutura do problema que está sendo representado. De maneira
genérica, se o vetor xxx possui n variáveis reais, dizemos que xxx ∈ R

n.
Nem sempre o vetor de variáveis de otimização é composto de variáveis reais.

Muitas vezes, as variáveis são números inteiros, por exemplo, quando estamos esta-
belecendo quantas máquinas serão utilizadas para trabalhar em determinada etapa
de um processo de fabricação. Outras vezes as variáveis são até mesmo binárias:
por exemplo, ao se estudar o problema da formação de uma malha viária ligando
diversas cidades, deve-se decidir se determinada estrada ligando diretamente duas
cidades será ou não constrúıda (só existiriam, nesse caso, as opções sim ou não).

A diferença mais importante entre os problemas de otimização, que conduz a
técnicas de resolução com fundamentações bastante distintas, é aquela que separa os
problemas em que as variáveis de otimização são reais dos problemas que apresentam
variáveis de otimização discretas (binárias ou inteiras). Neste livro, iremos estudar
apenas os problemas com variáveis reais.

A função objetivo

A próxima entidade presente na expressão (1.1) que devemos discutir é a chamada
função objetivo, f(·). Essa entidade representa o ı́ndice de desempenho do sistema,
cujo valor, por convenção, queremos minimizar para atingirmos o desempenho ótimo.

Um ı́ndice que muito frequentemente desejamos minimizar é o custo de fa-
bricação de um equipamento. No exemplo em questão, o volume do alto-falante está
associado ao custo; ou seja quanto menor o volume do alto-falante menor também
será a quantidade de material utilizado (́ımãs permanentes são caros), e consequen-
temente menor será o custo final do equipamento. Por essa razão, nesse exemplo,
f(·) = volume. As especificações posśıveis do volume do alto-falante estão contidas
no vetor xxx, ou seja, para cada conjunto de diferentes valores que esse vetor assumir
haverá um custo de fabricação diferente envolvido.

Um outro exemplo que poderia ser imaginado consiste na fabricação de um mo-
tor: de cada maneira diferente que o mesmo for projetado, terá custos de fabricação
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diferentes. Nesse caso, a função objetivo f(xxx), será uma função que, para cada con-
junto de valores que estiver especificado no vetor xxx, irá fornecer o custo de fabricação
do equipamento descrito por esse vetor.

Devido a essa interpretação de custo financeiro, muitas vezes a função objetivo
é chamada, dentro de livros de otimização, de função custo.

Outros ı́ndices de desempenho de sistemas que muitas vezes queremos minimizar
são: consumo de combust́ıvel (em automóveis, por exemplo), rúıdo de funcionamento
(em motores), probabilidade de defeitos (em todo tipo de equipamento), etc. Todos
eles, claramente, dependem de como o equipamento foi constrúıdo, ou seja, são
funções do vetor xxx.

Muitas vezes, entretanto, desejamos maximizar e não minimizar algum ı́ndice
de desempenho de um sistema. Queremos, por exemplo, maximizar a expectativa
de lucro em um portfolio de investimentos, assim como o tempo de vida útil de
um equipamento, ou a capacidade de produção de uma fábrica. Para simplificar a
tarefa de elaborar a teoria matemática da Otimização, iremos manter a convenção
de sempre formular um problema de otimização como um problema de minimização.
Nos casos em que deseja-se fazer uma maximização, devido ao significado do ı́ndice
de desempenho escolhido, basta minimizarmos a função que se deseja maximizar
multiplicada por −1. Ou seja, se se deseja maximizar a função p(xxx), basta fazer
f(xxx) = −p(xxx), de forma que ao determinarmos o vetor xxx que minimiza f(·), este
será também, por consequência, o vetor que maximiza p(·).

Em linguagem matemática, dizemos que f(·) : R
n 7→ R. Isso significa que

f(·) é uma função de um vetor de n variáveis reais (pertencente ao espaço R
n),

e a própria função f(·) retorna um valor que é real. As diferentes caracteŕısticas
que essa função pode ter, assim como as consequências disso para a elaboração de
estratégias de otimização são os temas das próximas seções deste caṕıtulo.

A solução ótima

Da maneira como delimitamos o problema exemplo, supondo que o vetor de variáveis
de otimização xxx seja composto de variáveis reais, existem infinitas maneiras diferen-
tes de especificar o alto-falante a ser constrúıdo. Em outras palavras, há um número
infinito de valores que as variáveis x1, . . . , x16 podem assumir, o que resulta em um
conjunto infinito de possibilidades de construção do alto-falante.

Diante disso, qual é a melhor especificação posśıvel, xxx∗, que o auto-falante pode
assumir; ou seja, qual é a especificação que faz com que ele tenha o menor volume
e satisfaça a condição B > Bmin?

A resposta a tal pergunta é exatamente aquilo que a Otimização procura encon-
trar, por meio de suas técnicas. Em palavras:

O vetor ótimo xxx∗ é igual ao argumento da função f(·) que faz com que
essa função atinja seu mı́nimo valor.

Essa é a forma como deve ser lida a primeira linha da expressão (1.1). Posto isso,
como encontrar esse vetor xxx∗? Esse é o assunto deste livro.
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As restrições

Para terminarmos de entender a formulação contida na expressão (1.1), ainda falta
entendermos o significado da desigualdade e da igualdade a que está sujeito o resul-
tado da otimização. Essas são as chamadas restrições do problema. Elas significam
o conjunto dos requisitos que o resultado do projeto deve atender para ser admisśıvel
enquanto solução.

O exemplo em questão possui uma restrição de desigualdade g1(xxx) que especifica
o valor mı́nimo da densidade de fluxo magnético a ser observado na região definida
pela variável x9 (entre ferro) para o qual o alto-falante tem desempenho satisfatório.

Outros tipos de restrição têm significado bastante óbvio; no exemplo do alto-
falante seria natural impor também que todas as variáveis sejam positivas, ou
x1, . . . , x16 > 0. Embora, se substitúıdo na expressão da função objetivo, um va-
lor negativo de uma variável x talvez possa levar a um “melhor valor” para essa
função, não é posśıvel no mundo real construir alto-falantes que tenham dimensões
negativas.

Outros tipos de restrição, embora não estejam relacionados com a impossibili-
dade de implementarmos a solução encontrada, igualmente dizem que tal solução não
é admisśıvel, se violar a restrição. Um exemplo disso encontra-se no projeto de au-
tomóveis: se queremos projetar o véıculo de mı́nimo custo, não podemos entretanto
construir um que cause emissão de gases poluentes acima dos limites estabelecidos
em lei. Todos os véıculos que emitirem poluentes acima de tais limites não serão
considerados soluções admisśıveis, por mais barata que seja sua construção. O pro-
blema de otimização, colocado dessa forma, passa a ser o de encontrar o projeto do
véıculo mais barato posśıvel dentre todos os que atenderem à restrição da emissão
de poluentes ser menor ou igual ao limite admisśıvel.

Os dois exemplos anteriormente citados se enquadram na situação da restrição
de desigualdade, isto é, são representáveis pela expressão:

gi(xxx) ≤ 0, i = 1, . . . , p (1.4)

Em relação à convenção de que as funções de restrição devam ser menores ou iguais
a zero, cabem comentários similares àqueles apresentados a respeito da convenção
de estarmos minimizando, sempre, a função objetivo. Para as restrições de desi-
gualdade, caso ocorram situações em que se deseja garantir que certa função seja
maior que ou igual a zero, basta garantir que essa função multiplicada por −1 seja
menor que ou igual a zero. Caso seja necessário ainda que certa função seja menor
ou igual a um número diferente de zero, basta fazer com que essa função menos esse
número seja menor que ou igual a zero. Dessa forma, ao construirmos as técnicas
de otimização, levaremos sempre em consideração o formato convencionado da de-
sigualdade, assim simplificando a teoria.

Deve-se observar que agora a função gi(·) é, ela própria, vetorial, retornando
múltiplos valores, o que quer dizer que na realidade essa expressão sintética, veto-
rial, contém um conjunto de expressões escalares, cada uma das quais representa
uma restrição diferente. Matematicamente, dizemos que gi(·) : Rn 7→ R

p, o que
significa que para cada vetor de variáveis de otimização xxx ∈ R

n que for utilizado
como argumento da função gi(·), esta retorna um conjunto de p valores reais como
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resultado, ou seja, a expressão (1.4) é o mesmo que:

g1(xxx) ≤ 0

g2(xxx) ≤ 0

...

gp(xxx) ≤ 0

(1.5)

sendo cada uma das p funções gi(·) uma função escalar, que retorna um único valor
real. Em problemas práticos, usualmente será necessário lidar com diversas restrições
simultaneamente. No exemplo do projeto do automóvel, além de atender ao limite
legal de emissão de poluentes, provavelmente será necessária também a preocupação
com o consumo de combust́ıvel (que não pode ultrapassar um máximo aceitável),
com a potência do motor (que não deve ser menor que um mı́nimo aceitável), etc.
O véıculo a ser projetado não pode violar nenhuma dessas restrições para ser consi-
derado uma solução aceitável.

Resta ainda falar das restrições de igualdade, descritas pela expressão:

hj(xxx) = 0, j = 1, . . . , q (1.6)

Esse tipo de restrição ocorre quando é necessário que certas variáveis assumam
precisamente certos valores. Por exemplo, se estamos projetando uma peça que deve
se encaixar precisamente num certo espaço dispońıvel num equipamento, do qual a
peça faz parte, queremos que a peça tenha exatamente o tamanho especificado, nem
mais nem menos. A peça pode até ser constitúıda de diversos sub-componentes,
cujos tamanhos poderemos escolher, desde que a soma de todos os tamanhos tenha
o tamanho total especificado. Também essa expressão é vetorial: hj(·) : Rn 7→ R

q,
ou seja, a função vetorial representa na realidade q diferentes equações.

Para concluir este tópico, definimos a seguinte nomenclatura, relacionada com
as restrições:

Região fact́ıvel: Conjunto dos pontos do espaço R
n que satisfazem, simultanea-

mente, a todas as restrições (tanto de desigualdade quanto de igualdade). Às
vezes a região fact́ıvel é chamada de conjunto fact́ıvel, ou de conjunto viável.

Região infact́ıvel: Conjunto dos pontos do espaço R
n que deixam de satisfazer

(ou seja, violam) pelo menos uma das restrições do problema.

Ponto fact́ıvel: Ponto pertencente à região fact́ıvel.

Ponto infact́ıvel: Ponto pertencente à região infact́ıvel.

Restrição violada: Cada uma das componentes do vetor gi(xxx) que apresentar valor
positivo, ou cada uma das componentes do vetor hj(xxx) que apresentar valor
não-nulo será chamada de restrição violada no ponto xxx.
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1.1.2 As Regras do Jogo

O problema da Otimização fica em parte definido pela expressão (1.1). Para delinear
o que vem a ser o campo de conhecimento da Otimização Não-Linear, enunciamos
agora um conjunto de regras que dizem como é abordado esse problema: qual é a
informação de que podemos fazer uso durante o processo de otimização, e qual é o
custo dessa informação. Iremos supor, ao longo deste livro, que:

Regras de Acesso à Informação

• Não conhecemos expressões matemáticas expĺıcitas que representem
a função objetivo f(·) e as funções de restrição gi(·) e hj(·).

• Temos entretanto a possibilidade de descobrir quanto valem as
funções objetivo e de restrição em qualquer ponto do espaço de
variáveis de otimização. Essa é a única informação que consegui-
remos adquirir, ao longo do processo de otimização, para nos guiar
em direção à solução desejada.

O leitor poderia perguntar: por quê introduzimos essa premissa aparentemente
arbitrária? O que impede que tenhamos em mãos um modelo matemático de um
sistema qualquer, formulado em termos de expressões matemáticas expĺıcitas, que se-
riam nossas funções objetivo e de restrições? Bem, nada impede isso, pelo contrário,
muitas vezes é isso que ocorre. Entretanto, nessas situações, quando temos ex-
pressões expĺıcitas simples representando o sistema, podemos fazer (e usualmente
fazemos) uso de técnicas da chamada Análise Matemática para determinar o mı́nimo
da função objetivo, empregando ferramentas que não estão no escopo daquilo que
usualmente chamamos Otimização. Um procedimento simples que frequentemente
empregamos nesses casos, por exemplo, é o de derivar a função objetivo, e determi-
nar os pontos em que o gradiente se anula. Quando é posśıvel fazer isso, os pontos
de mı́nimo da função são determinados de maneira direta e exata.

Há entretanto situações em que a utilização desse tipo de procedimento é muito
dif́ıcil, e em muitos casos imposśıvel.

Voltemos ao exemplo do auto-falante. Não é posśıvel descrever ou calcular B
no entreferro (variável x9) por meio de expressões simples, envolvendo por exemplo
funções trigonométricas ou polinomiais. O cálculo de B envolve normalmente um
sistema de equações diferenciais parciais, cuja solução é provavelmente muito dif́ıcil,
ou mesmo imposśıvel, de ser determinada analiticamente.

Nesse exemplo, seria necessário escrever um algoritmo para efetuar o cálculo
numérico da solução desse sistema de equações. Cada vez que fizéssemos a avaliação
da função de restrição g1(·) para um determinado vetor de variáveis de otimização
(que significa um determinado auto-falante), teŕıamos de executar o algoritmo e, com
base no resultado do mesmo, fazer o cálculo da função g1(·). O mesmo racioćınio se
aplicaria a função objetivo, se tivermos uma grandeza em f(·) cujo cálculo envolva
a resolução de um sistema de equações diferenciais parciais.
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Ora, uma função que inclui um algoritmo não pode ser, em geral, explicitamente
representada por uma expressão matemática simples, nem pode ser por exemplo
derivada ou integrada de maneira expĺıcita. A natureza da função objetivo, ou das
funções de restrição, agora deixa de ser a de uma expressão conhecida, que podemos
manipular utilizando todas as manipulações matemáticas usuais.

A metáfora mais adequada para compreendermos sua natureza é a de uma caixa
preta3, na qual podemos entrar com um vetor xxx, obtendo como resposta o valor de
f(xxx) associado a esse vetor4. Essa é a única informação dispońıvel para ser utilizada
pelos métodos de Otimização.

No exemplo do auto-falante, o cálculo de B é obtido a partir de um programa de
cálculo de campo magnético em que se passa como entrada um vetor xxx e se obtém
como resposta o valor para g1(·) associado a esse valor. Isso será discutido no final
do caṕıtulo.

Assim, as regras acima enunciadas simplesmente significam que a teoria da Oti-
mização é desenvolvida para o contexto dos problemas em que não temos acesso a
uma expressão expĺıcita da função objetivo e das funções de restrição. Obviamente,
nos casos de problemas em que conhecemos expressões expĺıcitas de todas as funções,
as técnicas da Otimização continuam sendo aplicáveis, com a ressalva de que possi-
velmente haveria maneiras mais simples ou mais precisas para a determinação das
soluções5.

Por fim, há ainda a questão de quão dif́ıcil, ou quão demorada, é a obtenção
da informação dos valores da função objetivo e das funções de restrição: muitas
vezes, para calcularmos o valor da função objetivo em um único ponto (ou seja,
para um único vetor xxx) um bom computador de última geração pode demorar horas
ou dias. Esse é o caso, por exemplo, de um modelo detalhado da estrutura da
asa de um avião; a engenharia, a economia, as ciências naturais, estão repletas de
situações assim. Dessa forma, não seria prático prescrever métodos de otimização
que dependessem de calcular essa função objetivo alguns milhares ou centenas de
milhares de vezes: talvez não seja viável avaliar essas funções mais que algumas
dezenas ou centenas de vezes. Uma outra regra então se justifica:

Regra de Custo da Informação

• Os métodos de otimização serão comparados entre si de acordo com
os critérios:

– Número de avaliações da função objetivo e das funções de res-
trição que são requeridas para determinação da solução. Quanto
menos avaliações forem necessárias, melhor será considerado o

3O conceito de caixa preta, nas ciências, diz respeito a objetos cujas entradas e sáıdas podem
ser observadas, mas cujo interior é inacesśıvel.

4O leitor deve notar que, embora não saibamos qual é a expressão anaĺıtica de uma função que
corresponde à caixa preta, tal função existe. Se o leitor se lembrar de como a Matemática define
funções, verá que essa caixa preta atende a todos os requisitos para ser uma função.

5Se houver, entretanto, um número muito grande de restrições ou variáveis no problema, é
posśıvel que as técnicas de Otimização ainda sejam as mais adequadas para a determinação do
ponto de ótimo, mesmo havendo expressões anaĺıticas para as funções objetivo e de restrições.
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Figura 1.3: Diagrama do processo de otimização. A rotina de otimização fornece o
vetor de variáveis de otimização, xxx, para as rotinas que avaliam a função objetivo e
de restrições. Essas rotinas devolvem os valores de f(xxx), gi(xxx) e hj(xxx) para a rotina
de otimização. A rotina de otimização, com essas avaliações, calcula um novo vetor
de variáveis de otimização a ser avaliado, e assim por diante, até que seja encontrada
uma aproximação da solução ótima xxx∗.

método.

– Precisão e robustez. Quanto mais a solução fornecida pelo
método se aproximar da solução exata do problema, melhor
será considerado o método6.

Agora sabemos o que estaremos fazendo ao longo deste livro: iremos construir
algoritmos, que serão as implementações práticas dos métodos de otimização, cujo
objetivo é determinar as soluções do problema (1.1). Esses algoritmos irão chamar
sub-rotinas que executam a avaliação das funções objetivo e de restrições, devendo
entretanto fazer a chamada dessas sub-rotinas o menor número de vezes que for
posśıvel. O diagrama da Figura 1.3 ilustra essa ideia.

1.2 Otimização Sem Restrições

Para começar a estudar a interpretação geométrica dos problemas de otimização,
iniciaremos analisando a situação mais simples, do problema de minimização de
uma função objetivo sem nenhuma restrição:

xxx∗ = arg min f(xxx) (1.7)

6O termo precisão designa a capacidade de um algoritmo de, estando próximo da solução exata
do problema, aproximar ainda mais tal solução exata. O termo robustez por sua vez designa a
capacidade do algoritmo de, estando distante da solução exata do problema, atingir as proximidades
dessa solução. Assim, frequentemente um algoritmo é mais preciso e ao mesmo tempo menos
robusto que outro, e vice-versa.
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Figura 1.4: Superf́ıcie que representa o gráfico de uma função não-linear de duas
variáveis reais. Essa superf́ıcie poderia representar uma função f(xxx) cujo mı́nimo
devesse ser determinado por um método de otimização. No “chão” do gráfico,
encontram-se representadas as curvas de ńıvel da função.

Para viabilizar a representação gráfica do problema, estaremos supondo a partir
deste ponto que o vetor xxx possui apenas duas coordenadas, pertencendo, portanto, ao
espaço R2. Evidentemente, na maioria das situações de interesse prático o número de
coordenadas desse vetor é maior que dois; entretanto, duas variáveis são suficientes
para discutirmos a maior parte das questões conceituais que se encontram por detrás
da concepção dos métodos de otimização.

Embora estejamos supondo que a função objetivo f(·) não seja conhecida num
contexto prático de otimização, essa função é sempre um objeto matemático muito
bem definido. Assim, mesmo não sendo posśıvel traçar explicitamente o gráfico da
função objetivo, sabemos que isso é imposśıvel devido às regras da otimização, ante-
riormente estabelecidas. Podemos afirmar que a superf́ıcie correspondente à função
existe, e é desta superf́ıcie que estaremos colhendo amostras durante o processo
de otimização, a cada vez que estivermos avaliando a função objetivo. A Figura
1.4 mostra uma superf́ıcie que corresponde ao gráfico de uma função não-linear de
duas variáveis reais. Tal função poderia ser a função objetivo de um problema de
otimização.

Uma representação que contém aproximadamente a mesma informação que a da
Figura tridimensional 1.4, mas que utiliza apenas recursos gráficos bidimensionais é
a das curvas de ńıvel da função. A Figura 1.5 mostra as curvas de ńıvel da mesma
função representada na Figura 1.4. Essa representação, mais fácil de ser manipulada
que a representação tridimensional, é normalmente mais útil que esta para ilustrar
conceitos relacionados aos métodos de otimização.

Uma metáfora que pode ajudar a compreender o que é o processo de otimização
pode ser apresentada da seguinte forma: imaginemos (aqui a imaginação é o mais
importante) um ser matemático, o Otimizador. Ele vai ser lançado de pára-quedas
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Figura 1.5: Gráfico de curvas de ńıvel da mesma função não-linear de duas variáveis
reais, f(xxx), que encontra-se representada na figura 1.4.

em um ponto qualquer sobre a superf́ıcie da figura 1.4, e deverá caminhar sobre
essa superf́ıcie, em busca do ponto mais baixo da mesma, o ponto de mı́nimo. O
Otimizador, entretanto, deverá caminhar com uma venda cobrindo seus olhos, sem
poder “olhar” para a superf́ıcie; a única informação que ele pode utilizar a respeito
da superf́ıcie é a altura do ponto no qual ele estiver “pisando”. Ele pode, entretanto,
se “lembrar” das alturas dos pontos em que ele já tiver pisado anteriormente, fazendo
uso dessa informação já adquirida para tomar a decisão de “para onde caminhar”.
Seu objetivo, além de chegar no ponto de mı́nima altura sobre a superf́ıcie, é fazer
isso tendo utilizado o menor número posśıvel de “passos”. Essa situação imaginária
ilustra bem o que é o problema de otimização. Construir os chamados métodos de
otimização corresponde, dentro de nossa metáfora, a formular as estratégias a serem
utilizadas pelo Otimizador em sua busca pelo ponto de mı́nimo.

Algumas caracteŕısticas da função objetivo (ou seja, da superf́ıcie que está as-
sociada a essa função) definem que tipos de estratégias seriam efetivas para a oti-
mização dessa função. Por exemplo, a função ser diferenciável implica na possibili-
dade de se tentar sua otimização fazendo uso do cálculo, pelo menos aproximado,
de seu gradiente, que pode ser estimado numericamente a partir de amostras de
valores da função. Se a função for unimodal, ou seja, se tiver um único ponto de
mı́nimo, as estratégias para a determinação desse mı́nimo serão bem diferentes da-
quelas que seriam empregadas caso a função fosse multimodal, ou seja, caso tivesse
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vários mı́nimos locais7.
Com o objetivo de subsidiar a escolha de métodos adequados para a otimização

de funções, podemos definir a seguinte classificação das funções:

(i) Modalidade: unimodal ou multimodal

(ii) Diferenciabilidade: diferenciável ou não-diferenciável

(iii) Convexidade: convexa, quasi-convexa, não-convexa

(iv) Linearidade: linear ou não-linear

(v) Escala: uni-escala ou multi-escala

Passamos a mostrar agora algumas superf́ıcies “t́ıpicas”, que exibem de maneira
clara essas propriedades que “fazem a diferença” (o significado dessa classificação
deve ficar claro à medida em que essa discussão for apresentada). Com esses exem-
plos de superf́ıcies, discutiremos de maneira qualitativa posśıveis estratégias para a
otimização de funções com tais caracteŕısticas. Essas estratégias serão depois des-
dobradas, nos caṕıtulos posteriores, os quais serão dedicados a discutir em detalhe
os métodos de otimização correspondentes a essas estratégias.

1.2.1 Estratégias de Direção de Busca

Vamos considerar em primeiro lugar a função cujo gráfico é mostrado na figura 1.6,
e cujas curvas de ńıvel estão representadas na Figura 1.7.

Para construir essa função, nós utilizamos um esquema bastante simples: o de
uma função quadrática. A “receita” para a montagem do gráfico da figura 1.6 é
dada por:

f(xxx) = (xxx− xxx0)
′Q(xxx− xxx0)

Q =

[

2 0.3
0.3 1

]

xxx0 =

[

1
1

] (1.8)

Claramente, o gráfico dessa função deve ser um parabolóide com mı́nimo no ponto xxx0.
O Otimizador, entretanto, como já concordamos, não sabe disso: ele deve descobrir
qual é o ponto de mı́nimo da função objetivo utilizando apenas “amostras” de valores
dessa função. Uma estratégia razoável de procedimento para o Otimizador seria:

Método do Gradiente

Passo 1: O Otimizador, localizado inicialmente em um ponto aleatório
sobre o mapa da função, toma amostras da função próximas de onde
ele se encontra atualmente. Com essas amostras, ele descobre em
qual direção a função decresce mais rapidamente, pelo menos sob

7Falamos de mı́nimos locais para designar pontos que são de mı́nimo para uma vizinhança ao
seu redor, e de mı́nimos globais para designar o ponto em que a função objetivo atinge seu mı́nimo
valor em todo o domı́nio considerado.
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Figura 1.6: Superf́ıcie que representa o gráfico de uma função quadrática f(xxx) de
duas variáveis reais. No “chão” do gráfico, encontram-se representadas as curvas de
ńıvel da função.
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Figura 1.7: Gráfico de curvas de ńıvel da mesma função quadrática de duas variáveis
reais, f(xxx), que encontra-se representada na Figura 1.6.
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o ponto de vista da informação localmente dispońıvel para ele. Em
terminologia matemática, o Otimizador calcula uma aproximação
numérica do gradiente da função no ponto atual, que é o oposto da
direção em que a função decresce mais rapidamente.

Passo 2: O Otimizador caminha em linha reta, na direção contrária ao
gradiente da função, continuando a andar enquanto estiver sentindo
que a função está decrescendo, parando de andar, portanto, assim
que percebe que a função volta a crescer nessa direção.

Passo 3: O Otimizador decide agora se ele pára, ou seja, se ele considera
que já se encontra suficientemente próximo do ponto de mı́nimo da
função, ou se ele continua a busca, retornando ao Passo 1, para
escolher nova direção de caminhada.

O método do gradiente, assim esboçado, é um dos métodos de otimização mais
primitivos, tendo sido proposto nos primórdios da teoria de otimização, estando hoje
obsoleto. Esse método é, entretanto, o protótipo mais simples de toda uma famı́lia
de métodos, os métodos de direção de busca, que incluem importantes métodos hoje
utilizados, que sempre têm a estrutura assim descrita:

Métodos de Direção de Busca

Passo 1: O Otimizador toma amostras da função nas proximidades de
onde ele se encontra atualmente. Com essas amostras, ele descobre
em qual direção a função decresce mais rapidamente, pelo menos sob
o ponto de vista da informação localmente dispońıvel para ele. Em
terminologia matemática, o Otimizador calcula uma aproximação
numérica do gradiente da função no ponto atual, que é o oposto da
direção em que a função decresce mais rapidamente.

Passo 2: Levando em consideração o gradiente calculado no ponto atual,
assim como todo o histórico de gradientes anteriormente calculados
e de valores de função objetivo amostrados em pontos que o Oti-
mizador visitou anteriormente, ele tenta “adivinhar” qual seria a
direção mais provável em que o mı́nimo da função devesse estar.

Passo 3: O Otimizador caminha em linha reta, na direção em que ele
supõe que o mı́nimo esteja, continuando a andar enquanto estiver
sentindo que a função está decrescendo, parando de andar, por-
tanto, assim que percebe que a função volta a crescer nessa direção.

Passo 4: O Otimizador decide agora se ele pára, ou seja, se ele considera
que já se encontra suficientemente próximo do ponto de mı́nimo da
função, ou se ele continua a busca, retornando ao Passo 1, para
escolher nova direção de caminhada.
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Qualquer estratégia de “direção de busca” irá funcionar para determinar o
mı́nimo da função mostrada na Figura 1.6, pois esta função é bastante simples.
Para esses métodos funcionarem, os requisitos que encontram-se impĺıcitos sobre a
função são:

• A função é unimodal, ou seja, tem um único mı́nimo global, no interior de
uma única bacia de atração8. Dessa forma, o Otimizador não precisa se preo-
cupar com a posśıvel existência de outros mı́nimos diferentes daquele que ele
localizar.

• A função é diferenciável, ou seja, não só é posśıvel calcular, de forma signi-
ficativa, aproximações do gradiente da função em qualquer ponto do espaço,
como, principalmente, o gradiente da função contém informação significativa
sobre a forma como a função varia nas vizinhanças do ponto em que tiver sido
calculado. Dessa forma, o Otimizador consegue encontrar direções para as
quais possa caminhar, nas quais ele consegue observar a diminuição do valor
da função objetivo.

Consideremos agora a função mostrada na Figura 1.8, que tem suas curvas de
ńıvel mostradas na Figura 1.9. Essa função, muito menos simples que a função
quadrática anteriormente considerada, continua sendo adequadamente otimizada
por métodos de direção de busca: ela é unimodal (possui um único mı́nimo, o ponto

xxx =
[

1 1
]

′

, no interior de uma única bacia de atração), e é diferenciável (possui
gradiente bem definido em todos os pontos).

Essa função já é capaz de “confundir” um Otimizador que utilizar simplesmente
uma estratégia de gradiente: quando o Otimizador chega no fundo do “vale” exis-
tente na topografia da função, e tem de encontrar o ponto mais baixo desse vale, o
padrão de mudança da direção do gradiente torna o método do gradiente muito inefi-
ciente. Outros métodos de direção de busca, no entanto, não encontram dificuldades
para minimizar esta função.

1.2.2 Estratégias de Exclusão de Regiões

Consideremos agora a função f(xxx), ainda unimodal, porém agora não mais dife-
renciável, cujo gráfico está mostrado na Figura 1.10, e cujas curvas de ńıvel estão
representadas na Figura 1.11. Este tipo de função em geral traz dificuldades para
as estratégias de otimização do tipo direções de busca.

Ao contrário do que pode parecer à primeira vista, a dificuldade não está na
impossibilidade de calcularmos o gradiente da função: na imensa maioria das vezes,
uma função não diferenciável de interesse prático é diferenciável em quase todo
ponto. Esse é o caso da função representada na Figura 1.10: seu gradiente deixa de
existir apenas em algumas regiões espećıficas, que estão situadas em algumas linhas
sobre o mapa da função. Em todos os outros pontos, o gradiente é bem definido e
pode ser calculado. Assim, se um Otimizador estivesse otimizando uma função não

8Uma bacia de atração é a região ao redor de um mı́nimo local na qual as curvas de ńıvel da
função são fechadas, ou seja, a região na qual um método de direção de busca irá convergir para
tal mı́nimo.
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Figura 1.8: Superf́ıcie que representa o gráfico de uma função unimodal diferenciável
f(xxx) de duas variáveis reais, mostrada em duas vistas diferentes. No “chão” dos
gráficos, encontram-se representadas as curvas de ńıvel da função.
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Figura 1.9: Gráfico de curvas de ńıvel da mesma função unimodal diferenciável de
duas variáveis reais, f(xxx), que encontra-se representada na figura 1.8.
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Figura 1.10: Superf́ıcie que representa o gráfico de uma função não diferenciável
f(xxx) de duas variáveis. No “chão” do gráfico, encontram-se representadas as curvas
de ńıvel da função.
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Figura 1.11: Gráfico de curvas de ńıvel da mesma função não diferenciável de duas
variáveis reais, f(xxx), que encontra-se representada na Figura 1.10.

diferenciável e encontrasse um ponto no qual fosse imposśıvel calcular o gradiente,
bastaria ele se deslocar um pouco do ponto, para outro ponto próximo: lá o gradiente
poderia ser calculado, e o processo de otimização poderia prosseguir.

O problema com as funções não diferenciáveis, quando submetidas a métodos
de direção de busca, é que o cálculo da direção de busca, na qual o Otimizador deve
caminhar, é feito a partir da informação obtida pelo cálculo do gradiente (o gradiente
atual e o gradiente em pontos anteriores). O Otimizador, ao caminhar nessa direção,
espera que a direção tenha validade não apenas pontual: ele espera poder caminhar
uma certa distância sobre essa direção, até que a função objetivo pare de decrescer,
e ele tenha de mudar de direção. Ora, se a função objetivo muda de comportamento
repentinamente nos locais onde a função é não-diferenciável, a informação da direção
de busca, obtida com o uso de gradientes pode ser inteiramente inadequada para
representar o comportamento da função, mesmo a pequenas distâncias do ponto
atual. A otimização por esses métodos pode assim se tornar inviável. Tal dificuldade,
por outro lado, não é associada a um ou outro caso espećıfico de método de direção
de busca: ela é intŕınseca a toda a famı́lia dos métodos de direção de busca. A
dificuldade é ilustrado na Figura 1.12.

Funções não-diferenciáveis estão longe de ser raras, dentro dos modelos de sis-
temas que temos interesse em otimizar. Por essa razão, justifica-se a formulação
de uma famı́lia de métodos diferente, que não esteja sujeita a tal dificuldade: os
métodos de exclusão de regiões. Para formular a nova estratégia, como estamos
abrindo mão da premissa de diferenciabilidade da função objetivo, introduzimos em
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g1

g1

g1

g2

g2

g2

~xk

Figura 1.12: Não-diferenciabilidade atratora, representada pela linha tracejada.
Acima dessa não-diferenciabilidade, os gradientes da função são representados por
g1, e abaixo por g2. Exatamente na não-diferenciabilidade, o gradiente da função
muda subitamente (ou seja, o gradiente é descont́ınuo sobre essa linha). A Fi-
gura mostra ainda a trajetória de um Otimizador que utiliza uma estratégia de
direções de busca, percorrendo uma sequência de pontos xxxk. Quando atinge a não-
diferenciabilidade atratora, o Otimizador passa a se mover segundo passos muito
pequenos. Uma ampliação desse movimento é mostrada na Figura à direita.

lugar desta a premissa de convexidade dessa função9.
A propriedade associada à convexidade que iremos utilizar na nova estratégia

de otimização pode ser entendida da seguinte forma:

• Uma curva de ńıvel de uma função convexa sempre delimita uma região con-
vexa em seu interior.

• O vetor gradiente, por sua vez, é sempre perpendicular à curva de ńıvel que
passa pelo ponto onde o vetor foi calculado.

• Assim, a reta perpendicular ao vetor gradiente que passa no ponto onde esse
vetor foi calculado é tangente à curva de ńıvel.

• Devido à convexidade da região no interior da curva de ńıvel, esta região sem-
pre fica inteiramente localizada em apenas um dos lados dessa reta tangente
(essa reta não corta a região no interior da curva de ńıvel), ou seja, do lado
oposto àquele para onde aponta o vetor gradiente.

Isso significa que, se calcularmos o gradiente de uma função convexa num ponto,
podemos ter certeza que o ponto de mı́nimo dessa função, que se localiza necessaria-
mente no interior da curva de ńıvel fechada que passa nesse ponto, está no semi-plano
oposto ao do vetor gradiente, delimitado pela reta perpendicular ao vetor gradiente.
Esse conceito é ilustrado na Figura 1.13.

O procedimento do Otimizador agora é descrito por:

9É claro que às vezes as funções a serem otimizadas serão convexas e às vezes não serão. Se não
forem, os métodos de exclusão de regiões poderão falhar.
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Métodos de Exclusão de Regiões

Passo 1: O Otimizador adquire informação em alguns pontos próximos
do atual, e faz uma estimativa do gradiente da função objetivo
nesse ponto (se ele estiver exatamente sobre um ponto em que a
função é não-diferenciável, admitamos, para simplificar, que ele se
movimenta para algum ponto próximo do atual, em que a função é
diferenciável).

Passo 2: Com base no gradiente, o Otimizador descobre qual é a reta
tangente à curva de ńıvel que passa pelo ponto atual, e descarta
todo o semi-plano que se encontra do lado dessa reta para o qual o
vetor gradiente aponta (o Otimizador tem certeza de que o mı́nimo
da função não está nesse semi-plano).

Passo 3: O Otimizador se move para algum ponto no interior da região
que ainda não está descartada, de preferência para um ponto apro-
ximadamente “no meio” dessa região10.

Passo 4: O Otimizador decide se existem ind́ıcios suficientes de que o
novo ponto já esteja suficientemente próximo do mı́nimo da função,
caso em que o processo termina, ou se a otimização deve continuar.
Nesse último caso, retorna ao Passo 1.

Deve-se observar que agora a convergência da sequência de pontos para o ponto
de mı́nimo da função objetivo ocorre em virtude da diminuição sistemática que é
feita, a cada iteração do método, da região em que esse ponto de mı́nimo pode estar
localizado. Com o avançar das iterações, a região fica cada vez menor, e o novo
ponto, que é escolhido dentro dessa região, tende a ficar cada vez mais próximo
do ponto de mı́nimo. Não há a possibilidade, agora, de uma não-diferenciabilidade
impedir a convergência do método.

Uma sequência de iterações de um método de exclusão de região é ilustrada na
Figura 1.13.

1.2.3 Estratégias de Populações

Grande parte das funções objetivo que queremos otimizar na prática, infelizmente,
não é unimodal. Por consequência, tanto as estratégias de direção de busca quanto
as estratégias de exclusão de regiões irão falhar em sua otimização11. Uma função
desse tipo é mostrada na Figura 1.14, e suas curvas de ńıvel são mostradas na Figura
1.15.

De fato, essa função possui diversas bacias de atração diferentes, associadas a
diferentes mı́nimos locais. Na tentativa de se fazer a otimização desta função por
meio de um mecanismo de direção de busca, por exemplo, o resultado sempre será o

10A maneira exata de escolher o novo ponto varia de método para método.
11Deve-se lembrar que se uma função não é unimodal, ela também não pode ser convexa.
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xxx1

xxx2

xxx3

xxx∗

Figura 1.13: Iterações de um método de exclusão de regiões, mostradas sobre as
curvas de ńıvel de uma função cujo mı́nimo exato é xxx∗. Suponha-se que, a priori, se
sabe que o mı́nimo da função se encontra na região delimitada pelo hexágono. Após
avaliar o gradiente da função em xxx1, o Otimizador pode concluir que o mı́nimo xxx∗,
cuja localização ainda não é conhecida, encontra-se abaixo da reta perpendicular a
esse gradiente, que passa nesse ponto. Um novo ponto xxx2 é escolhido no interior da
região restante. O gradiente nesse ponto também é calculado, trazendo a informação
de que o ponto xxx∗ não se encontra abaixo da reta perpendicular ao gradiente que
passa nesse ponto. A seguir um novo ponto xxx3 é escolhido, e o processo se repete,
levando à conclusão de que xxx∗ não se encontra à esquerda da reta que passa por
esse ponto. Observa-se que a cada passo vai diminuindo a região onde é posśıvel
que xxx se encontre. O processo termina quando a região “posśıvel” é suficientemente
pequena.
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Figura 1.14: Superf́ıcie que representa o gráfico de uma função multimodal f(xxx) de
duas variáveis. No “chão” do gráfico, encontram-se representadas as curvas de ńıvel
da função.
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Figura 1.15: Gráfico de curvas de ńıvel da mesma função multimodal de duas
variáveis reais, f(xxx), que encontra-se representada na Figura 1.14.
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ponto de mı́nimo local associado à bacia de atração onde a busca tiver sido iniciada.
Para se atingir o mı́nimo global com algum grau de certeza, é necessário “investigar”
a função em suas diferentes bacias de atração.

A estratégia a ser adotada envolve agora o trabalho não mais de um único
Otimizador sozinho: um grupo de Otimizadores será agora chamado a cooperar,
para tentar descobrir a localização do ponto de mı́nimo da função. Essa estratégia
é descrita a seguir:

Métodos de Populações

Passo 1: Um grupo de Otimizadores encontra-se espalhado pela região
onde acredita-se que se encontre o ponto de mı́nimo da função.
Cada um dos Otimizadores avalia a função objetivo no ponto onde
ele se encontra.

Passo 2: Os Otimizadores se comunicam, e trocam informações a res-
peito dos valores da função objetivo em cada ponto.

Passo 3: Um pequeno sub-grupo do grupo de Otimizadores, que estiver
nas melhores localizações fica parado. Os demais Otimizadores se
movimentam, com movimentos que simultaneamente: (i) os façam
se aproximarem dos otimizadores melhor localizados; e (ii) os façam
explorarem outras regiões, diferentes daquelas já visitadas anterior-
mente pelo grupo de Otimizadores.

Passo 4: Cada um dos Otimizadores avalia a função objetivo no ponto
para onde foi.

Passo 5: Os otimizadores decidem se o processo de otimização já pro-
duziu melhoria suficiente na função objetivo, caso em que o processo
se interrompe; do contrário, eles retornam ao Passo 2.

Há diferentes maneiras de realizar cada um dos passos do esquema descrito
acima. Cada combinação dessas diferentes fórmulas leva a um método espećıfico
diferente.

Esse tipo de estratégia pode ser pensado como um mecanismo útil para localizar
não exatamente o mı́nimo global da função objetivo, mas sim a bacia de atração
na qual este se encontra. Como usualmente os esquemas de “populações” requerem
um número muito maior de avaliações da função objetivo até atingirem o ponto
de mı́nimo da função objetivo, estas técnicas são muito “caras” comparado aos
esquemas de direções de busca ou de exclusão de regiões. Assim sendo, a ideia é que
o esquema de populações apenas conduza o Otimizador às proximidades do ponto de
mı́nimo global. Uma vez dentro da bacia de atração do mı́nimo global, o Otimizador
passa a adotar uma estratégia por exemplo de direção de busca, que o leva muito
mais rapidamente ao mı́nimo da função. Esse racioćınio funcionaria corretamente,
por exemplo, na otimização da função ilustrada na Figura 1.14. A Figura 1.16 mostra
sucessivas aproximações do ponto de mı́nimo global da função, que terminam por
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Figura 1.16: Superf́ıcie que representa o gráfico da mesma função multimodal f(xxx)
de duas variáveis mostrada na Figura 1.14, em sucessivas aproximações da região
onde se encontra seu mı́nimo global. Acima, estão representados os gráficos da
superf́ıcie, e abaixo as correspondentes curvas de ńıvel na mesma região. Deve-se
observar que, na região mais próxima ao mı́nimo, a função tem a “aparência” de
uma função unimodal.
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“se parecer” com uma função convexa e unimodal, nas proximidades do ponto de
mı́nimo. Na região correspondente à última aproximação mostrada na Figura, um
método de direções de busca ou de exclusão de regiões funcionaria. O método de
populações então poderia ser paralisado assim que houvesse ind́ıcios suficientes de
que determinado ponto se encontra no interior da bacia de atração do mı́nimo global,
sendo iniciado um outro método de otimização nesse ponto.

Essa lógica de mudança de um método de população para outro tipo de método
nem sempre funciona. Um exemplo de situação em que tal esquema não funciona-
ria é a função representada na Figura 1.17. Nessa figura, vemos um exemplo de
função em que ocorre o fenômeno das múltiplas escalas. Essa função, olhada a uma
“grande distância”, parece ter algumas bacias de atração. Olhada “de perto”, ela
revela uma estrutura muito mais complexa, com a presença de dezenas de peque-
nas “sub-bacias” onde parecia estar cada uma das bacias de atração inicialmente
aparentes. Um método de direção de busca que fosse iniciado no interior dessa
“grande bacia” aparente iria quase certamente falhar na busca do mı́nimo global, fi-
cando provavelmente detido em algum dos múltiplos mı́nimos locais existentes nessa
região. Funções desse tipo vão requerer a utilização de um esquema de população
para realizar sua otimização, do prinćıpio ao fim, sem a possibilidade de mudança
para outro tipo de método.

1.3 Otimização com Restrições de Desigualdade

A próxima situação a ser estudada aqui é aquela em que, na formulação do problema
de otimização, aparecem as chamadas restrições de desigualdade:

xxx∗ = arg min f(xxx)

sujeito a: {gi(xxx) ≤ 0, i, . . . , p
(1.9)

Essa descrição do problema significa, conforme já foi visto, que o ponto de ótimo xxx∗

a ser determinado deve satisfazer às p desigualdades:

g1(xxx
∗) ≤ 0

g2(xxx
∗) ≤ 0

...

gp(xxx
∗) ≤ 0

(1.10)

1.3.1 Interpretação geométrica de uma restrição de desi-
gualdade

Examinemos primeiro o que significa uma dessas desigualdades apenas, por exemplo
a primeira:

g1(xxx) ≤ 0 (1.11)
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Figura 1.17: Superf́ıcie que representa o gráfico de uma função multimodal f(xxx)
de duas variáveis que apresenta a caracteŕıstica de múltiplas escalas. Sucessivas
aproximações da região onde se encontra seu mı́nimo global irão revelar sucessivas
estruturas de menor escala, que possuem múltiplas bacias de atração dentro de
cada bacia de atração maior. Acima, estão representados os gráficos da superf́ıcie,
e abaixo as correspondentes curvas de ńıvel na mesma região. Deve-se observar
pelo primeiro par de gráficos, que onde esperaŕıamos encontrar uma única bacia
de atração, encontramos, no exame mais detalhado, uma estrutura com múltiplas
pequenas “sub-bacias”.
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Admitamos que a função g1(·) seja cont́ınua. Se isso for verdade, essa função nunca
muda “bruscamente” de valor. Por exemplo, para passar de um valor negativo para
um valor positivo, necessariamente ela tem de passar pelo valor zero. Isso significa
que, considerando todo o espaço R

n dos xxx, se houver um subconjunto P1 ⊂ R
n para

cujos pontos xxx a função g1(·) fica positiva, e outro subconjunto N1 ⊂ R
n para o qual

a função g1(·) fica negativa, então tem de haver um conjunto G1 ⊂ R
n para o qual

a função se anula, e que separa P1 de N1.
Matematicamente, definimos o conjunto P1 da seguinte forma:

P1 , {xxx | g1(xxx) > 0} (1.12)

Em palavras, essa expressão deve ser lida como: O conjunto P1 é definido como (,)
o conjunto dos pontos xxx tais que ( | ) a função g1(·) avaliada nesses pontos seja
maior que zero. De forma similar, são definidos os conjuntos G1 e N1:

G1 , {xxx | g1(xxx) = 0}

N1 , {xxx | g1(xxx) < 0}
(1.13)

A Figura 1.18 ilustra tais conjuntos, para um espaço de duas dimensões.
Quando inserimos, no problema de otimização, a exigência de que g1(xxx

∗) ≤
0, queremos dizer que iremos aceitar como soluções do problema de otimização
apenas pontos que sejam pertencentes ao conjunto N1 ou ao conjunto G1. Não
serão admisśıveis pontos pertencentes ao conjunto P1, que será assim denominado
conjunto infact́ıvel, ou região infact́ıvel. Diz-se então que o conjunto fact́ıvel, ou a
região fact́ıvel F1 é a união de G1 e N1:

F1 = G1 ∪ N1 (1.14)

Se aplicarmos agora um dos métodos de otimização irrestrita, discutidos nas
seções anteriores, para a minimização da função f(xxx), há duas possibilidades para
a localização do ponto de mı́nimo: ele tem de estar em P1 ou em F1. Se a última
hipótese ocorrer, a solução do problema será o ponto de mı́nimo encontrado. No
entanto, se o mı́nimo irrestrito (ou seja, o mı́nimo encontrado sem levar em consi-
deração a restrição g1(xxx

∗) ≤ 0) estiver na região infact́ıvel P1, alguma modificação
deverá ser introduzida no mecanismo de otimização, para que seja posśıvel localizar
o ponto de ótimo xxx∗ que minimiza a função objetivo f(·) nos pontos pertencentes
ao conjunto fact́ıvel F1.

Esse é, basicamente, o problema da otimização restrita com restrições de desi-
gualdade: determinar o ponto xxx∗ ∈ F (ou seja, pertencente à região fact́ıvel) que
minimiza a função f(·) nessa região (ou seja, que produz o menor valor dessa função,
quando comparado com os valores da função em todos os demais pontos da região
fact́ıvel).

1.3.2 Interpretação geométrica de várias restrições de desi-
gualdade

Antes de discutirmos como modificar os mecanismos de otimização para lidar com
problemas de otimização restrita, vamos procurar entender o que significa o sistema
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Figura 1.18: Na figura superior, é mostrada a superf́ıcie z = g1(xxx) com suas curvas
de ńıvel e sua interseção com o plano z = 0. Na figura inferior, é mostrado o plano
x, onde se apresenta apenas a curva de ńıvel g1(xxx) = 0. Nesse plano, a região N1

corresponde aos pontos em que a função g1(·) é negativa; a região P1 corresponde
aos pontos em que a função g1(·) é positiva; e a fronteira que separa essas regiões,
G1, corresponde aos pontos em que a função g1(·) se anula.
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Figura 1.19: A região F1 corresponde aos pontos em que a função g1(·) é negativa
(Figura superior esquerda). A região F2 corresponde aos pontos em que a função
g2(·) é negativa (Figura superior direita). A interseção dessas duas regiões, F ,
corresponde aos pontos em que ambas as funções são negativas, simultaneamente
(Figura inferior direita). A Figura inferior esquerda mostra as superf́ıcies z = g1(x),
z = g2(x), assim como sua interseção com o plano z = 0 e suas curvas de ńıvel.
Pode-se observar também nesta Figura a região F .

de restrições na forma em que o mesmo usualmente aparece: um conjunto de várias
desigualdades que devem ser simultaneamente satisfeitas. Escrevendo novamente o
sistema:

g1(xxx
∗) ≤ 0

g2(xxx
∗) ≤ 0

...

gp(xxx
∗) ≤ 0

(1.15)

A Figura 1.19 mostra a situação para duas restrições: a região fact́ıvel (ou seja, a
região dos pontos que simultaneamente atendem às duas restrições) corresponde à
interseção da região cujos pontos atendem à primeira restrição com a região cujos
pontos atendem à segunda restrição. Em geral, se Fi designa a região em que a
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função gi(·) é menor ou igual a zero12, temos que a região fact́ıvel F do problema
envolvendo todo o conjunto de restrições (1.15) corresponde à interseção de todas
essas regiões:

F = F1 ∩ F2 ∩ . . . ∩ Fp (1.16)

O problema de otimização restrita com restrições de desigualdade, em sua forma
geral, trata da questão de determinação do ponto de mı́nimo xxx∗ de uma função,
dentro de uma região fact́ıvel F definida dessa forma. Nas subseções que se seguem,
mostraremos algumas formas do nosso Otimizador lidar com tal problema.

1.3.3 Barreiras e Penalidades

A primeira maneira de tentar adaptar os métodos de otimização, que foram formu-
lados para problemas de otimização irrestrita, para o caso agora em análise, com
restrições de desigualdade, é a técnica das barreiras e penalidades. A ideia é modifi-
car a função-objetivo, acrescentando um termo que, dentro da região fact́ıvel, afeta
pouco a função, mas que nas proximidades da fronteira da região fact́ıvel (no caso
das barreiras) ou no exterior da região fact́ıvel (no caso das penalidades) muda bas-
tante a função, “impedindo” ou “penalizando” o Otimizador, ou seja, o algoritmo
de otimização, de sair da região fact́ıvel (método de barreiras) ou de permanecer na
região inviável (método de penalidades).

Em termos matemáticos, o problema de otimização original, definido por:

xxx∗ = argmin
xxx

f(xxx)

sujeito a: {gi(xxx) ≤ 0

(1.17)

é substitúıdo pelo problema:

xxx∗ = argmin
xxx

f(xxx) + F (xxx) (1.18)

A função F (·) deve ser muito pequena (ou zero) no interior da região fact́ıvel,
de tal forma que f(·) seja muito parecida com f(·) + F (·) em qualquer ponto deste
espaço.

No caso de métodos de barreiras, a função F (·) deve crescer muito rapidamente
quando estamos perto da fronteira da região fact́ıvel. A ideia é que o Otimizador, ao
se aproximar dessa fronteira, verifique um súbito aumento da função f(xxx)+F (xxx) (que
é a função que ele está otimizando), de forma que ele não caminha em direção a essa
fronteira. O Otimizador, se tiver iniciado a busca no interior da região fact́ıvel, irá
sempre ficar nessa região, portanto13. Esse tipo de método é denominado de barreira
porque a função F (·) cria uma espécie de “barreira”, que impede que o Otimizador
atinja a fronteira da região fact́ıvel. A Figura 1.20 ilustra uma função modificada
com uma barreira, para uma situação de otimização em uma única variável.

12Observe que essa notação, utilizando o ı́ndice i, significa o mesmo que uma enumeração de
todas as funções e regiões: F1 correspondendo à região em que g1(·) ≤ 0, F2 correspondendo à
região em que g2(·) ≤ 0, e assim por diante.

13Deve-se tomar o cuidado, ao utilizar um método de barreira, para que o ponto inicial já esteja
no interior da região fact́ıvel.
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Figura 1.20: Ilustração de uma função de barreira, constrúıda para garantir a res-
trição de que a otimização deva ocorrer no interior de um ćırculo de raio igual a 1,
que seria a região fact́ıvel de um problema de otimização. Essa função, somada à
função objetivo, teria o papel de “impedir” a sáıda de um Otimizador do interior
desse ćırculo de raio 1 que corresponde à região fact́ıvel.

Os métodos de penalidades, por outro lado, são obtidos se se faz a função F (·)
crescer rapidamente do lado de fora da região fact́ıvel, para valores que aumentam
à medida em que nos afastamos dessa região. A ideia, neste caso, é fazer com que o
Otimizador, ao sair da região fact́ıvel, encontre um crescimento da função f(xxx)+F (xxx)
que ele está otimizando, de forma que ele tende a voltar ao interior da região. Esse
tipo de método é denominado de penalidade porque a função F (·) faz com que o
Otimizador seja apenado (ou seja, sofra uma penalidade) caso ultrapasse a fronteira
da região fact́ıvel, sendo tanto maior a penalidade quanto mais o Otimizador se
afastar dessa região. A Figura 1.21 ilustra uma função de penalidade.

A Figura 1.22 sobrepõe os gráficos das Figuras 1.20 e 1.21, que mostram uma
função barreira e uma função penalidade para o tratamento da mesma restrição.

Deve-se notar que, uma vez que a função objetivo esteja modificada, seja por
uma função de barreira, seja por uma de penalidade, a resultante função modificada
pode ser otimizada utilizando os mesmos métodos que foram desenvolvidos para
o caso da otimização sem restrições. Tipicamente, serão empregados métodos de
direções de busca para resolver problemas formulados dessa maneira14.

14Deve-se notar que, em particular, as funções de barreira não seriam funcionais se empregados
nem junto com métodos de exclusão de regiões nem junto com métodos de populações. Já as
funções de penalidade não causariam essas dificuldades, e poderiam ser empregadas com qualquer
sistema de otimização. O leitor é convidado a explicar por quê isso ocorre.
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Figura 1.21: Ilustração de uma função de penalidade. A região fact́ıvel corresponde
ao interior do ćırculo indicado em vermelho. A função de penalidade é igual a zero
no interior da região fact́ıvel, e cresce rapidamente à medida em que o ponto se
afasta dessa região.
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Figura 1.22: Sobreposição dos gráficos das figuras 1.20 e 1.21, de forma a mostrar
uma função barreira e uma função penalidade para a mesma restrição. No caso,
a restrição define como região fact́ıvel o interior do ćırculo de raio 1 centrado na
origem.
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1.3.4 Composição pelo Máximo

Embora seja posśıvel utilizar as funções de penalidade para lidar com as restrições
de problemas de otimização nos casos em que o mecanismo de otimização a ser
empregado é do tipo exclusão de regiões, há uma forma mais natural de tratar as
restrições nesse caso. Considera-se, primeiro, a seguinte função:

G(xxx) = max(g1(xxx), g2(xxx), . . . , gp(xxx)) (1.19)

A função G(·) é a chamada composição pelo máximo das funções gi(·). O leitor é
convidado a examinar a curva de ńıvel G(xxx) = 0. Essa curva de ńıvel corresponde
exatamente à fronteira da região fact́ıvel do problema. Cada curva de ńıvel G(xxx) =
α, para α > 0, corresponde a uma curva (ou hipersuperf́ıcie, em dimensões maiores
que dois) fechada que é exterior às curvas correspondentes a valores menores de α,
e todas têm em seu interior a região fact́ıvel do problema (a curva correspondente a
α = 0)15.

Imagine-se agora a aplicação de uma técnica de otimização por exclusão de
regiões à função G(·). Se o Otimizador começar, nesse caso, em um ponto fora da
região fact́ıvel, a primeira exclusão será de um semi-espaço que garantidamente não
contém a região fact́ıvel, ficando para continuar a ser examinado o semi-espaço que
contém a região fact́ıvel. O processo continua até que, certamente, o Otimizador
finalmente cai dentro da região fact́ıvel.

Para fechar o procedimento a ser aplicado, uma vez dentro da região fact́ıvel
do problema, aplica-se um passo convencional de “exclusão de região”, utilizando a
função objetivo f(·) para determinar a exclusão. O significado desse passo é: após
esse corte, o Otimizador permanece com o semi-espaço que contém a parcela da
região fact́ıvel na qual o ponto de ótimo do problema se encontra (ou seja, elimina-
se a parcela da região fact́ıvel em que o ponto de ótimo não se encontra). Essas
operações são ilustradas na Figura 1.23.

O algoritmo resultante da sequência dessas operações pode oscilar, levando o
Otimizador sucessivamente para dentro e para fora da região fact́ıvel. No entanto,
como no caso irrestrito, o volume da região considerada necessariamente diminui a
cada passo, sendo que o ponto de ótimo permanece nessa região. O Otimizador,
assim, termina arbitrariamente próximo do ótimo.

1.4 Otimização com Restrições de Igualdade

Consideremos agora o problema de otimização com restrições de igualdade:

xxx∗ = arg min f(xxx)

sujeito a: {hj(xxx) = 0, j = 1 . . . , q
(1.20)

15Para fazermos essa afirmativa, na verdade, estamos assumindo que as funções gi(·) sejam todas
convexas ou, pelo menos, quasi-convexas.
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~x∗

~xi

∇f(~x)

∇g(~x)

Figura 1.23: Ilustração da aplicação do processo de exclusão de região em um pro-
blema de otimização restrita. São mostradas, na figura, as curvas de ńıvel da função
objetivo f(xxx), ao redor do mı́nimo irrestrito xxxi, e as curvas de ńıvel das restrições
gi(xxx). Estas são mostradas no exterior da região fact́ıvel, sendo mostradas, em traço
mais grosso, as curvas correspondentes a gi(xxx) = 0 (ou seja, as curvas que definem
as fronteiras da região fact́ıvel). O ponto de ótimo do problema é representado
por xxx∗. São mostrados os vetores gradientes da função objetivo, ∇f(xxx), em um
ponto fact́ıvel, e gradiente de uma restrição violada, ∇g(xxx), em um ponto infact́ıvel.
Deve-se observar que as retas normais a ambos os vetores gradiente definem cortes
do plano tais que o semi-plano oposto ao vetor gradiente, em ambos os casos, ne-
cessariamente contém a solução xxx∗. (No caso do corte feito no ponto infact́ıvel, o
semi-plano oposto ao gradiente contém de fato toda a região fact́ıvel).
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Essa descrição do problema significa, conforme já foi visto, que o ponto de ótimo xxx∗

a ser determinado deve satisfazer às q equações:

h1(xxx
∗) = 0

h2(xxx
∗) = 0

...

hq(xxx
∗) = 0

(1.21)

Num espaço de n dimensões, cada uma dessas equações pode ser interpretada
como uma descrição de um conjunto de pontos (os pontos xxx que a satisfazem) que
fazem parte de uma superf́ıcie de dimensão n − 1. Por exemplo, num espaço de
dimensão 3, uma equação dessas significa uma superf́ıcie no sentido convencional,
dotada de duas dimensões (algo como uma “folha” curvada). Essa superf́ıcie corres-
ponde ao conjunto dos pontos fact́ıveis do problema de otimização, se ele envolver
apenas uma restrição de igualdade. No caso de q restrições de igualdade, o conjunto
fact́ıvel corresponde à interseção de todas as superf́ıcies (cada uma associada a uma
das restrições de igualdade).

O espaço que estamos considerando, na série de exemplos que vem sendo apre-
sentada neste caṕıtulo, possui apenas duas dimensões. Assim, o lugar geométrico
definido por uma equação do tipo:

h1(xxx) = 0 (1.22)

corresponde a um objeto de dimensão um, ou seja, uma linha (possivelmente curva).
Este será o conjunto fact́ıvel de um problema de otimização que tiver (1.22) como
restrição. A Figura 1.24 mostra um exemplo dessa situação.

Das técnicas mostradas anteriormente para tratar de problemas de otimização
com restrições de desigualdade, duas simplesmente não funcionam para o caso de
restrições de igualdade: o método de barreiras e o método de composição pelo
máximo. A razão disso é que ambas as técnicas dependem da existência de pontos
que sejam interiores à região fact́ıvel do problema para funcionarem, e as regiões
fact́ıveis de restrições de igualdade não possuem pontos interiores16. A técnica de
penalidades, por sua vez, pode ser empregada.

1.5 Otimização Linear

Um caso especial particularmente importante do problema de otimização ocorre
quando tanto a função objetivo quanto as funções de restrição são lineares17. Esse

16Pontos interiores a uma região são pontos que pertencem a essa região e não estão em sua
fronteira. Claramente, todos os pontos fact́ıveis de problemas de otimização com restrições de
igualdade estão na fronteira da região fact́ıvel, isto é, possuem algum ponto vizinho fora dessa
região.

17No caso das restrições, uma terminologia mais precisa iria dizer que são afins e não lineares.
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Figura 1.24: A linha corresponde ao lugar geométrico dos pontos que satisfazem
h(xxx) = 0. Essa linha é a região fact́ıvel de um problema de otimização com essa
restrição.

é o chamado problema de otimização linear:

xxx∗ = argminccc′xxx

sujeito a: {Axxx ≤ bbb

(1.23)

sendo ccc um vetor de dimensão n (mesmo tamanho que xxx), A uma matriz R
m×n e bbb

um vetor de dimensão m. Claramente, a função objetivo desse problema é a função
linear:

f(xxx) = c1x1 + c2x2 + . . .+ cnxn (1.24)

e o conjunto de restrições corresponde às m desigualdades:

a11x1 + a12x2 + . . .+ a1nxn ≤ b1
a21x1 + a22x2 + . . .+ a2nxn ≤ b2
...
am1x1 + am2x2 + . . .+ amnxn ≤ bm

(1.25)

A otimização linear é particularmente importante por duas razões: Primeiro, um
número muito grande de situações práticas é modelado pela formulação linear. Se-
gundo, devido à sua estrutura peculiar, problemas de otimização linear podem ser
resolvidos muito mais rapidamente que problemas de otimização não-linear com o
mesmo número de variáveis e o mesmo número de restrições. Assim, algoritmos
especializados para resolver apenas problemas lineares são capazes de lidar com pro-
blemas muito grandes (muito maiores que aqueles que poderiam ser resolvidos no
caso não-linear geral).
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Figura 1.25: Superf́ıcie correspondente à função objetivo linear f(xxx) = ccc′xxx. Na figura
estão representadas também as curvas de ńıvel da função, que são retas paralelas.

Vamos examinar essa estrutura peculiar que torna tão favorável a otimização
linear. No caso de duas variáveis de otimização, a superf́ıcie representativa da função
linear é simplesmente um plano, e suas curvas de ńıvel são retas paralelas. Isso é
mostrado na Figura 1.25.

O problema de otimização de uma função linear não faz sentido se não estiver
acompanhado de restrições, pois o ponto que minimiza tal função objetivo encontra-
se no infinito18. Examinemos o que são as restrições do problema de otimização
linear. Num espaço de n dimensões, a desigualdade:

a11x1 + a12x2 + . . .+ a1nxn ≤ b1 (1.26)

representa um semi-espaço. A fronteira que separa a região fact́ıvel da infact́ıvel
corresponde a um hiperplano nesse espaço. No caso de duas dimensões, a desigual-
dade:

a11x1 + a12x2 ≤ b1 (1.27)

define um semi-plano como região fact́ıvel, e a fronteira dessa região fact́ıvel corres-
ponde à reta a11x1 + a12x2 = b1. Consideremos agora várias restrições de desigual-
dade em duas dimensões:

a11x1 + a12x2 ≤ b1
a21x1 + a22x2 ≤ b2
...
am1x1 + am2x2 ≤ bm

(1.28)

Como cada uma dessas restrições de desigualdade define um semi-plano, as várias
restrições de desigualdade correspondem à interseção de vários semi-planos, o que
define um poliedro. Isso é mostrado na Figura 1.26.

18Em outras palavras, não existe nenhum mı́nimo local irrestrito de uma função objetivo linear.
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F

Figura 1.26: Região fact́ıvel F correspondente a várias restrições lineares de desi-
gualdade. Cada reta que contém um dos lados do poliedro fact́ıvel corresponde à
fronteira de uma restrição de desigualdade.

Observemos agora, na Figura 1.27, a superposição das curvas de ńıvel de uma
função objetivo linear com uma região fact́ıvel linear. O dado relevante a ser ob-
servado é que, num problema linear, o ponto de ótimo necessariamente se encontra
sobre um vértice do poliedro fact́ıvel.

O leitor deve se convencer de que seria imposśıvel, num problema linear, que
o mı́nimo da função objetivo estivesse no interior da região fact́ıvel. Seria também
imposśıvel que esse mı́nimo estivesse em um ponto da fronteira da região fact́ıvel
sem estar em um dos vértices dessa fronteira19. Assim, uma posśıvel estratégia para
resolver problemas lineares seria fazer o Otimizador percorrer apenas o conjunto dos
vértices da região fact́ıvel, escolhendo dentre esses vértices aquele com menor valor de
função objetivo. É posśıvel implementar métodos bastante eficientes de otimização
com base em tal estratégia: esses são os chamados métodos Simplex. Esse tipo de
lógica, largamente empregada no contexto da otimização linear, é fundamentalmente
diferente dos procedimentos que podem ser utilizados na otimização não-linear20.

19No entanto, seria posśıvel que houvesse múltiplos mı́nimos, incluindo pontos diversos da fron-
teira, dentre esses necessariamente pelo menos um dos vértices.

20Devemos entretanto informar o leitor que, recentemente, outras estratégias de otimização li-
near, denominadas métodos de pontos interiores, vêm ganhando a preferência dos usuários, es-
tratégias essas que têm semelhança com métodos de otimização não-linear.
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F

∇f(xxx)

xxx

Figura 1.27: O vetor gradiente da função objetivo, ∇f(xxx), mostrado no ponto xxx, é
constante em todo o espaço, pois a função objetivo é linear. As linhas tracejadas
correspondem às curvas de ńıvel da função objetivo, sendo que elas correspondem
a valores cada vez menores de função objetivo quando se caminha da direita para a
esquerda. Dessa forma, o ponto xxx indicado na figura é o de menor valor de função
objetivo dentro da região fact́ıvel F , correspondendo ao ponto em que a curva de
ńıvel de menor valor toca a região fact́ıvel.
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Figura 1.28: Ilustração do auto-falante em 2D com indicação das regiões de “Ferro”,
“Ímã” e das variáveis x de projeto.

1.6 Estudos de Casos

1.6.1 O projeto de um auto-falante

Nesta subseção discutiremos o projeto de um auto-falante.

Descrição do problema

Omodelo, representado na Figura1.28, consiste de três materiais distintos: Ar, Ferro
e Ímã. As propriedades f́ısicas de cada um destes materiais são dadas na Tabela
1.1. As curvas de magnetização B-H do ferro e do ı́mã foram obtidas através da
interpolação quadrática de pontos amostrados experimentalmente, conforme ilus-
trado nas Figuras 1.29 e 1.30. Os pontos utilizados para gerar estas interpolações
foram obtidos na biblioteca de materiais do software de análise numérica FEMM 4.2
(Finite Element Method Magnetics), utilizado na construção deste modelo.

Tabela 1.1: Materiais utilizados no modelo do auto-falante.
Denominação Ar Ferro Ímã
Material Air Pure Iron Ceramic 5 magnet
µr 1,0 * *
Hc [A/m] 0,0 0,0 191262
σ [MS/m] 0,0 10,44 0,0

Definição do problema de otimização

O objetivo neste problema consiste na minimização do volume total de material
utilizado na construção do auto-falante. Este objetivo é restrito pelo requisito de
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Figura 1.29: Curva de magnetização utilizada para a modelagem do núcleo de ferro.

um valor mı́nimo da densidade de fluxo magnético na região definida pela variável
x9. Matematicamente, o problema pode é descrito por (1.29):

min f (xxx) = volume
sujeito a: g1(xxx) : |B| ≥ Bmin

(1.29)

com Bmin = 0, 5 T e o volume representando a soma total do volume das partes do
alto-falante.

Os limites recomendados para as variáveis de otimização são dados na Tabela
1.2. Esta tabela também fornece sugestões de valores fixos, a serem utilizados em
casos de otimização parcial do modelo ou como ponto de partida para o teste de
algoritmos determińısticos.

O cálculo da densidade de fluxo magnético B

O auto-falante descrito nas seções anteriores foi modelado na forma de um script
LUA (www.lua.org), que por sua vez é interpretado pelo pacote de elementos finitos
FEMM 4.2 (www.femm.info). A implementação atual é capaz de realizar simulações
em batelada, retornando um arquivo de sáıda contendo os valores de densidade de
fluxo magnético e volume do dispositivo. Este pacote á capaz ainda de gerar facil-
mente a visualização de linhas de campo e mapas de densidade de fluxo magnético.

Instruções de Uso

1. Software necessário:

• Finite Element Method Magnetics v.4.2

• Matlab

2. Arquivos necessários (www.cpdee.ufmg.br/∼ fcampelo/files/loudspeaker/):
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Figura 1.30: Curva de magnetização utilizada para a modelagem do ı́mã de cerâmica.

• loudspeaker.lua

• CallFEMM LS.m

• LS fun.m

3. Opções de problema:

• Otimização completa (16 variáveis)

• Otimização parcial (7 variáveis)

4. Forma de utilização:

• Copie todos os arquivos contidos em (/∼ fcampelo/files/loudspeaker/)
para um diretório local (p.ex., “C:\loudspeaker\” – este caminho não
deve conter espaços em branco).

• Nas linhas 33–35 do arquivo loudspeaker.lua, insira o caminho escolhido.

• Nas linhas 5–8 do arquivo CallFEMM LS.m, insira o caminho escolhido.

Para testar se os diretórios estão corretos, proceda da seguinte forma:

1. LUA script:

• Abra o FEMM 4.2;

• Selecione File - Open LUA Script - loudspeaker.lua

• Caso o arquivo loudspeaker.lua esteja correto, o FEMM deve executar
uma simulação de teste (definida pelo arquivo loudspeaker.in contido em
/∼ fcampelo/files/loudspeaker/) e fechar automaticamente.

2. Rotina Matlab:
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Tabela 1.2: Limites do espaço de busca.
Variável min (mm) max (mm) fixo (mm)
x1 3.0 12.0 5.0
x2 1.0 4.0 3.0
x3 1.0 4.0 2.0
x4 0.0 3.0 1.5
x5 5.0 15.0 7.0
x6 2.0 5.0 4.0
x7 1.0 10.0 2.0
x8 1.0 3.0 2.0
x9 0.5 2.0 1.0
x10 0.0 3.0 1.0
x11 1.0 5.0 2.0
x12 2.0 5.0 2.0
x13 0.0 2.0 1.0
x14 5.0 12.0 7.0
x15 2.0 5.0 4.0
x16 1.0 5.0 2.0

• Abra o Matlab e selecione o diretório contendo os arquivos do auto-
falante;

• Na janela de comando, digite:
>> X = [5.0,3.0,1.0,0.0,7.0,6.0,2.0,5.0,0.5,...
0.0,1.0,0.5,1.0,7.0,4.0,1.0]’;
>> Y = CallFEMM LS(X)

• Caso o arquivo CallFEMM LS.m esteja correto, o Matlab invocará uma
janela do FEMM, que executará uma simulação de teste e retornará o
foco para o Matlab.

Além da função LS fun.m, há também as funções LS vol.m e LS B.m, capazes
de retornar as componentes de volume e de campo separadamente. As rotinas do
Matlab são extensivamente comentadas e facilmente adaptáveis para uma ampla
gama de algoritmos de otimização.

Resultados

A Tabela 1.3 mostra os resultados obtidos para o problema com 7 variáveis, que
indica um auto-falante com volume total V = 15.4696 cm3 e densidade de fluxo
B = 0.4953 T .

A Figura 1.31 ilustra uma configuração posśıvel para o problema do auto-falante.
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Tabela 1.3: Resultado para o problema com 7 variáveis.
Variável Resultado (mm) Fixo (mm)
x1 − 5.0
x2 3.5089 −
x3 − 2.0
x4 − 1.5
x5 − 7.0
x6 2.0053 −
x7 − 2.0
x8 − 2.0
x9 − 1.0
x10 1.1941 −
x11 1.0000 −
x12 − 2.0
x13 − 1.0
x14 11.9946 −
x15 5.0000 −
x16 − 2.0

Figura 1.31: Resultado de uma configuração posśıvel do alto-falante com ilustração
das linhas equipotenciais de B
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