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Otimização de Redes Heurísticas Matemáticas:
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Heurísticas Matemáticas

❖ (Meta)heurísticas hibridizadas com métodos exatos;

❖ Algoritmos  híbridos  normalmente  se  baseiam  em 
uma estrutura “master-slave”:

❖ (i) Método exato controla o uso da MH; ou

❖ (ii) MH controla as chamadas ao método exato;



Heurísticas Matemáticas
❖ Algoritmos híbridos do tipo (i):

❖ MH é embutida em um solver;

❖ MIP solvers podem consumir muito tempo até encontrar 
a primeira solução viável;

❖ Solvers B&C modernos  já exploram o potencial  de MHs 
para  determinar  rapidamente  boas  soluções  iniciais 
(estágios iniciais de exploração da árvore);

❖ Limitantes relacionados são usados para podar ramos da 
árvore (acelera o processo de busca e reduz custo).



Heurísticas Matemáticas

❖ Algoritmos híbridos do tipo (ii):

❖ a definição da vizinhança segue a lógica de uma MH

❖ a  exploração  da  vizinhança  é  realizada  por  um 
método exato



Introdução
❖ Algoritmos  híbridos  podem  ser  de  natureza  exata  ou 

heurística;

❖ Métodos  exatos  garantem  soluções  ótimas  quando  tempo 
computacional suficiente é fornecido;

❖ Heurísticas  objetivam  somente  encontrar  boas  soluções 
aproximadas em um tempo mais restritivo (convergência 
não é garantida);

❖ A maioria das técnicas híbridas são de natureza heurística, 
e  métodos  de  programação  matemática  são  usados  para 
impulsionar o desempenho de uma MH.



Introdução

❖ A  maioria  das  técnicas  exatas  para  solução  de 
combinatorial  optimization problems  (COPs) se baseia 
na busca em árvore:

❖ o espaço de busca é particionado recursivamente 
fixando algumas variáveis ou impondo restrições 
adicionais.



Introdução
❖ No  B&B,  limitantes  superiores  e  inferiores  são 

determinados para os valores objetivos das soluções:

❖ toda solução viável provê um limitante superior;

❖ subespaços  cujos  limitantes  inferiores  excedem os 
limitantes superiores são descartados;

❖ MHs são viáveis para encontrar rapidamente soluções 
aproximadas, úteis no processo de poda do B&B.



Introdução

❖ Relaxações:

❖ várias ou todas as restrições de um problema são 
relaxadas ou omitidas;

❖ muito usadas para obter problemas relacionados, 
simples,  que podem ser  resolvidos  eficientemente 
fornecendo  limitantes  e  soluções  aproximadas 
(não necessariamente  factíveis)  para  o  problema 
original;



Introdução

❖ Relaxação LP de um IP:

❖ zIP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Zn}

❖ zLP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Rn}

❖ grandes instâncias  de LPs podem ser  resolvidas 
eficientemente via Simplex ou Pontos Interiores;

❖ a solução do LP provê um limitante inferior para 
o IP, i.e., zLP ≤ zIP.



Alg. Híbridos Tipo (i)



Definição de Limitantes com MHs
❖ MHs podem ser aplicadas ao problema original antes 

do início do B&B:

❖ provê soluções factíveis iniciais (CPLEX, GUROBI);

❖ reduz espaço de busca do método exato;

❖ acelera o processo de otimização;

❖ podem  ser  aplicadas  repetidas  vezes  ao  longo  da 
busca na árvore;

❖ muitas aplicações podem consumir muito tempo!



Solution Merging

❖ Novas  soluções,  possivelmente  melhores,  são 
criadas  a  partir  dos  atributos  de  outras  soluções 
promissoras (integração entre B&B e EA):

❖ Mutation & Recombination (fixa variáveis comuns e 
otimiza as demais com um MIP solver);

❖ Path relinking; 

❖ into CPLEX since version 10!



Alg. Híbridos Tipo (ii)



Heurísticas Matemáticas
❖ Tema Abordado:

❖ Uso de algoritmos exatos para melhorar o desempenho de 
métodos de busca local estocásticos.

❖ Foca em algoritmos cujo framework principal é baseado em 
busca  local,  mas  usa  métodos  exatos  para  resolver 
subproblemas.



Introdução
❖ Combinatorial  optimization  problems  (COPs)  são  intrigantes 

pois apesar da facilidade de definição, são muito difíceis 
de resolver (NP-difícil).

❖ Esta dificuldade, aliada a sua enorme importância prática, 
tem motivado o desenvolvimento de inúmeras técnicas de 
solução para os mesmos.

❖ Estas técnicas de solução podem ser classificadas como:

❖ algoritmos exatos;

❖ algoritmos aproximativos. 



Introdução

❖ Algoritmos Exatos:

❖ Garantem a determinação de uma solução ótima;

❖ Prova  sua  otimalidade  para  toda  instância  de 
tamanho finito (tempo de execução finito);

❖ Caso  contrário,  prova  que  não  existe  solução 
viável;

❖ Integer Programming (IP): B&B, B&C, B&P, DP



Introdução

❖ Vantagens de Algoritmos Exatos:

❖ Provam otimalidade (se o método converge);

❖ Fornecem  informações  valiosas  sobre  limitantes 
superior/inferior da solução ótima;

❖ Permitem a poda de partes  do espaço de busca 
onde não existem soluções ótimas;

❖ Softwares comerciais: GLPK, CPLEX, GUROBI



Introdução

❖ Desvantagens de Algoritmos Exatos:

❖ Para muitos problemas, o tamanho  de instâncias resolvidas 
na prática é muito limitado;

❖ O  consumo  de  memória  por  algoritmos  exatos  pode  ser 
muito alto, podendo causar a parada prematura do programa;

❖ Algoritmos  de  alto  desempenho  são  específicos  para  cada 
problema (IP requer muito tempo de desenvolvimento);

❖ A extensão é frequentemente difícil mesmo para variantes de 
um mesmo problemas.



Introdução

❖ Algoritmos Aproximativos:

❖ Se  soluções  ótimas  não  podem  ser  obtidas  de 
forma eficiente,  abre-se mão da otimalidade  em 
troca de eficiência computacional.

❖ Soluções aproximadas podem ser encontradas em 
tempo razoavelmente curto.

❖ Stochastic Local Search (SLS): VNS, GRASP, ILS



Introdução
❖ Vantagens de Algoritmos Aproximativos:

❖ Representam os métodos de melhor desempenho para 
uma grande variedade de COPs;

❖ Podem  examinar  um  grande  número  de  soluções 
candidatas em um curto tempo computacional;

❖ São frequentemente mais fáceis de adaptar a variantes 
de um problema, i.e., mais flexíveis;

❖ São  mais  fáceis  de  entender  e  implementar  do  que 
métodos exatos.



Introdução

❖ Desvantagens de Algoritmos Aproximativos:

❖ Não provam otimalidade, nem fornecem limitantes para 
a qualidade das soluções;

❖ Usualmente, não podem reduzir o espaço de busca;

❖ Não possuem critérios de parada bem definidos;

❖ Frequentemente, enfrentam dificuldades com problemas 
fortemente restritos (regiões factíveis desconexas);

❖ SLS Solvers disponíveis não são, em geral, eficientes.



Introdução

❖ Métodos IP e SLS possuem vantagens e limitações;

❖ Podem ser vistos como complementares;

❖ Podem ser combinados em poderosos algoritmos:

❖ heurísticas matemáticas!!!

❖ Exemplo mais usual: 

SLS —> determinar bons limitantes superiores iniciais

IP    —> podar soluções inferiores



Introdução

❖ Escopo*:

❖ Algoritmo principal (the master) —> SLS

❖ Método IP —> otimização de subproblemas

*A filosofia inversa é discutida no livro texto.



Introdução

❖ Escopo (a partir de várias estratégias híbridas da literatura):

❖ Uso de IP para explorar grandes vizinhanças em SLS;

❖ Formas  de  aperfeiçoar  SLS  resolvendo subproblemas  de 
maneira exata;

❖ Uso de técnicas de B&B para aperfeiçoar SLS Construtivas;

❖ Refinamento  da  estrutura  de  boas  soluções  encontradas 
por SLS;

❖ Refinamento de informações de relaxações em SLS.



Explorando Grandes Vizinhanças

❖ Em uma busca local,  melhores  soluções  têm mais 
chances de serem obtidas em grande vizinhanças do 
que em vizinhanças pequenas/simples;

❖ Entretanto,  uma  busca  sobre  grandes  vizinhanças 
pode exigir um tempo computacional considerável;

❖ Além  disso,  muitas  vizinhanças  grandes  possuem 
crescimento  exponencial  com  o  tamanho  da 
instância.



Explorando Grandes Vizinhanças
❖ Métodos  SLS  para  grandes  vizinhanças  podem  ser 

divididos em duas classes:

❖ métodos de busca heurísticos 

❖ variable-depth search algorithms

❖ ejection chains

❖ métodos de busca exatos

❖ o problema de busca é definido como um problema 
de otimização, que é resolvido de forma exata.



Explorando Grandes Vizinhanças

❖ Definição do problema de busca em vizinhança #1:

❖ a exploração da vizinhança completa  é modelada 
como um problema de otimização;

❖ a tarefa do algoritmo exato é realizar a otimização 
do neighborhood search problem (NSP).



Explorando Grandes Vizinhanças



Explorando Grandes Vizinhanças

❖ Definição do problema de busca em vizinhança #2:

❖ em  cada  passo  da  busca  local,  uma  parte  da 
solução corrente s é mantida fixa (solução parcial);

❖ os  valores  das  demais  variáveis  de  decisão 
continuam  “livres”,  os  quais  são  arranjados  de 
forma ótima;

❖ a tarefa do algoritmo exato é realizar a otimização 
do partial neighborhood search problem (PNSP).



Explorando Grandes Vizinhanças



Explorando Grandes Vizinhanças
❖ Exemplo PNSP: Hyperopt Neighborhoods (TSP)

❖ hyperopt  neighborhood  é  baseada na noção de hiper-
arestas;

❖ uma hiper-aresta  é  definida como um subcaminho 
de uma rota;



Explorando Grandes Vizinhanças

❖ Exemplo PNSP: Hyperopt Neighborhoods (TSP)

❖ uma  hiper-aresta  entre  os  nós  i  e  j  é  dada  por 
H(i,j);

❖ o  tamanho  de  uma  hiper-aresta  é  dado  pelo 
número de arestas existentes no subcaminho;

❖ a  vizinhança  k-hyperopt  consiste  de  todos  os 
movimentos k-hyperopt;



Explorando Grandes Vizinhanças
❖ Exemplo PNSP: Hyperopt Neighborhoods (TSP)

❖ cada  subproblema  (definido  pelo  conjunto  de  hiper-
arestas) é resolvido de forma ótima usando movimentos 
k-hyperopt;

❖ estratégia eficiente somente quando k < 3; caso contrário, 
sugere-se programação dinâmica;

❖ as soluções parciais compõem uma nova solução final, a 
qual é comparada à solução incumbente.



Explorando Grandes Vizinhanças
❖ Outras Estratégias:

❖ Constraint  Programming  (CP)  pode  ser  usada  para 
resolver o NSP:

❖ CP  é  uma  estratégia  interessante  para  resolver 
problemas fortemente restritos;

❖ A exploração  da  vizinhança  pode  ser  modelada 
como um problema que é resolvido por técnicas CP.



Explorando Grandes Vizinhanças
❖ Discussão:

❖ No  geral,  grandes  vizinhanças  não  podem  ser 
exploradas até otimalidade em tempo polinomial; 

❖ Entretanto, frequentemente NSP ou PNSP podem ser 
eficientemente resolvidos por métodos exatos;

❖ Métodos  exatos  são,  em  vários  casos,  bastante 
rápidos se a dimensão do problema não é muito alta;



Explorando Grandes Vizinhanças

❖ Discussão:

❖ Os  subproblemas  gerados  podem  ser  tratados 
também por métodos aproximativos;

❖ A literatura ainda carece de estudos que indiquem 
quais técnicas (heurísticas ou exatas) são preferidas 
para a exploração de grandes vizinhanças.



Aperfeiçoando Metaheurísticas

❖ Métodos exatos podem ser usados para implementar 
sub-processos em MHs, tais como:

❖ intensificação;

❖ diversificação / perturbação.



Aperfeiçoando Metaheurísticas

❖ Exemplo: Perturbação no ILS



Aperfeiçoando Metaheurísticas

❖ Exemplo: Perturbação no ILS

❖ A perturbação no ILS pode ser obtida aplicando um 
movimento aleatório em uma vizinhança grande;

❖ Entretanto,  desempenhos  estado-da-arte  são 
usualmente  obtidos  via  perturbações  mais 
específicas (dependentes do problema);

❖ Uma  alternativa  é  determinar  a  perturbação  com 
um método exato (dificilmente revertida via LS);



Aperfeiçoando Metaheurísticas

❖ Exemplo: Perturbação no ILS

❖ Essa  ideia  pode  ser  implementada  fixando uma 
parte da solução e deixando o restante livre;

❖ A parte livre (subproblema) é otimizada e então 
reunida à parte fixa;

❖ Pode ser necessário tratar restrições violadas.



Aperfeiçoando Metaheurísticas

❖ Exemplo: Perturbação no ILS

❖ pseudocódigo da função de perturbação:



Aperfeiçoando Metaheurísticas
❖ Exemplo: Perturbação no ILS

❖ Lourenço []: ILS aplicado ao job-shop scheduling problem (JSP);

❖ Ignora  as  restrições  de  precedência  de  duas  máquinas 
selecionadas aleatoriamente;

❖ Resolve  o  problema  de  scheduling  de  cada  uma  dessas 
máquinas isoladamente (dois subproblemas);

❖ Pode ser necessário tratar restrições de precedência para se 
obter uma solução viável;

❖ Por fim, tem-se uma nova solução inicial para a busca local.



Aperfeiçoando Metaheurísticas

❖ Outras Estratégias:

❖ Emprego  de  métodos  exatos  no  operador  de 
recombinação de Algoritmos Genéticos

❖ visa  determinar  a  melhor  solução  do  subproblema 
Recombination(s, s’);

❖ subproblema definido a partir da fixação dos elementos 
comuns das soluções (s e s’) e variação dos demais;

❖ subproblema definido por todos os elementos de s e s’.



Usando Técnicas B&B em Heurísticas de Busca Construtivas

❖ Heurísticas  construtivas  geram  soluções  a  partir  de 
uma solução parcial inicialmente vazia;

❖ Componentes  são  adicionados  à  solução  parcial 
iterativamente até obter uma solução completa;

❖ Os componentes são adicionados de acordo com uma 
função gulosa (de forma probabilística), considerando-
se também alguma informação heurística.



Usando Técnicas B&B em Heurísticas de Busca Construtivas

❖ Nas  heurísticas  construtivas,  soluções  parciais  são 
usualmente somente estendidas, e nunca reduzidas;

❖ Entretanto,  essas  heurísticas  podem ser  facilmente 
transformadas em algoritmos de busca em árvore;

❖ Basta,  por  exemplo,  adicionar  um  mecanismo  de 
retrocesso e considerar limitantes inferior/superior;

❖ Dessa forma, pode-se aplicar B&B!



Usando Técnicas B&B em Heurísticas de Busca Construtivas

❖ Exemplo: Approximate Nondeterministic Tree Search (ANTS)

❖ Aplicado inicialmente à solução do quadratic assignment problem 
(QAP);

❖ Testa a adição de uma componente à solução parcial corrente e 
estima seu custo de conclusão via um limitante inferior;

❖ Quanto menor essa estimativa, mais atrativa é essa componente

❖ Esta  informação  heurística  é  usada  para  influenciar  a 
probabilidade das decisões ao longo da construção da solução. 



Explorando a Estrutura de Boas Soluções

❖ Em muitos problemas de otimização, as soluções de 
alta  qualidade  (ótimos  locais)  possuem  um  grande 
número de componentes em comum;

❖ Estes componentes podem ser usados para definir 
subproblemas muito promissores;

❖ Frequentemente,  estes subproblemas são pequenos 
o suficiente para serem resolvidos por métodos exatos.



Explorando a Estrutura de Boas Soluções

❖ Esta estratégia se divide em duas etapas:

❖ Primeiro,  um  algoritmo  aproximativo  é  usado 
(repetidamente)  para  obter  um  conjunto  de 
soluções de alta qualidade;

❖ Segundo, um subproblema é definido baseado nos 
componentes  promissores  pertencentes  às  soluções 
de alta qualidade obtidas na etapa anterior.



Explorando a Estrutura de Boas Soluções

❖ No  geral,  o  subproblema  conterá  todos  os 
componentes, ou pelo menos os mais importantes, 
contidos nas soluções obtidas;

❖ Espera-se que o subproblema possa ser resolvido de 
forma relativamente simples por um método exato;

❖ A solução ótima do subproblema fornece um limite 
superior para a solução ótima do problema original.



Explorando a Estrutura de Boas Soluções



Explorando a Estrutura de Boas Soluções

❖ Exemplo: Tour Merging (TSP)

❖ Inicialmente, gera-se um conjunto de soluções ótimas 
para o TSP (armazenadas em I):

❖ Applegate et al. [] —> Lin-Kernighan (LK);

❖ Cook & Seymour [] —> Helsgaun’s LK.

❖ Posteriormente,  resolve-se  o  TSP sobre  um  subgrafo 
restrito definido a partir de I:

❖ G’ = (V, A’ ), A’ = {a ∈ A : existe t ∈ I, a ∈ t}



Explorando a Estrutura de Boas Soluções

❖ Várias estratégias podem ser aplicadas para resolver 
o TSP no subgrafo reduzido G’:

❖ método exato (e.g., Concorde package);

❖ como G’ é esparso, pode-se usar branch-width;

❖ dynamic programming algorithm;

❖ Essa abordagem representa uma das mais eficientes 
para resolver entre instâncias médias e grandes do 
TSP (2000 a 20.000 cidades).



Explorando a Estrutura de Boas Soluções

❖ Discussão:

❖ Note que a ideia discutida nessa abordagem não é 
necessariamente  restrita  à  aplicação  de  métodos 
exatos na solução do subproblema;

❖ Vários  trabalhos  aplicam  métodos  SLS  ao 
subproblema  reduzido,  alcançando  excelentes 
resultados. 



Refinamento de Informações de Relaxações em MHs

❖ Um  forma  mais  usual  de  combinar  elementos  de 
algoritmos exatos e MHs é através do refinamento 
de  informações  obtidas  de  uma  relaxação  do 
problema original;

❖ Essas  informações  podem ser  usadas  para  “guiar" 
algoritmos SLS. 



Refinamento de Informações de Relaxações em MHs

❖ Exemplo: Simplex e Tabu Search 

❖ Vasquez  &  Hao  []  combinam  TS  e  Simplex  para 
tratarem o 0-1 problema da mochila multidimensional: 



Refinamento de Informações de Relaxações em MHs

❖ Inicialmente, a abordagem relaxa as restrições do problema original;

❖ Como a solução do problema relaxado pode estar muito distante da 
solução ótima (inteira),  uma restrição adicional  é  considerada no 
problema relaxado:



Refinamento de Informações de Relaxações em MHs

❖ Nessa formulação, tem-se 0 ≤ k ≤ n. Assim, obtém-se n+1 
LP problemas (um para cada k).

❖ Cada subproblema é denotado P(k).



Refinamento de Informações de Relaxações em MHs

❖ As soluções de P(k) podem ser fracionais;

❖ Entretanto,  espera-se  que  a  solução  do  problema 
original estará próxima de uma das soluções de P(k);

❖ Vasquez  &  Hao  calculam  limitantes  para  k,  com  o 
intuito de reduzir o número de subproblemas;

❖ O Simplex é usado para resolver os problemas P(k);

❖ As soluções retornadas são usadas para gerar pontos 
iniciais para uma Busca Tabu.



Refinamento de Informações de Relaxações em MHs

❖ Discussão:

❖ Refinamento de limitantes inferiores  obtidos a partir 
de  relaxações  Lagrangianas  tem se  mostrado uma 
área ativa;

❖ Vários  resultados  estado-da-arte  para  inúmeros 
COPs foram obtidas dessa forma;



Conclusões
❖ Existem  muitas  oportunidades  de  pesquisa  para  o 

desenvolvimento  de  algoritmos  que  integram  busca 
local e métodos exatos;

❖ Apesar  das  vantagens  da  complementaridade  dessas 
estratégias,  relativamente  poucos  pesquisadores 
desenvolvem pesquisa nessa área:

❖ estes métodos são mais complexos e requerem mais 
tempo para seu desenvolvimento; e

❖ requerem um sólido conhecimento das duas áreas.



EXEMPLO



Coordenação de Relés
❖ Dois  dispositivos  de  proteção  dispostos  em  série  são 

coordenados  somente  se,  diante  de  uma  falta,  o  relé  mais 
próximo da falta  (relé  primário)  opera antes  do secundário 
(relé de retaguarda).

❖ O relé secundário deve operar somente se o primário falhar. 

❖ O tempo de operação de um relé próximo de uma falta é:



Coordenação de Relés

❖ em que                      são parâmetros constantes;

❖ Ii
sc é a corrente de curto-circuito vista pelo relé i;

❖ RCTi é um parâmetro conhecido;

❖ TMSi e MCi são as variáveis do problema;

❖ Esta função é claramente não-linear!



Coordenação de Relés

❖ A  coordenação  ótima  de  relés  é  frequentemente 
tratada da seguinte forma:



Coordenação de Relés
❖ (CR1): minimiza tempo de operação dos relés;

❖ (CR2): restringe tempo de atuação dos relés secundários;

❖ (CR3): define valores aceitáveis para TMS;

❖ (CR4): define valores aceitáveis para MC;

❖ (CR5) : Tij é o tempo de operação do relé j quanto opera 
como retaguarda do relé i;

❖ Os conjuntos Ti e Mi podem ser contínuos ou discretos, 
dependendo do tipo de relé.



Coordenação de Relés

❖ Algoritmo DE/LP proposto (Costa et al., 2016):

❖ Método DE evolui valores de MC;

❖ Modelo LP, chamado pelo DE, determina valores 
ótimos  de  TSM  considerando  os  valores  de  MC 
fornecidos pelo DE;
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