
Prof. Lucas de Souza Batista - DEE/EE/UFMG

Otimização de Redes Heurísticas Matemáticas:
Uma Introdução ao Tema

Heurísticas Matemáticas

❖ (Meta)heurísticas hibridizadas com métodos exatos;

❖ Algoritmos híbridos normalmente se baseiam em
uma estrutura “master-slave”:

❖ (i) Método exato controla o uso da MH; ou

❖ (ii) MH controla as chamadas ao método exato;

Heurísticas Matemáticas
❖ Algoritmos híbridos do tipo (i):

❖ MH é embutida em um solver;

❖ MIP solvers podem consumir muito tempo até encontrar
a primeira solução viável;

❖ Solvers B&C modernos já exploram o potencial de MHs
para determinar rapidamente boas soluções iniciais
(estágios iniciais de exploração da árvore);

❖ Limitantes relacionados são usados para podar ramos da
árvore (acelera o processo de busca e reduz custo).

Heurísticas Matemáticas

❖ Algoritmos híbridos do tipo (ii):

❖ a definição da vizinhança segue a lógica de uma MH

❖ a exploração da vizinhança é realizada por um
método exato

Introdução
❖ Algoritmos híbridos podem ser de natureza exata ou

heurística;

❖ Métodos exatos garantem soluções ótimas quando tempo
computacional suficiente é fornecido;

❖ Heurísticas objetivam somente encontrar boas soluções
aproximadas em um tempo mais restritivo (convergência
não é garantida);

❖ A maioria das técnicas híbridas são de natureza heurística,
e métodos de programação matemática são usados para
impulsionar o desempenho de uma MH.

Introdução

❖ A maioria das técnicas exatas para solução de
combinatorial optimization problems (COPs) se baseia
na busca em árvore:

❖ o espaço de busca é particionado recursivamente
fixando algumas variáveis ou impondo restrições
adicionais.

Introdução
❖ No B&B, limitantes superiores e inferiores são

determinados para os valores objetivos das soluções:

❖ toda solução viável provê um limitante superior;

❖ subespaços cujos limitantes inferiores excedem os
limitantes superiores são descartados;

❖ MHs são viáveis para encontrar rapidamente soluções
aproximadas, úteis no processo de poda do B&B.

Introdução

❖ Relaxações:

❖ várias ou todas as restrições de um problema são
relaxadas ou omitidas;

❖ muito usadas para obter problemas relacionados,
simples, que podem ser resolvidos eficientemente
fornecendo limitantes e soluções aproximadas
(não necessariamente factíveis) para o problema
original;

Introdução

❖ Relaxação LP de um IP:

❖ zIP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Zn}

❖ zLP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Rn}

❖ grandes instâncias de LPs podem ser resolvidas
eficientemente via Simplex ou Pontos Interiores;

❖ a solução do LP provê um limitante inferior para
o IP, i.e., zLP ≤ zIP.

Alg. Híbridos Tipo (i)

Definição de Limitantes com MHs
❖ MHs podem ser aplicadas ao problema original antes

do início do B&B:

❖ provê soluções factíveis iniciais (CPLEX, GUROBI);

❖ reduz espaço de busca do método exato;

❖ acelera o processo de otimização;

❖ podem ser aplicadas repetidas vezes ao longo da
busca na árvore;

❖ muitas aplicações podem consumir muito tempo!

Solution Merging

❖ Novas soluções, possivelmente melhores, são
criadas a partir dos atributos de outras soluções
promissoras (integração entre B&B e EA):

❖ Mutation & Recombination (fixa variáveis comuns e
otimiza as demais com um MIP solver);

❖ Path relinking;

❖ into CPLEX since version 10!

Alg. Híbridos Tipo (ii)

Heurísticas Matemáticas
❖ Tema Abordado:

❖ Uso de algoritmos exatos para melhorar o desempenho de
métodos de busca local estocásticos.

❖ Foca em algoritmos cujo framework principal é baseado em
busca local, mas usa métodos exatos para resolver
subproblemas.

Introdução
❖ Combinatorial optimization problems (COPs) são intrigantes

pois apesar da facilidade de definição, são muito difíceis
de resolver (NP-difícil).

❖ Esta dificuldade, aliada a sua enorme importância prática,
tem motivado o desenvolvimento de inúmeras técnicas de
solução para os mesmos.

❖ Estas técnicas de solução podem ser classificadas como:

❖ algoritmos exatos;

❖ algoritmos aproximativos.

Introdução

❖ Algoritmos Exatos:

❖ Garantem a determinação de uma solução ótima;

❖ Prova sua otimalidade para toda instância de
tamanho finito (tempo de execução finito);

❖ Caso contrário, prova que não existe solução
viável;

❖ Integer Programming (IP): B&B, B&C, B&P, DP

Introdução

❖ Vantagens de Algoritmos Exatos:

❖ Provam otimalidade (se o método converge);

❖ Fornecem informações valiosas sobre limitantes
superior/inferior da solução ótima;

❖ Permitem a poda de partes do espaço de busca
onde não existem soluções ótimas;

❖ Softwares comerciais: GLPK, CPLEX, GUROBI

Introdução

❖ Desvantagens de Algoritmos Exatos:

❖ Para muitos problemas, o tamanho de instâncias resolvidas
na prática é muito limitado;

❖ O consumo de memória por algoritmos exatos pode ser
muito alto, podendo causar a parada prematura do programa;

❖ Algoritmos de alto desempenho são específicos para cada
problema (IP requer muito tempo de desenvolvimento);

❖ A extensão é frequentemente difícil mesmo para variantes de
um mesmo problemas.

Introdução

❖ Algoritmos Aproximativos:

❖ Se soluções ótimas não podem ser obtidas de
forma eficiente, abre-se mão da otimalidade em
troca de eficiência computacional.

❖ Soluções aproximadas podem ser encontradas em
tempo razoavelmente curto.

❖ Stochastic Local Search (SLS): VNS, GRASP, ILS

Introdução
❖ Vantagens de Algoritmos Aproximativos:

❖ Representam os métodos de melhor desempenho para
uma grande variedade de COPs;

❖ Podem examinar um grande número de soluções
candidatas em um curto tempo computacional;

❖ São frequentemente mais fáceis de adaptar a variantes
de um problema, i.e., mais flexíveis;

❖ São mais fáceis de entender e implementar do que
métodos exatos.

Introdução

❖ Desvantagens de Algoritmos Aproximativos:

❖ Não provam otimalidade, nem fornecem limitantes para
a qualidade das soluções;

❖ Usualmente, não podem reduzir o espaço de busca;

❖ Não possuem critérios de parada bem definidos;

❖ Frequentemente, enfrentam dificuldades com problemas
fortemente restritos (regiões factíveis desconexas);

❖ SLS Solvers disponíveis não são, em geral, eficientes.

Introdução

❖ Métodos IP e SLS possuem vantagens e limitações;

❖ Podem ser vistos como complementares;

❖ Podem ser combinados em poderosos algoritmos:

❖ heurísticas matemáticas!!!

❖ Exemplo mais usual:

SLS —> determinar bons limitantes superiores iniciais

IP —> podar soluções inferiores

Introdução

❖ Escopo*:

❖ Algoritmo principal (the master) —> SLS

❖ Método IP —> otimização de subproblemas

*A filosofia inversa é discutida no livro texto.

Introdução

❖ Escopo (a partir de várias estratégias híbridas da literatura):

❖ Uso de IP para explorar grandes vizinhanças em SLS;

❖ Formas de aperfeiçoar SLS resolvendo subproblemas de
maneira exata;

❖ Uso de técnicas de B&B para aperfeiçoar SLS Construtivas;

❖ Refinamento da estrutura de boas soluções encontradas
por SLS;

❖ Refinamento de informações de relaxações em SLS.

Explorando Grandes Vizinhanças

❖ Em uma busca local, melhores soluções têm mais
chances de serem obtidas em grande vizinhanças do
que em vizinhanças pequenas/simples;

❖ Entretanto, uma busca sobre grandes vizinhanças
pode exigir um tempo computacional considerável;

❖ Além disso, muitas vizinhanças grandes possuem
crescimento exponencial com o tamanho da
instância.

Explorando Grandes Vizinhanças
❖ Métodos SLS para grandes vizinhanças podem ser

divididos em duas classes:

❖ métodos de busca heurísticos

❖ variable-depth search algorithms

❖ ejection chains

❖ métodos de busca exatos

❖ o problema de busca é definido como um problema
de otimização, que é resolvido de forma exata.

Explorando Grandes Vizinhanças

❖ Definição do problema de busca em vizinhança #1:

❖ a exploração da vizinhança completa é modelada
como um problema de otimização;

❖ a tarefa do algoritmo exato é realizar a otimização
do neighborhood search problem (NSP).

Explorando Grandes Vizinhanças

Explorando Grandes Vizinhanças

❖ Definição do problema de busca em vizinhança #2:

❖ em cada passo da busca local, uma parte da
solução corrente s é mantida fixa (solução parcial);

❖ os valores das demais variáveis de decisão
continuam “livres”, os quais são arranjados de
forma ótima;

❖ a tarefa do algoritmo exato é realizar a otimização
do partial neighborhood search problem (PNSP).

Explorando Grandes Vizinhanças

Explorando Grandes Vizinhanças
❖ Exemplo PNSP: Hyperopt Neighborhoods (TSP)

❖ hyperopt neighborhood é baseada na noção de hiper-
arestas;

❖ uma hiper-aresta é definida como um subcaminho
de uma rota;

Explorando Grandes Vizinhanças

❖ Exemplo PNSP: Hyperopt Neighborhoods (TSP)

❖ uma hiper-aresta entre os nós i e j é dada por
H(i,j);

❖ o tamanho de uma hiper-aresta é dado pelo
número de arestas existentes no subcaminho;

❖ a vizinhança k-hyperopt consiste de todos os
movimentos k-hyperopt;

Explorando Grandes Vizinhanças
❖ Exemplo PNSP: Hyperopt Neighborhoods (TSP)

❖ cada subproblema (definido pelo conjunto de hiper-
arestas) é resolvido de forma ótima usando movimentos
k-hyperopt;

❖ estratégia eficiente somente quando k < 3; caso contrário,
sugere-se programação dinâmica;

❖ as soluções parciais compõem uma nova solução final, a
qual é comparada à solução incumbente.

Explorando Grandes Vizinhanças
❖ Outras Estratégias:

❖ Constraint Programming (CP) pode ser usada para
resolver o NSP:

❖ CP é uma estratégia interessante para resolver
problemas fortemente restritos;

❖ A exploração da vizinhança pode ser modelada
como um problema que é resolvido por técnicas CP.

Explorando Grandes Vizinhanças
❖ Discussão:

❖ No geral, grandes vizinhanças não podem ser
exploradas até otimalidade em tempo polinomial;

❖ Entretanto, frequentemente NSP ou PNSP podem ser
eficientemente resolvidos por métodos exatos;

❖ Métodos exatos são, em vários casos, bastante
rápidos se a dimensão do problema não é muito alta;

Explorando Grandes Vizinhanças

❖ Discussão:

❖ Os subproblemas gerados podem ser tratados
também por métodos aproximativos;

❖ A literatura ainda carece de estudos que indiquem
quais técnicas (heurísticas ou exatas) são preferidas
para a exploração de grandes vizinhanças.

Aperfeiçoando Metaheurísticas

❖ Métodos exatos podem ser usados para implementar
sub-processos em MHs, tais como:

❖ intensificação;

❖ diversificação / perturbação.

Aperfeiçoando Metaheurísticas

❖ Exemplo: Perturbação no ILS

Aperfeiçoando Metaheurísticas

❖ Exemplo: Perturbação no ILS

❖ A perturbação no ILS pode ser obtida aplicando um
movimento aleatório em uma vizinhança grande;

❖ Entretanto, desempenhos estado-da-arte são
usualmente obtidos via perturbações mais
específicas (dependentes do problema);

❖ Uma alternativa é determinar a perturbação com
um método exato (dificilmente revertida via LS);

Aperfeiçoando Metaheurísticas

❖ Exemplo: Perturbação no ILS

❖ Essa ideia pode ser implementada fixando uma
parte da solução e deixando o restante livre;

❖ A parte livre (subproblema) é otimizada e então
reunida à parte fixa;

❖ Pode ser necessário tratar restrições violadas.

Aperfeiçoando Metaheurísticas

❖ Exemplo: Perturbação no ILS

❖ pseudocódigo da função de perturbação:

Aperfeiçoando Metaheurísticas
❖ Exemplo: Perturbação no ILS

❖ Lourenço []: ILS aplicado ao job-shop scheduling problem (JSP);

❖ Ignora as restrições de precedência de duas máquinas
selecionadas aleatoriamente;

❖ Resolve o problema de scheduling de cada uma dessas
máquinas isoladamente (dois subproblemas);

❖ Pode ser necessário tratar restrições de precedência para se
obter uma solução viável;

❖ Por fim, tem-se uma nova solução inicial para a busca local.

Aperfeiçoando Metaheurísticas

❖ Outras Estratégias:

❖ Emprego de métodos exatos no operador de
recombinação de Algoritmos Genéticos

❖ visa determinar a melhor solução do subproblema
Recombination(s, s’);

❖ subproblema definido a partir da fixação dos elementos
comuns das soluções (s e s’) e variação dos demais;

❖ subproblema definido por todos os elementos de s e s’.

Usando Técnicas B&B em Heurísticas de Busca Construtivas

❖ Heurísticas construtivas geram soluções a partir de
uma solução parcial inicialmente vazia;

❖ Componentes são adicionados à solução parcial
iterativamente até obter uma solução completa;

❖ Os componentes são adicionados de acordo com uma
função gulosa (de forma probabilística), considerando-
se também alguma informação heurística.

Usando Técnicas B&B em Heurísticas de Busca Construtivas

❖ Nas heurísticas construtivas, soluções parciais são
usualmente somente estendidas, e nunca reduzidas;

❖ Entretanto, essas heurísticas podem ser facilmente
transformadas em algoritmos de busca em árvore;

❖ Basta, por exemplo, adicionar um mecanismo de
retrocesso e considerar limitantes inferior/superior;

❖ Dessa forma, pode-se aplicar B&B!

Usando Técnicas B&B em Heurísticas de Busca Construtivas

❖ Exemplo: Approximate Nondeterministic Tree Search (ANTS)

❖ Aplicado inicialmente à solução do quadratic assignment problem
(QAP);

❖ Testa a adição de uma componente à solução parcial corrente e
estima seu custo de conclusão via um limitante inferior;

❖ Quanto menor essa estimativa, mais atrativa é essa componente

❖ Esta informação heurística é usada para influenciar a
probabilidade das decisões ao longo da construção da solução.

Explorando a Estrutura de Boas Soluções

❖ Em muitos problemas de otimização, as soluções de
alta qualidade (ótimos locais) possuem um grande
número de componentes em comum;

❖ Estes componentes podem ser usados para definir
subproblemas muito promissores;

❖ Frequentemente, estes subproblemas são pequenos
o suficiente para serem resolvidos por métodos exatos.

Explorando a Estrutura de Boas Soluções

❖ Esta estratégia se divide em duas etapas:

❖ Primeiro, um algoritmo aproximativo é usado
(repetidamente) para obter um conjunto de
soluções de alta qualidade;

❖ Segundo, um subproblema é definido baseado nos
componentes promissores pertencentes às soluções
de alta qualidade obtidas na etapa anterior.

Explorando a Estrutura de Boas Soluções

❖ No geral, o subproblema conterá todos os
componentes, ou pelo menos os mais importantes,
contidos nas soluções obtidas;

❖ Espera-se que o subproblema possa ser resolvido de
forma relativamente simples por um método exato;

❖ A solução ótima do subproblema fornece um limite
superior para a solução ótima do problema original.

Explorando a Estrutura de Boas Soluções

Explorando a Estrutura de Boas Soluções

❖ Exemplo: Tour Merging (TSP)

❖ Inicialmente, gera-se um conjunto de soluções ótimas
para o TSP (armazenadas em I):

❖ Applegate et al. [] —> Lin-Kernighan (LK);

❖ Cook & Seymour [] —> Helsgaun’s LK.

❖ Posteriormente, resolve-se o TSP sobre um subgrafo
restrito definido a partir de I:

❖ G’ = (V, A’), A’ = {a ∈ A : existe t ∈ I, a ∈ t}

Explorando a Estrutura de Boas Soluções

❖ Várias estratégias podem ser aplicadas para resolver
o TSP no subgrafo reduzido G’:

❖ método exato (e.g., Concorde package);

❖ como G’ é esparso, pode-se usar branch-width;

❖ dynamic programming algorithm;

❖ Essa abordagem representa uma das mais eficientes
para resolver entre instâncias médias e grandes do
TSP (2000 a 20.000 cidades).

Explorando a Estrutura de Boas Soluções

❖ Discussão:

❖ Note que a ideia discutida nessa abordagem não é
necessariamente restrita à aplicação de métodos
exatos na solução do subproblema;

❖ Vários trabalhos aplicam métodos SLS ao
subproblema reduzido, alcançando excelentes
resultados.

Refinamento de Informações de Relaxações em MHs

❖ Um forma mais usual de combinar elementos de
algoritmos exatos e MHs é através do refinamento
de informações obtidas de uma relaxação do
problema original;

❖ Essas informações podem ser usadas para “guiar"
algoritmos SLS.

Refinamento de Informações de Relaxações em MHs

❖ Exemplo: Simplex e Tabu Search

❖ Vasquez & Hao [] combinam TS e Simplex para
tratarem o 0-1 problema da mochila multidimensional:

Refinamento de Informações de Relaxações em MHs

❖ Inicialmente, a abordagem relaxa as restrições do problema original;

❖ Como a solução do problema relaxado pode estar muito distante da
solução ótima (inteira), uma restrição adicional é considerada no
problema relaxado:

Refinamento de Informações de Relaxações em MHs

❖ Nessa formulação, tem-se 0 ≤ k ≤ n. Assim, obtém-se n+1
LP problemas (um para cada k).

❖ Cada subproblema é denotado P(k).

Refinamento de Informações de Relaxações em MHs

❖ As soluções de P(k) podem ser fracionais;

❖ Entretanto, espera-se que a solução do problema
original estará próxima de uma das soluções de P(k);

❖ Vasquez & Hao calculam limitantes para k, com o
intuito de reduzir o número de subproblemas;

❖ O Simplex é usado para resolver os problemas P(k);

❖ As soluções retornadas são usadas para gerar pontos
iniciais para uma Busca Tabu.

Refinamento de Informações de Relaxações em MHs

❖ Discussão:

❖ Refinamento de limitantes inferiores obtidos a partir
de relaxações Lagrangianas tem se mostrado uma
área ativa;

❖ Vários resultados estado-da-arte para inúmeros
COPs foram obtidas dessa forma;

Conclusões
❖ Existem muitas oportunidades de pesquisa para o

desenvolvimento de algoritmos que integram busca
local e métodos exatos;

❖ Apesar das vantagens da complementaridade dessas
estratégias, relativamente poucos pesquisadores
desenvolvem pesquisa nessa área:

❖ estes métodos são mais complexos e requerem mais
tempo para seu desenvolvimento; e

❖ requerem um sólido conhecimento das duas áreas.

EXEMPLO

Coordenação de Relés
❖ Dois dispositivos de proteção dispostos em série são

coordenados somente se, diante de uma falta, o relé mais
próximo da falta (relé primário) opera antes do secundário
(relé de retaguarda).

❖ O relé secundário deve operar somente se o primário falhar.

❖ O tempo de operação de um relé próximo de uma falta é:

Coordenação de Relés

❖ em que são parâmetros constantes;

❖ Ii
sc é a corrente de curto-circuito vista pelo relé i;

❖ RCTi é um parâmetro conhecido;

❖ TMSi e MCi são as variáveis do problema;

❖ Esta função é claramente não-linear!

Coordenação de Relés

❖ A coordenação ótima de relés é frequentemente
tratada da seguinte forma:

Coordenação de Relés
❖ (CR1): minimiza tempo de operação dos relés;

❖ (CR2): restringe tempo de atuação dos relés secundários;

❖ (CR3): define valores aceitáveis para TMS;

❖ (CR4): define valores aceitáveis para MC;

❖ (CR5) : Tij é o tempo de operação do relé j quanto opera
como retaguarda do relé i;

❖ Os conjuntos Ti e Mi podem ser contínuos ou discretos,
dependendo do tipo de relé.

Coordenação de Relés

❖ Algoritmo DE/LP proposto (Costa et al., 2016):

❖ Método DE evolui valores de MC;

❖ Modelo LP, chamado pelo DE, determina valores
ótimos de TSM considerando os valores de MC
fornecidos pelo DE;

Referências

❖ V. Maniezzo, T. Stutzle, S. Vob (eds.), Matheuristics:
hybridizing metaheuristics and mathematical
programming, Springer, 1st ed., 2009.

❖ M.H. Costa, R.R. Saldanha, M.G. Ravetti, E.G.
Carrano, Robust coordination of directional overcurrent
relays using a matheuristic algorithm, IET Generation,
Transmission & Distribution, pp. 1-11, 2016.

