
Prof. Lucas de Souza Batista - DEE/EE/UFMG

Otimização de Redes Greedy Randomized Adaptive
Search Procedure (GRASP)

GRASP

❖ Proposto por T.A. Feo e M.G.C. Resende (1989):

❖ Probabilistic algorithm (GRASP) for difficult set covering problems

❖ Algumas ideias do GRASP foram relatadas em trabalhos
anteriores:

❖ random multistart local search (Lin & Kernighan, 1973)

❖ semi-greedy heuristics (Hart & Shogan, 1987)

GRASP

❖ Representa uma metaheurística multistart para
problemas de otimização combinatória;

❖ Cada iteração consiste de duas etapas:

❖ heurística construtiva;

❖ busca local.

GRASP

❖ Na etapa construtiva,

❖ constrói-se uma solução viável;

❖ um mecanismo de reparo pode ser necessário.

❖ Na etapa de busca local,

❖ a vizinhança da solução corrente é investigada até
encontrar um ótimo local.

Pseudocódigo do GRASP

Algoritmo: GRASP (Max_Iterations, Seed)
Read_Input();
for k = 1,…, Max_Iterations do

Solution ← Greedy_Randomized_Construction(Seed);
if Solution is not feasible then

Solution ← Repair(Solution);
end
Solution ← Local_Search(Solution);
Update_Solution(Solution, Best_Solution);

end
return Best_Solution;

end GRASP

Fase Construtiva do GRASP
❖ Na etapa construtiva,

❖ defini-se o conjunto de elementos candidatos que podem ser
incorporados na solução parcial;

❖ todos esses elementos são avaliados de acordo com uma função
gulosa (greedy function);

❖ uma parcela dos melhores elementos compõem uma RCL
(restricted candidate list);

❖ o elemento adicionado à solução parcial é selecionado
aleatoriamente desta lista;

❖ esse processo é repetido até construir a solução completa.

Fase Construtiva do GRASP
Algoritmo: Greedy_Randomized_Construction(Seed)

Solution ← ∅;
Initialize the set of candidate elements;
Evaluate the incremental costs of the candidate elements;
while there exists at least one candidate element do

Build the restricted candidate list (RCL);
Select an element s from the RCL at random;
Solution ← Solution ∪ {s};
Update the set of candidate elements;
Reevaluate the incremental costs;

end
return Solution;

end Greedy_Randomized_Construction

Fase de Refinamento do GRASP
❖ A fase construtiva não garante um ótimo local!!!

❖ Na etapa de refinamento,

❖ a solução construída é melhorada iterativamente até um
ótimo local;

❖ a vizinhança pode ser explorada usando best improvement
ou first improvement;

❖ muitas aplicações mostram que as duas técnicas conduzem
à mesma solução final;

❖ entretanto, first improvement requer um menor custo.

Fase de Refinamento do GRASP

Algoritmo: Local_Search (Solution)
while Solution in not locally optimal do
Find s’ ∈ N(Solution) with f(s’) < f(Solution);
Solution ← s’;

end
return Solution;

end Local_Search

Construção da Lista Restrita de Candidatos

❖ Assuma c(e) o custo incremental associado à inclusão
do elemento e à solução parcial;

❖ Assuma cmin e cmax o menor e o maior custos
incrementais, respectivamente;

❖ A lista RCL é composta pelos melhores elementos,
i.e., c(e) ∈ [cmin, cmin + α(cmax - cmin)];

❖ α = 0: construção puramente gulosa;

❖ α = 1: construção puramente aleatória.

Construção da Lista Restrita de Candidatos

Algoritmo: Greedy_Randomized_Construction (α, Seed)
Solution ← ∅;
Initialize the candidate set: C ← E;
Evaluate the incremental cost c(e) for all e ∈ C;
while C ≠ ∅ do

cmin ← min{c(e) | e ∈ C};
cmax ← max{c(e) | e ∈ C};
RCL ← {e ∈ C | c(e) ≤ cmin + α(cmax - cmin)};
Select an element s from the RCL at random;
Solution ← Solution ∪ {s};
Update the candidate set C;
Reevaluate the incremental cost c(e) for all e ∈ C;

end
return Solution;

end Greedy_Randomized_Construction

Construção da Lista Restrita de Candidatos

❖ Frequentemente, usa-se α = 0.2:

❖ produz soluções com custos relativamente baixos;

❖ produz uma variedade significativa de soluções;

❖ o tempo economizado na busca local a partir de
uma solução inicial boa, pode ser usado para a
realização de mais iterações do GRASP.

Construção da Lista Restrita de Candidatos

❖ α = 0: construção puramente aleatória;

❖ α = 1: construção puramente gulosa.

Construção da Lista Restrita de Candidatos

Construção da Lista Restrita de Candidatos

❖ Diferentes estratégias para definição de α foram
propostas:

❖ (R) auto-adaptação de α;

❖ (E) escolha aleatória de α a partir de uma pdf
uniforme;

❖ (H) escolha aleatória de α a partir de uma pdf não-
uniforme decrescente;

❖ (F) valor de α fixo.

Construção da Lista Restrita de Candidatos

Construção da Lista Restrita de Candidatos

❖ Estratégia (R) encontrou com maior frequência os
melhores resultados, mas ao custo de maiores
tempos computacionais;

❖ Estratégia (F) apresentou os menores tempos
computacionais, mas raramente encontrou a melhor
solução;

❖ Estratégia (E) ilustra a efetividade da variação do
parâmetro α, mesmo que de forma aleatória.

Mecanismos Alternativos de Construção

❖ Random Plus Greedy (RPG)

❖ Ao invés de combinar determinismo e aleatoriedade em
cada passo da construção, o mecanismo RPG aplica
aleatoriedade durante as primeiras p fases de
construção;

❖ O algoritmo completa a solução com uma ou mais
fases gulosas de construção.

❖ O valor p permite controlar o balanço entre a
aleatoriedade e o determinismo da construção.

Mecanismos Alternativos de Construção

❖ Reactive GRASP

❖ O parâmetro α é selecionado aleatoriamente a partir de
uma lista discreta a cada iteração;

❖ Suponha uma lista de valores Ψ = {α1, . . . ,αm}, em que a
probabilidade inicial de escolha de αi seja pi = 1/m;

❖ Essas probabilidades de seleção são reavaliadas
periodicamente, pi = qi/Σj qj , com qi = z*/Ai ;

❖ z* é a solução incumbente e Ai é o valor médio de todas
as soluções encontradas usando αi.

Mecanismos Alternativos de Construção

❖ Inúmeras outras técnicas:

❖ Sampled Greedy Construction

❖ Cost Perturbations

❖ Bias Functions

❖ Intelligent Construction: Memory and Learning

❖ Proximate Optimality Principles

Path-Relinking
❖ Proposto por Glover (1996) no contexto de Tabu Search;

❖ Tende a melhorar tanto a qualidade da solução quanto os
tempos de processamento;

❖ Path-relinking é usualmente aplicado entre duas soluções:
solução inicial (s) e solução guia (g);

❖ Um ou mais caminhos que conectam estas soluções são
explorados à procura de melhores soluções;

❖ Uma busca local é aplicada à melhor solução encontrada
em cada caminho.

Path-Relinking

Procedimento Geral:

1. Determina a solução inicial s e a solução guia g;

2. Determina o conjunto de componentes ∆(s,g) em
que s e g se diferem;

3. Este conjunto corresponde aos movimentos que
precisam ser aplicados a s para obter g;

Path-Relinking

4. Começando da solução s, o melhor movimento em ∆(s,g)
ainda não usado é aplicado à solução corrente, até
obter a solução guia g;

5. O melhor movimento é aquele que resulta na solução de
melhor qualidade na vizinhança restrita;

6. A melhor solução encontrada ao longo dessa trajetória
é submetida à uma busca local;

7. Essa solução refinada é retornada como a solução
produzida pelo algoritmo path-relinking.

Path-Relinking

Path-Relinking

Path-Relinking

Path-Relinking

Path-Relinking
❖ Formas de implementação do path-relinking:

❖ estratégia de intensificação, entre cada ótimo local obtido
após a fase de busca local do GRASP e uma ou mais
soluções da elite;

❖ intensificação a posteriori, entre cada par de soluções da
elite;

❖ intensificação a posteriori, submetendo o conjunto de
soluções elite a um processo evolucionário;

❖ qualquer combinação das estratégias acima.

Path-Relinking
❖ Estratégias de path-relinking:

❖ forward path-relinking

❖ s (ótimo local do GRASP) e g (elite)

❖ backward path-relinking

❖ s (elite) e g (ótimo local do GRASP)

❖ back and forward path-relinking

❖ mixed path-relinking

Extensões do GRASP

❖ GRASP + estrutura de memória (Tabela Hash);

❖ GRASP + VNS;

❖ GRASP + VND;

❖ GRASP + Algoritmo Genético;

❖ GRASP + Busca Tabu;

❖ GRASP + ILS.

Reference

❖ M. Gendreau, J.-Y. Potvin (eds.), Handbook of
Metaheuristics, Springer, 2nd ed., 2010.

