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Introducio

Em todos os casos estudados até o momento, as varidveis de
otimizagéo significam alguma decisdo a ser tomada:

quantidade de cada ingrediente em uma mistura, niveis de
estoque de produtos em um determinado periodo, nimero de
barras a ser cortado conforme um padrdo de corte, etc.

Os valores dessas varidveis dependem dos recursos disponiveis
(vetor de recursos - b):

estoque dos ingredientes, limites de armazenamento, ntimero

de barras disponivel ou capacidade das mdquinas de corte, etc.

Apesar de serem tratados como fixos (hip6tese da
certeza), estes recursos podem eventualmente variar,
seja por interesse ou necessidade do decisor.

Recursos disponiveis para aquisi¢do e
armazenamento, demandas de mercado, etc.




Se possivel, o decisor deve considerar variagdes nas
condigdes iniciais do problema de forma a responder
perguntas do tipo:

Como o aumento no estoque de uma determinada
matéria prima afeta o custo de produgdo do produto?

Qual o efeito do aumento dos reservatoérios de uma
rede urbana de 4gua no consumo de energia para
bombeamento?

Como o aumento ou diminui¢cdo da demanda de
mercado de um produto afeta as perdas de produgdo?

O problema tratado até o momento, que é representado
pelas decisGes “tangiveis" é chamado de Problema
Primal.

A andlise do efeito da variagdo dos recursos no
problema é possivel por meio de uma formulacao
alternativa, chamada de Problema Dual.




Relaxaclo Lagrangiana e Problema Dual

Considere um problema na forma padrao:

min f(x) = c¢I'x

Ax=D>b
x>0

Problema Motivador

Precisa-se cortar bobinas de ago para atendimento de dois tipos de
demanda:

Bobinas de 0,4m: 108 toneladas.
Bobinas de 0,3m: 120 toneladas.

Cada bobina a ser cortada tem largura L = Im, peso P = 1 tonelada
e pode ser cortada seguindo um dos seguintes padrdes de corte:

P1:[20] - P2: [1 2] - P3: [0 3].

Deseja-se gastar o minimo possivel de material para atendimento
da demanda.




minz; + xo + x3

iz, + 2w = 108
Szy + pws = 120
x1, T, x3 >0 Pergunta relevante: qual o impacto no custo total (nimero
total de bobinas cortadas) caso haja alteracdo na demanda
de uma ou mais sub-bobinas?
B* . [:L‘l .772]

x* = [35 200 0]

F(x*) = 235
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Considere que o "vetor de recursos” (b) é passivel de
perturbagdes:

nesse caso a restricdo Ax=>b se torna Ax=b-y onde y
representa as perturbagdes do vetor b.

logo, as perturbagdes pode ser expressas por:

y=b-Ax.
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Neste caso, o problema de otimizagédo linear pode ser
reformulado como:

min f(x) + Ay + Aoy2 + -« + AmYm
x>0

ondey =b — Ax

Onde A;, representa o custo unitdrio de perturbar o
recurso i.
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Funcio Lagrangeana e Funcio Dual

Essa fungéo objetivo é chamada fung¢do Lagrangeana:
min f(x) + A\1y1 + A2yz + .. + AnYm
onde y =b — Ax x>0
L(x,\) = cI'x+ My

= cI'x+ AT (b— Ax)
= (= ATA)x+\Tb
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mas

(T = MA)=(c1 —ATay, cs—ATay, ..., ¢, — \a,)

Logo, a fungdo Lagrangeana pode ser escrita por:

L(z1,. . zn) = (1 — Map))zy + ...+ (cn — Ma,)z, + A\Tb

14

14




A funcao dual é definida por:

minxzo{L(l'l, ceey Lo, )\)}
= ming>o{(c1 — Mlay)wy + ...+ (e, — ATa,)z, + )\Tb}
minzlzo{(cl — /\Tal)xl} +...+ minx,,,zo{(cn — )\Tan)zn} + )\Tb

g(N)

A decomposigdo em n subproblemas é vélida porque as varidveis x sdo
independentes entre si.
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Analisando

g(A) = /Ivni>I%){((31 —Ma)z} 4.+ /Ivni>r%]{(cn —Aa,)z,} + \Tb}

os primeiros n problemas tém solugdo 6bvia:

0 se (¢-— )\Tai) >0

x*:mm{(q_vanxi}:{_w se (ci—ATag) <0
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miny>o ax=b{c?x + AT (b — Ax)}

Mine>o Ax=b{cTx}
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miny>o{cTx + AT (b — Ax)}
minxzo,Ax:b{CTX +AT(b - Ax)}
minsz,Ax:b{CTX}

f(x) V {x|Ax =b,x > 0}
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Propriedade

Para todo A € R™ e para todos x tal que Ax =bex > 0:

g(N) < f(x)

Ou seja: g(A) é um limitante inferior de f(x).
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Formulacdo do Problema Dual

s 9

A= (A1, ..., An)T s@0 as varidveis duais.

sendo g(\) = mink>¢ L(A, x).
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Para cada termo dependente de x:

0 se
0 se
" =min{(e; = Ma)ei} = ¢ _ 5

logo, deve-se impor restri¢des do tipo:

C; —)\Tai > O@)\Tai <g¢

MA<cTes AT N<c
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Ci — )\Tai) >0
C; — )\Tai) =0
Ci — /\Tai) <0
nao faz sentido)

A~ N N
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mas se:

entao:

I N) AT r<e = m>i1(}{(cT - ATA)x}+ AT =2"Db

AT)\SC

21

21

Problema Dual

max g(\) = b’ A
A" <c
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Problema Primal (forma padrao): EXCmplo

min f(x) = ¢’'x
Ax=b, x>0 Escr'eva a formulagdo do problema motivador (corte de
bobinas).

minx, + x9 + 23

Problema Dual (equivalente a forma padrao): 21 + 224 — 108
2 =

(S

max g(A\) = bY A
To + 2x3 = 120
AT)x<c

23 24
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Dual / Primal

Primal / Dual

min max
b c
c b
restricao variavel
= livre
< <
> >
variavel restricao
> <
< >
livre =

Exercicio 1

min f(z) = x1 + 2x9

—2x1+x2 < 3
3331 +4LU2 S 5
Tr1 — T2 S 2
x1, %2 > 0
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Exercicio 2

min g(\) = 3\1 + 5

—2M1 + 3\ > 1
A1+ 4o = 2
A1 < 0

A <0, >0
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Propriedades e Relacoes Primais-Duais

Sejam:

P={xeR"|Ax=b, x>0}
D={ eR™|ATXx<c}

gN) < f(x), VAeD,VxeP
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Propriedade 1:

O dual do Problema Dual é o Problema Primal.

Propriedade 2:

Suponha que P=J (existe solugdo factivel primal). O
problema primal ndo tem solugdo 6tima se e somente se
D= (ndo existe solugdo factivel dual).

No caso de minimizagao, f(x)—-o, se e somente se
ndo existir solucao factivel dual.
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Propriedade 3:

Suponha que D=J (existe solugao factivel dual). O
problema dual ndo tem solucdo 6tima se e somente se
P=0 (ndo existe solugdo factivel primal).

Propriedade 4:
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O problema primal tem solugdo 6tima se e somente se o
dual tiver solugao 6tima.
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Propriedade 5:

Sejam:
x*e€Pel" €D
Se:
fxT) =g(X)
Entao:

X* é solucao 6tima primal e A\* é solucao 6tima dual.
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Propriedade 6 (folgas complementares):

As solucoes x* € R™ e \* € R™ sao 6timas, primal e dual
respectivamente se, e somente se:

Ax=b, x>0 (x ¢é factivel primal)
AT N+ p=c, p>0 (X é factivel dual)
piz; =0, j=1,...,n (folgas complementares)
32
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Exemplo

Encontre a soluc¢do 6tima dual utilizando folgas
complementares.

X1

(S

minz, + x9 + x3
B* i [x1 x9]

+ 2z = 108

x* = [35 200 0]
Ty + 2wy = 120
f(x*) =235

max 1081 + 1205

p1 o, p2 o, gz >0
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Propriedade 7:

O vetor multiplicador simplex (1) da solugdo 6tima primal
é uma soluc¢do 6tima dual.

35

35

Método Simplex Dual
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Introducio

O método Simplex Dual é muito utilizado para
aplicagdes de reotimizagdo (variagdes do modelo
original pds-otimiza¢do) e em Programacao Linear
Inteira.

Adequado para situagdes onde o modelo original se
torna mais restrito (redugao da disponibilidade de
recursos ou acréscimo de restrigdes).
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Ap0s as variagdes do modelo, é possivel que a base 6tima atual se
torne infactivel no novo problema.

Para solugdo do problema utilizando o algoritmo Simplex, seria
necessdrio utilizar o algoritmo de duas fases.

No problema dual:

A variagdo do vetor de recursos afeta o custo dos coeficientes
do problema dual.

A inclusdo de uma nova restri¢do ao modelo original implica
em uma nova varidvel no problema dual.

Em ambos os casos a factibilidade do problema dual ndo é
afetada.
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O algoritmo Simplex Dual consiste em, dada uma base
6tima conhecida para o problema original, aplicar o
algoritmo Simplex no problema dual, a partir da base
dual correspondente.

A solugdo obtida ao fim da execugdo do algoritmo
Simplex, uma vez transformada na solugdo primal
correspondente, é a solucdo 6tima do modelo
modificado.
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Pos-Otimizacio
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Introducio

A andlise pés-otimizacdo constitui uma parte
importante na solu¢do de um problema de pesquisa
operacional.

Ao se obter uma solugdo para um problema inicial é
necessdrio derivar conclusdes relativas a viabilidade
do modelo e avaliar variagdes deste que sejam
favordveis e, a0 mesmo tempo, possiveis.
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Analise P6s-Otimizacao

Técnica

Validagao

Reotimizacgdo

Pregos-sombra

Anadlise de Sensibilidade

Propésito

Encontrar erros no modelo.

Avaliar o desempenho do modelo em
situagdes alternativas.

Tomar decisGes gerenciais sobre a
alocagdo de recursos.

Determinar condigdes que possam
afetar a solucgdo 6tima.
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Validacao

Em geral a primeira versdo de modelos PL complexos
contém muitas falhas.

Restri¢oes desconsideradas.
Parametros estimados de forma incorreta.
Varidveis modeladas de forma inadequada, etc.

Todo modelo deve ser validado, e devidamente
corrigido, até apresentar resultados validos.
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Nao existe uma metodologia sistemdtica e geral para
validacdo de modelos.

Boas préticas de validagao:
Revisdo geral do modelo.

Verificagdo da consisténcia das expressdes
matemadticas e das unidades dimensionais.

Verificagdo da adequabilidade das respostas
fornecidas pelo modelo quando sujeito a variagdes
sutis dos parametros.
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Teste de retrospectiva: verificar qual teria sido o
comportamento da solucdo oferecida pelo modelo se ela
tivesse sido aplicada no passado.

Auxilia na estimativa do ganho proporcionado.
Depende da representatividade dos dados passados.

A documentacao do processo de validagao do modelo
é essencial.
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Reotimizacio

Modelos que descrevem problemas reais sdo, em geral,
muito grandes.

Varia¢bes do modelo bésico podem ser objeto de
interesse (cendrios alternativos).

A abordagem 6bvia para este tipo de problema € a
aplicacdo do algoritmo Simplex para cada variacdo do
modelo.

O algoritmo pode levar milhares de iteragdes para
convergir em cada um dos problemas.
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Uma abordagem mais eficiente para lidar com este tipo
de situagdo é chamada de Reotimizacio.

Na Reotimizagdo, a solugado final do modelo original é

utilizada como solugdo inicial do novo problema:

Se essa for uma solugdo bésica factivel, entdo o método
Simplex é aplicado diretamente, a partir dessa solugéo.

Se essa ndo for uma soluc¢do bdsica factivel, entdo o
método Simplex Dual geralmente pode ser aplicado
para encontrar a nova solugdo 6tima partindo da
solucgdo do problema original.
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O uso da Reotimizagdo é justificado pelo fato da solucdo
6tima do modelo modificado estar geralmente muito
mais préxima da solu¢do 6tima do modelo original que
da solugéao baésica inicial considerada.

Em muitos casos ndo h4 altera¢do da base 6tima.
O algoritmo Simplex converge na primeira iteragdo.

Especialmente vélido para pequenas variacdes do
modelo.
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Precos-Sombra

Um problema PL pode ser interpretado como a alocagdo de
recursos a atividades.

Em muitos casos pode haver flexibilidade dos recursos disponiveis.

Os valores de b; no modelo inicial (validado) podem representar
uma decisdo gerencial inicial.

Pode-se avaliar se existem decisGes gerenciais que sejam mais
favoraveis e, a0 mesmo tempo, plausiveis.

A contribuicdo dos recursos para a fungédo objetivo é uma
informacao extremamente ttil para essa avaliagdo.
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O pre¢o-sombra para um recurso i mede o valor marginal
desse recurso, i.e., a taxa com a qual a fungdo objetivo é
afetada por pequenas varia¢des do recurso i.

O prego-sombra é identificado pelos valores de A na
solucdo 6tima obtida pelo Simplex.
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No problema motivador:

Demanda de bobinas de 0,4m: 108 toneladas.

Demanda de bobinas de 0,3m: 120 toneladas.

Solucao 6tima primal:
x1=35
x2 =200
Solucgao 6tima dual (pre¢os-sombra):
A1=5/4
A2=5/6
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Analise de Sensibilidade

Considere o problema primal na forma padréo:
F(b) = min f(x) = ¢'x
Ax=Db
x>0
E as solugdes primais e duais 6timas:
x5y =B 'b, xi =0

T« _ Tp—1
AT =cpB
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Logo:
F(b) = C%XB
cEB~1b
ATb
= biAi+bdo+ ...+ by,

Se F for diferencidvel (vélido para pequenas variagdes de
b), entdo:

53

b =[by by ... (bi+06) ... byl

F) = bidi+...4 i+ )X+ ...+ bndm

= F(b)+d\
Lembrando que A; depende da base:
AT =cEB™!
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Exemplo

Para o problema motivador (corte de bobinas).

A. Considerando a solugdo 6tima dual, identifique
alguma demanda que deveria ser estimulada ou
desestimulada.

B. Encontre a perturbagdo mdxima que pode ser imposta
a segunda restrigdo sem alteragdo na base 6tima.

C. Analise a perda de material para a situacdo da letra

(B).
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