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Hipóteses da Linearidade

❖ Proporcionalidade.

❖ Aditividade.

❖ Divisibilidade.

❖ Certeza.
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Hipóteses Adicionais Não-Restritivas

❖ Não  negatividade:  deve  ser  sempre  possível 
desenvolver  dada  atividade  em  qualquer  nível  não 
negativo  e  qualquer  proporção  de  um  dado  recurso 
deve sempre poder ser utilizado.

❖ Forma padrão: todo problema de otimização linear deve 
ser expresso na forma padrão.
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Forma Padrão

min f(x) = cTx
Ax = b
x � 0

min f(x) = c1x1 + . . .+ cnxn

x1, . . . , xn � 0

8
><

>:

a11x1 + . . .+ a1nxn = b1
...

am1x1 + . . .+ amnxn = bm
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Solução Factível, Região Factível e Solução Ótima

❖ Solução factível: Uma solução x é dita factível se 
satisfaz todas as restrições do problema e as condições 
de não-negatividade.

❖ Região factível: O conjunto de todas as soluções 
factíveis é chamado região factível.

❖ Solução ótima: A solução factível que fornece o menor 
valor de função objetivo é chamada de solução ótima.

f(x⇤)  f(x) 8x 2 Ax = b , x � 0
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Transformação de Problemas para a 
Forma Padrão
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Problemas de Maximização

multiplicando a inequação por -1:

logo:

f(x⇤) � f(x) para todo x fact́ıvel

�f(x⇤)  �f(x) para todo x fact́ıvel

max f(x) ) min�f(x)
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Exercício 1

max 2x1 � x2 + 4x3

⇢
x1 + 2x2 + x3 = 3

x2 + 2x3 = 4

x � 0
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Restrições de Desigualdade: ≤

ai1x1 + . . .+ ainxn  bi

xk = bi � (ai1x1 + . . .+ ainxn)

Variável de folga:

logo:

ai1x1 + . . .+ ainxn  bi
+

ai1x1 + . . .+ ainxn + xk = bi

xk � 0
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Restrições de Desigualdade: ≥

Variável de folga:

logo:

ai1x1 + . . .+ ainxn � bi

�xk = bi � (ai1x1 + . . .+ ainxn)

ai1x1 + . . .+ ainxn � bi
+

ai1x1 + . . .+ ainxn � xk = bi

xk � 0
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Exercício 2

⇢
x1 + 2x2 � x3 � 3
�2x1 + x2 + x3  �1

x � 0

min 2x1 � 3x2 + 3x3
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Variáveis Livres

xi = x+
i � x�

i , com x+
i , x

�
i � 0
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Exercício 3

min 2x1 � 3x2 + 3x3

⇢
x1 + 2x2 � x3 � x4 = 3
�2x1 + x2 + x3 + x5 = �1

x1 livre, x2, x3, x4, x5 � 0
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Estratégia Simplex
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Teoria Básica

8
<

:

x1 + x2  6
x1 � x2  4
3x1 + x2 � 3

x1, x2 � 0
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x1 + x2  6

3x1 + x2 � 3

x1 � x2  4

!16

16



Na forma padrão:

8
<

:

x1 + x2 + x3 = 6
x1 � x2 + x4 = 4
3x1 + x2 � x5 = 3

x1, x2, x3, x4, x5 � 0
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Ponto A:

x1 = 3
x2 = 2
x3 = 1
x4 = 3
x5 = 8
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Ponto B:

x1 = 1
x2 = 3
x3 = 2
x4 = 6
x5 = 3
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Ponto C:

x1 = 2
x2 = 4
x3 = 0
x4 = 6
x5 = 7
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Ponto D:

x1 = 5
x2 = 1
x3 = 0
x4 = 0
x5 = 13
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❖ Os pontos A, B, C e D são factíveis:

❖ o sistema Ax=b é atendido;

❖ as restrições de não-negatividade são atendidas.

❖ O ponto C está sobre uma restrição (aresta do politopo).

❖ O ponto D está sobre a interseção de duas restrições 
(vértice do politopo).
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Ponto E:

x1 = 4
x2 = 5
x3 = -3
x4 = 5
x5 = 14
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Ponto F:

x1 = 6
x2 = 0
x3 = 0
x4 = -2
x5 = 15
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❖ Os pontos E e F não são factíveis:

❖ o sistema Ax=b é atendido;

❖ as restrições de não-negatividade não são atendidas.

❖ O ponto F está sobre a interseção de duas restrições.
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x1 + x2  6

3x1 + x2 � 3

x1 � x2  4

x3 = 0 ! x1 + x2 = 6

x3 < 0 ! x1 + x2 > 6

x3 > 0 ! x1 + x2 < 6
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x1 + x2  6

3x1 + x2 � 3

x1 � x2  4

x4 = 0 ! x1 � x2 = 4

x4 < 0 ! x1 � x2 > 4

x4 > 0 ! x1 � x2 < 4
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x1 + x2  6

3x1 + x2 � 3

x1 � x2  4

x5 = 0 ! 3x1 + x2 = 3

x5 < 0 ! 3x1 + x2 < 3

x5 > 0 ! 3x1 + x2 > 3
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❖ O sistema linear resultante é sub-determinado:

❖ possui n incógnitas e m equações:

❖ sempre: n > m;

❖ geralmente: n >> m.

❖ possui m variáveis dependentes e n-m variáveis 
independentes (as quais devem ser associados 
valores);

❖ múltiplas soluções.
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Um vértice será sempre solução do problema de 
otimização, se factível.

x1 + x2  6

3x1 + x2 � 3

x1 � x2  4

Deve-se então examinar os vértices para encontrar a 
solução ótima.
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❖ Fazendo-se x3=0 e x4=0.

8
<

:

x1 + x2 = 6
x1 � x2 = 4
3x1 + x2 � x5 = 3

8
<

:

x1 = 5
x2 = 1
x5 = 13

Solução/Vértice factível
Ponto D
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❖ Deve-se buscar partições do problema para identificar 
os vértices e encontrar o vértice ótimo:

Ax = b , [B N]


xB

xN

�
= b , BxB +NxN = b

• xB : conjunto de variáveis básicas.

• xN =
�!
0 : conjunto de variáveis não-básicas.

• B: partição básica de A.

• N: partição não-básica de A.
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No exemplo:

8
<

:

x1 + x2 + x3 = 6
x1 � x2 + x4 = 4
3x1 + x2 � x5 = 3

x1, x2, x3, x4, x5 � 0
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A =

2

4
1 1 1 0 0
1 �1 0 1 0
3 1 0 0 �1

3

5

B =

2

4
1 1 0
1 �1 0
3 1 �1

3

5 N =

2

4
1 0
0 1
0 0

3

5

x =

2

66664

x1

x2

x3

x4

x5

3

77775
xB =

2

4
x1

x2

x5

3

5 xN =


x3

x4

�
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Primeira Estratégia de Solução
1. Inicialize x* := [] e f(x*) := inf;

2. Para cada partição m x m de A:

1. Encontre o vértice correspondente xp;

2. Avalie xp para se obter f(xp);

3. Se xp é uma solução básica factível e f(xp) < f(x*):

1. x* := xp;

2. f(x*) := f(xp).
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Problema 1 (RG)

max f(x1, x2) = x1 + 2x2

x1 + x2  4
x1  2

x2  3
x1 , x2 � 0
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❖ Represente o problema na forma padrão.

❖ Encontre todos os vértices factíveis do problema.

❖ Encontre as bases associadas a cada um desses vértices.

❖ Encontre o valor de função objetivo em cada vértice.

❖ Encontre a solução ótima do problema.
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Problema 2 (RG)

max f(x1, x2) = x1 + x2

�3x1 + x2  2
x2  3

x1 + 2x2  9
3x1 + x2  18
x1 , x2 � 0
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❖ Represente o problema na forma padrão.

❖ Encontre todos os vértices factíveis do problema.

❖ Encontre as bases associadas a cada um desses vértices.

❖ Encontre o valor de função objetivo em cada vértice.

❖ Encontre a solução ótima do problema.
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Dificuldades

❖ Dificuldade 1:

❖ Nem toda partição m x m é uma partição válida:

❖ Caso 1: nem todo sistema B.xB = b tem solução:

❖ A matriz B deve ser inversível.
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Exemplo
8
<

:

x1 � 2
x1  4
x1 + x2  6

x1, x2 � 0

A =

2

4
1 0 �1 0 0
1 0 0 1 0
1 1 0 0 1

3

5
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xB =

2

4
x1

x2

x5

3

5

BxB = b ,

2

4
1 0 0
1 0 0
1 1 1

3

5

2

4
x1

x2

x5

3

5 =

2

4
2
4
6

3

5
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❖ Dificuldade 1:

❖ Nem toda partição m x m é uma partição válida:

❖ Caso 2: mesmo que o sistema B.xB = b tenha 
solução, isso não garante factibilidade:

❖ As restrições de não-negatividade não são 
necessariamente atendidas.

❖ Existem vértices infactíveis.
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Exemplo

8
<

:

x1 + x2  6
x1 � x2  4
3x1 + x2 � 3

x1, x2 � 0
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Solução/Vértice infactível
Ponto F

8
<

:

x1 = 6
x4 = �2
x5 = 15

xB =

2

4
x1

x4

x5

3

5

BxB = b ,

2

4
1 0 0
1 1 0
3 0 �1

3

5

2

4
x1

x4

x5

3

5 =

2

4
6
4
3

3

5
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x1 + x2  6

3x1 + x2 � 3

x1 � x2  4
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❖ Dificuldade 2:

❖ O número de vértices (bases) cresce fatorialmente 
com o número de variáveis:

Nbases = Cn
m =

n!

m!(n�m)!
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n m bases

5 3 10

10 6 210

20 12 125.970

40 24 6,28E+10

80 48 2,19E+22

160 96 3,75E+45
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Definições e Propriedades

!53

53

Particão Básica

❖ B: matriz básica mxm.

❖ N: matriz não-básica mx(n-m).

A = [B N]
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Solução Geral

Ax = b , [B N]


xB

xN

�
= b , BxB +NxN = b

BxB = b�NxN

xB = B�1b�B�1NxN
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Solução Básica

Dado: A = [B N]

xB = B�1b�B�1NxN

⇢
x̂B = B�1b
x̂N = 0
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❖ Propriedade 1: considere a região factível S tal que 
Ax=b, x > 0. Um ponto x de S é um vértice S se e 
somente se x for uma solução básica factível.

❖ Propriedade 2: se um problema de otimização linear 
tem solução ótima, então existe um vértice ótimo.
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Método Simplex
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Método Simplex

Três perguntas devem ser respondidas:

1. Como encontrar uma solução inicial básica factível?

2. Essa solução é ótima?

3. Caso não seja ótima, como determinar outra solução 
básica factível melhor?
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Pergunta 1

Como encontrar uma solução inicial básica factível?

❖ Será respondida posteriormente.

❖ Inicialmente serão consideradas apenas problemas do 
tipo Ax < b.

❖ Solução inicial natural: base formada pelas variáveis 
de folga.
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Exemplo 1

max f(x1, x2) = x1 + 2x2

8
<

:

x1 + x2  4
x1  2
x2  3

x1, x2 � 0
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Exemplo 2

max f(x1, x2) = x1 + 2x2

8
<

:

x1 + x2  4
x1 � 2
x2  3

x1, x2 � 0
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Pergunta 2
Essa solução é ótima?

Considere uma solução básica factível:

e a solução geral considerando a mesma partição básica:

x̂ =


x̂B

x̂N

�
tal que

⇢
x̂B = B�1b � 0
x̂N = 0

x =


xB

xN

�
tal que xB = B�1b�B�1NxN
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Considerando a partição básica, a função objetivo pode ser 
expressa por:

e para a solução geral:

f(x) = cTx = [cTB cTN ]


xB

xN

�
= cTBxB + cTNxN

f(x) = cTB(B
�1b�B�1NxN ) + cTNxN

= cTBB
�1b� cTBB

�1NxN + cTNxN
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❖ Para a solução básica:
f(x̂) = cTBx̂B + cTN x̂N

= cTB(B
�1b�B�1Nx̂N ) + cTN x̂N

= cTB(B
�1b�B�1N · 0) + cTN · 0

= cTBB
�1b
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❖ Definindo o vetor multiplicador simplex:

❖ Este vetor pode ser calculado sem inversão de matrizes:

�T = cTBB
�1

�T = cTBB
�1 , � = (B�1)T cB , BT� = cB
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❖ Voltando novamente para a solução geral:

f(x) = cTBB
�1b� cTBB

�1NxN + cTNxN

= f(x̂) + (�cTBB
�1N+ cTN )xN

= f(x̂) + (cTN � �TN)xN
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❖ Definindo os custos reduzidos (custos relativos):
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logo:

❖ A solução básica atual é ótima se não existe nenhum 
custo reduzido menor que zero.
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Exemplo 1

min f(x) = �2x1 � x2

8
<

:

x1 + x2  4
x1  3
x2  7

2

x1, x2 � 0
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❖ Represente o problema na forma padrão.

❖ Verifique se a solução associada a base [x1,x2,x3] é ótima.

❖ Verifique se a solução associada a base [x1,x2,x5] é ótima.

❖ Verifique se a solução associada a base [x3,x4,x5] é ótima.

❖ Verifique graficamente onde estão cada uma das 
soluções associadas às bases.
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Pergunta 3
Caso não seja ótima, como determinar outra solução 
básica factível melhor?

❖ Dado que a solução atual não é ótima então existe ao 
menos uma variável não-básica com custo reduzido 
negativo que, se colocada na base, melhora o valor de 
função objetivo. Então, deve-se escolher uma variável 
não básica com custo reduzido negativo para que essa 
variável entre na base.
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❖ Escolha da variável para entrar na base:

❖ Qualquer variável com custo reduzido negativo pode 
ser escolhida para entrar na base. A escolha da variável 
define o trajeto a ser seguido na busca pelo ótimo.

❖ Regra de Dantzig: escolhe-se a variável com custo 
reduzido mais negativo para ingressar na base.

!74

8
<

:

xNk = " , ( ˆcNk < 0 , " � 0)

xNj = 0 , j = 1, 2, . . . , n�m , j 6= k
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❖ Logo a função objetivo decresce quando o passo cresce.

❖ Deve-se então determinar o maior passo que pode ser 
aplicado sem que a solução se torne infactível.
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❖ Tamanho ótimo do passo:

xN =

0

BBBBBB@

xN1

...
xNk

...
xNn�m

1

CCCCCCA
=

0

BBBBBB@

0
...
"
...
0

1

CCCCCCA
 k

A = [B N] = [aB1 . . . aBm aN1 . . . aNn�m . . . aNn�m ]

xB = B�1b�B�1NxN = x̂B �B�1aNk"
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❖ Definindo a direção simplex:

❖ Este vetor também pode ser calculado sem inversão de 
matrizes:

� = B�1aNk

� = B�1aNk , B� = aNk
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❖ Atualizando a solução básica:

xB = x̂B �B�1aNk"

= x̂B � �"
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❖ Analisando a nova solução básica quanto ao sistema 
Ax=b:

❖ O sistema é atendido por definição.

❖ Analisando a nova solução básica quanto às restrições 
de não-negatividade:

❖ xNi ∀ i ≠ k: permanecem com valor 0.

❖ xNk: assume valor ε > 0.

❖ xBi: são afetadas e devem permanecer não negativas.
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❖ Logo:

❖ Ou para cada variável básica:

xB = x̂B � �" � 0

xBi = ˆxBi � �i" � 0 , 8i = 1, . . . ,m
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❖ Logo, o passo ótimo é dado por:

❖ A variável básica correspondente a este passo se torna 0 
e sai da base.

xBi = ˆxBi � �i" � 0 , 8i = 1, . . . ,m

se

8
<

:

�i  0, entao xBi � 0 para qualquer " � 0

�i > 0, entao xBi � 0 se, e somente se "  ˆxBi
�i

"̂ =
ˆxB`

�`
= arg` min

⇢
ˆxBi

�i
8i 2 {1, . . . ,m} | �i > 0

�
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❖ Solução ótima ilimitada: se todas as coordenadas de γ 
são não positivas, então o passo pode crescer 
infinitamente. Nesse caso o problema não possui 
solução ótima. Pode-se ainda dizer que o problema 
possui solução ótima ilimitada.

xBi = ˆxBi � �i" � 0 , 8i = 1, . . . ,m

se

8
<

:

�i  0, entao xBi � 0 para qualquer " � 0

�i > 0, entao xBi � 0 se, e somente se "  ˆxBi
�i
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Exemplo 1

min f(x) = �2x1 � x2

8
<

:

x1 + x2  4
x1  3
x2  7

2

x1, x2 � 0
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❖ Considere a base [x3,x4,x5]:

❖ Encontre um vértice factível melhor que o associado à 
referida base.

❖ Analise graficamente o ponto obtido após a avaliação 
do passo para cada variável básica.

❖ Resolva o problema até a otimalidade.
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Algoritmo Simplex
Dados: partição básica factível.

❖ Passo 1: Calcule a solução básica correspondente:

❖ Passo 2: Calcule o Vetor Multiplicador Simplex (λT) e os 
custos reduzidos (ĉ):

⇢
x̂B = B�1b
x̂N = 0

�T = cTBB
�1 , � = (B�1)T cB , BT� = cB
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❖ Passo 3: Se não existe nenhum custo reduzido negativo:

❖ PARE! Solução ótima.

❖ Passo 4: Escolha variável não básica com menor custo 
reduzido (Regra de Dantzig).

❖ Passo 5: Calcule o Vetor Direção Simplex (𝛾):

� = B�1aNk , B� = aNk
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❖ Passo 6: Se todas as coordenadas do Vetor Direção 
Simplex são não positivas:

❖ PARE! Solução ótima ilimitada.

❖ Passo 7: Determine o passo e a variável que sai da base:

❖ Passo 8: Atualize a solução básica (xB e xN), partição 
básica (B e N) e retorne ao Passo 2.

"̂ =
ˆxB`

�`
= arg` min

⇢
ˆxBi

�i
8i 2 {1, . . . ,m} | �i > 0

�
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Problema 1 (RG - Pb1)

max f(x1, x2) = x1 + 2x2

x1 + x2  4
x1  2

x2  3
x1 , x2 � 0
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Problema 2 (RG - Pb2)

max f(x1, x2) = x1 + x2

�3x1 + x2  2
x2  3

x1 + 2x2  9
3x1 + x2  18
x1 , x2 � 0
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Problema 3 (RG - Pb3)

�3x1 + x2  2
x2  3

x1 + 2x2  9
3x1 + x2  18
x1 , x2 � 0

max f(x1, x2) = x1 + 2x2

!91

91

Método Simplex em Tabelas

!92

92



Método Simplex em Tabelas

x1 x2 . . . xn

VB c1 c2 . . . cn f
xB1 a1,1 a1,2 . . . a1,n b1
...

...
...

. . .
...

...
xBm am,1 am,2 . . . am,n bm

!93
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❖ Mas, inicialmente:

B�1 = I
logo: � = B�1aNk = aNk
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❖ Logo:

xN1 xN2 . . . xNn�m xB1 xB2 . . . xBn�1 xBn

VB ˆcN1 ˆcN2 . . . ˆcNn�m 0 0 . . . 0 0 f = 0
xB1 �1,1 �1,2 . . . �1,n�m 1 0 . . . 0 0 b1
xB2 �2,1 �2,2 . . . �2,n�m 0 1 . . . 0 0 b2
...

...
...

. . .
...

...
...

. . .
...

...
...

xBm�1 �m�1,1 �m�1,2 . . . �m�1,n�m 0 0 . . . 1 0 bm�1

xBm �m,1 �m,2 . . . �m,n�m 0 0 . . . 0 1 bm
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Exemplo

min f(x) = �x1 � 2x2

8
<

:

x1 + x2 + x3 = 6
x1 � x2 + x4 = 4
�x1 + x2 + x5 = 4

x � 0
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x1 x2 x3 x4 x5 b

-1 -2 0 0 0 f

x3 1 1 1 0 0 6

x4 1 -1 0 1 0 4

x5 -1 1 0 0 1 4
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x1
x2 

entra x3 x4 x5 b

-1 -2 0 0 0 f

x3 1 1 1 0 0 6 ε=6÷1=6

x4 1 -1 0 1 0 4 ε livre

x5
sai -1 1 0 0 1 4 ε=4÷1=4
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x1 x2 x3 x4 x5 b

-3 0 0 0 2 f+8

x3 2 0 1 0 -1 2

x4 0 0 0 1 1 8

x2 -1 1 0 0 1 4
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x1
entra x2 x3 x4 x5 b

-3 0 0 0 2 f+8

x3
sai 2 0 1 0 -1 2 ε=2÷2=1

x4 0 0 0 1 1 8 ε livre

x2 -1 1 0 0 1 4 ε livre
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x1 x2 x3 x4 x5 b

0 0 3/2 0 1/2 f+11

x1 1 0 1/2 0 -1/2 1

x4 0 0 0 1 1 8

x2 0 1 1/2 0 1/2 5
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Problema 1 (RG - Pb1)

max f(x1, x2) = x1 + 2x2

x1 + x2  4
x1  2

x2  3
x1 , x2 � 0
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Problema 2 (RG - Pb2)

max f(x1, x2) = x1 + x2

�3x1 + x2  2
x2  3

x1 + 2x2  9
3x1 + x2  18
x1 , x2 � 0
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Voltando à Pergunta 1: 
Como encontrar uma base inicial factível?
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Como encontrar uma base inicial factível?

❖ Na maior parte dos casos não existe base inicial factível 
óbvia, pois o problema possui restrições do tipo maior 
ou igual e restrições de igualdade.

❖ Restrição maior ou igual: acrescenta-se uma variável 
de folga -xs: não atende as restrições de não 
negatividade.

❖ Restrição de igualdade: não se acrescenta variável de 
folga.
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Exemplo

max f(x1, x2) = x1 + 2x2

8
<

:

x1 + x2  4
x1 � 2
x2  3

x1, x2 � 0
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Estratégia 1:

❖ Encontrar uma partição básica factível inspecionando as 
bases do problema.

❖ Encontrar uma base inicial factível por inspeção 
exaustiva é, por si só, um problema combinatório:

❖ Pior caso: o problema não tem solução factível.

❖ TODAS as bases devem ser inspecionadas antes de se 
chegar a conclusão de que o problema não tem 
solução.

Nbases = Cn
m =

n!

m!(n�m)!
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n m bases

5 3 10

10 6 210

20 12 125.970

40 24 6,28E+10

80 48 2,19E+22

160 96 3,75E+45

!108

108



Problema Artificial
❖ Para cada restrição do tipo maior ou igual e de igualdade, acrescenta-se 

uma nova variável (variável artificial), que irá compor a base junto com 
as variáveis de folga das restrições do tipo menor ou igual.

❖ Diferentemente das variáveis de folga, que fazem parte da formulação 
original, as variáveis artificiais não existem no problema e precisam ser 
eliminadas. Variáveis artificiais na base (com valor positivo) implicam 
em soluções infactíveis.

❖ Logo, as variáveis de folga devem ser eliminadas de forma a encontrar 
uma solução básica factível:

❖ Cria-se uma nova função objetivo: minimização do somatório das 
variáveis de folga.
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min f(x,y) =
X

yi

⇢
Ax+ y = b
x � 0 , y � 0

onde y é o vetor de variáveis artificiais.
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Interpretação geométrica: 

❖ O conjunto de restrições do problema artificial é uma relaxação 
do conjunto de restrições do problema original.

❖ Aumenta-se a dimensão do problema original de tal forma em 
que é obvia a escolha de uma base inicial factível.

❖ A resolução do problema artificial equivale a eliminar a 
relaxação inicialmente feita, de tal forma a encontrar um 
vértice factível no espaço de busca do problema original 
(problema de factibilidade).

❖ A solução final do problema artificial é a solução inicial do 
problema original.
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Exemplo 1

minx1 � x2 + 2x3

⇢
x1 + x2 + x3 = 3
2x1 � x2 + 3x3  4

x1, x2, x3 � 0
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❖ Na forma padrão:

minx1 � x2 + 2x3

⇢
x1 + x2 + x3 = 3

2x1 � x2 + 3x3 + x4 = 4

x1, x2, x3, x4 � 0
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❖ Problema artificial:

⇢
x1 + x2 + x3 + xa

5 = 3
2x1 � x2 + 3x3 + x4 = 4

x1, x2, x3, x4, xa
5 � 0

minxa
5
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❖ A base obtida imediatamente após a a eliminação de 
todas as variáveis artificiais (solução ótima do problema 
artificial) é base factível para o problema original. Nesse 
caso, deve-se resolver o problema original considerando 
essa base.

❖ Caso a solução ótima do problema artificial inclua ao 
menos uma variável artificial na base, então o problema 
original não tem solução factível.
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Algoritmo Simplex de Duas Fases
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Simplex de Duas Fases
1. Construa o problema artificial.

2. Fase 1: Resolva o problema artificial (problema de 
factibilidade) utilizando o Algoritmo Simplex.

3. Caso exista alguma variável artificial com valor não nulo 
após a solução da Fase 1, então PARE! O problema não 
tem solução factível.

4. Fase 2: Caso contrário, resolva o problema original a partir 
da base ótima obtida na Fase 1, utilizando o Algoritmo 
Simplex.
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Problema 1

minx1 � x2 + 2x3

⇢
x1 + x2 + x3 = 3
2x1 � x2 + 3x3  4

x1, x2, x3 � 0
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Exercício 1

⇢
�x1 + x2 � 2
2x1 � x2  6

x1, x2 � 0

minx1 + x2
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Algoritmo Simplex de Duas Fases 
em Tabelas
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Problema 1

minx1 � x2 + 2x3

⇢
x1 + x2 + x3 = 3
2x1 � x2 + 3x3  4

x1, x2, x3 � 0
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❖ Na forma padrão:

minx1 � x2 + 2x3

⇢
x1 + x2 + x3 = 3

2x1 � x2 + 3x3 + x4 = 4

x1, x2, x3, x4 � 0
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❖ Problema artificial:

⇢
x1 + x2 + x3 + xa

5 = 3
2x1 � x2 + 3x3 + x4 = 4

x1, x2, x3, x4, xa
5 � 0

minxa
5
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Primeira Fase 
Problema de Factibilidade
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x1 x2 x3 x4 x5a b

art 0 0 0 0 1 fa

orig. 1 -1 2 0 0 f

x5a 1 1 1 0 1 3

x4 2 -1 3 1 0 4
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x1 x2 x3 x4 x5a b

art -1 -1 -1 0 0 fa-3

orig. 1 -1 2 0 0 f

x5a 1 1 1 0 1 3

x4 2 -1 3 1 0 4
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x1 
entra x2 x3 x4 x5a b

art -1 -1 -1 0 0 fa-3

orig. 1 -1 2 0 0 f

x5a 1 1 1 0 1 3 ε=3÷1=3

x4
sai 2 -1 3 1 0 4 ε=4÷2=2
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x1 x2 x3 x4 x5a b

art 0 -1.5 0.5 0.5 0 fa-1

orig. 0 -0.5 0.5 -0.5 0 f-2

x5a 0 1.5 -0.5 -0.5 1 1

x1 1 -0.5 1.5 0.5 0 2
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x1 
x2

entra x3 x4 x5a b

art 0 -1.5 0.5 0.5 0 fa-1

orig. 0 -0.5 0.5 -0.5 0 f-2

x5a
sai 0 1.5 -0.5 -0.5 1 1 ε=1÷1.5=

0.67

x1 1 -0.5 1.5 0.5 0 2 ε livre
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x1 x2 x3 x4 x5a b

art 0 0 0 0 1 fa

orig. 0 0 0.33 -0.67 0.33 f-1.67

x2 0 1 -0.33 -0.33 0.67 0.67

x1 1 0 1.33 0.33 0.33 2.33
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Segunda Fase 
Problema Original
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x1 x2 x3 x4 b

orig. 0 0 0.33 -0.67 f-1.67

x2 0 1 -0.33 -0.33 0.67

x1 1 0 1.33 0.33 2.33
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x1 x2 x3 x4
entra b

orig. 0 0 0.33 -0.67 f-1.67

x2 0 1 -0.33 -0.33 0.67 ε livre

x1
sai 1 0 1.33 0.33 2.33 ε=2.33÷0.3

3=7
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x1 x2 x3 x4 b

orig. 2 0 3 0 f+3

x2 1 1 1 0 3

x4 3 0 4 1 7
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Exercício 1

⇢
�x1 + x2 � 2
2x1 � x2  6

x1, x2 � 0

minx1 + x2
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Método do M-Grande

Uma alternativa ao Algoritmo Simplex de Duas Fases é o 
Método do M-Grande:

❖ Nesse método, associa-se a variável artificial à função 
objetivo do problema com um custo muito grande, de 
tal forma que essa venha a ser eliminada da base 
rapidamente.

❖ Com essa abordagem pode-se aplicar o Algoritmo 
Simplex tradicional para solução do problema.

!136

136



Exemplo 1

minx1 � x2 + 2x3

⇢
x1 + x2 + x3 = 3
2x1 � x2 + 3x3  4

x1, x2, x3 � 0
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Apesar de mais simples, o Método do M-Grande 
apresenta duas dificuldades principais:

❖ O conceito de “grande" varia de problema para 
problema.

❖ A escolha de valores de M muito grandes pode levar a 
problemas de condicionamento numérico.

Na prática esse método não é indicado para problema 
reais e de grande porte.
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Problemas sem Solução e Casos 
Especiais
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Problema com Solução Ótima Ilimitada

❖ Caso o problema tenha solução ótima ilimitada, então 
existe variável para entrar na base mas o passo pode 
crescer arbitrariamente (não existe variável para sair).
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x1
entra x2 x3 x4 x5 b

-3 0 0 0 2 f+8

x3 -1 0 1 0 -1 2 E livre

x4 0 0 0 1 1 8 E livre

x2 -1 1 0 0 1 4 E livre
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Problema sem Solução Factível

❖ Caso o problema não tenha nenhuma solução factível, 
então a base ótima do problema original conta com ao 
menos uma variável artificial.
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x1 x2 x3 x4 x5a b

art 1 1 1 0 0 fa-3

orig. 1 -1 2 0 0 f

x5a 1 1 1 0 1 3

x4 2 -1 3 1 0 4
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Múltiplas Soluções Ótimas

❖ Ao fim da otimização, variáveis não-básicas com custo 
reduzido zero indicam a presença de múltiplas soluções 
ótimas.
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x1 x2 x3 x4 x5 b

0 0 0 0 1 f+9

x3 0 0 1 2 -1 2

x2 0 1 0 1 0 4

x1 1 0 0 -2 1 1
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Degeneração e Ciclagem

❖ A propriedade de melhoria a cada geração do Simplex 
permite que o algoritmo convirja em tempo 
computacional finito.

❖ No entanto existem configurações patológicas que 
podem fazer com que o algoritmo fique preso em 
conjunto de vértices, caso não seja implementado 
nenhum mecanismo de controle. Esse processo é 
chamado de degeneração ou ciclagem.
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Situação crítica:

❖ Duas ou mais variáveis têm o mesmo valor de custo 
reduzido (negativo) e podem entrar na base.

❖ Os passos admissíveis (E) para ambas as variáveis são 
os mesmos.

❖ As variáveis que devem sair da base têm valor nulo.
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x1 x2 x3 x4
entra?

x5
entra?

x6 x7 b

0 0 0 -1 -1 1 0 f

x1
sai? 1 0 0 1 3 1 0 0 ε=0

x2 0 1 0 0 -2 -1 0 1 ε livre

x7
sai? 0 0 0 1 2 0 1 0 ε=0

x3 0 0 1 -1 0 0 0 2 ε livre
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❖ É uma situação rara, mas possível, principalmente em 
problemas de grande porte.

❖ Pode ser facilmente corrigida:

Regra de Bland:

❖ Entre todas as a candidatas a entrar na base, selecione a 
variável xk que possui o menor índice.

❖ Entre todas as variáveis candidatas a sair da base, 
selecione a variável xr que possui o menor índice.

!150

150



!151

151

Referências
❖ [Arenales et al, 2007] M. Arenales; V. Armentano; R. 

Morabito; H. Yanasse. Pesquisa Operacional para Cursos 
de Engenharia, Editora Campus / Elsevier, 2007.

❖ [Goldbarg et al, 2005] M. C. Goldbarg; H. P. Luna. 
Otimização Combinatória e Programação Linear - 
Modelos e Algoritmos, 2a ed., Editora Campus / Elsevier, 
2005.

❖ [Hillier et al, 2013] F. S. Hillier; G. J. Lieberman. Introdução 
à Pesquisa Operacional, 9a ed., Editora Mc Graw Hill, 2013.

152


