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Abstract This paper addresses the problem of estimating
the temporal synchronization in mobile sensors’ networks, by
using image sequence analysis of their corresponding scene
dynamics. Unlike existing methods, which are frequently
based on adaptations of techniques originally designed for
wired networks with static topologies, or even based on solu-
tions specially designed for ad hoc wireless sensor networks,
but that have a high energy consumption and a low scalabil-
ity regarding the number of sensors, this work proposes a
novel approach that reduces the problem of synchronizing a
general number N of sensors to the robust estimation of a
single line in R

N+1. This line captures all temporal relations
between the sensors and can be computed without any prior
knowledge of these relations. It is assumed that (1) the net-
work’s mobile sensors cross the field of view of a stationary
calibrated camera that operates with constant frame rate and
(2) the sensors trajectories are estimated with a limited error
at a constant sampling rate, both in the world coordinate sys-
tem and in the camera’s image plane. Experimental results
with real-world and synthetic scenarios demonstrate that our
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method can be successfully used to determine the temporal
alignment in mobile sensor networks.
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1 Introduction

Mobile sensor networks have been identified as a key tech-
nology in several applications such as, military sensing, phys-
ical security, industrial and manufacturing automation, dis-
tributed robotics and environment monitoring [2,15,18]. In
order to retrieve accurate semantic and geometric informa-
tion from the monitored scene, all those applications demand
on synchronized data, that is, the sensors data samples must
be placed onto a single, global timeline [23].

Typically, the temporal misalignment between the sensors
occurs when they have different sampling rates, or when there
is a time shift between them. This generally happens because
the internal clocks of the several sensors differ. In fact, even
when these clocks are initially set to be the same (e.g. the sen-
sors are activated simultaneously), in real hardware they will
differ after some amount of time due to clock drift, caused
by clocks counting time at slightly different rates [9,23].

Although synchronization can be manually performed,
this approach is prone to human error, especially when
there are several sensors. Moreover, it could not be used
in real-time applications. Alternatively, the temporal align-
ment may be estimated using synchronization hardware or
network connections [8]. Unfortunately, special hardware
is not a practical solution for remote and wireless appli-
cations. Moreover, it is very complex to specify special
hardware for synchronizing sensors of different technolo-
gies and vendors. On the other hand, the use of a network
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connection to synchronize the sensors requires the appli-
cation of special methods to deal with the nondetermin-
ism in the network dynamics, such as propagation time or
physical channel access time, which makes the synchro-
nization task a very challenging problem in many scenar-
ios [16,23].

In this paper, we present a novel alternative solution for
temporally aligning multiple mobile sensors in a network
using images from a single camera. Unlike existing tech-
niques, which assume that each sensor is equipped with a
video camera that can detect and track a target [12,22], our
solution is based on a single camera that, for a given time
slot, is able to observe the mobile sensor trajectory. Sup-
pose, for example, a scenario where a group of mobile robots
equipped with several sensors perform an inspection task.
To have the data from the sensors synchronized in time, it
would be sufficient that each robot, not necessarily at the
same time, enter the field of view of a stationary camera
and transmit its estimated position to a computer attached to
this camera. Our method was inspired by the methods pre-
sented by our group in [1,13], which introduced the concept
of timeline. This concept is also used in this paper, but in
a very distinct application. Consider, for example, the sce-
nario illustrated in Fig. 1 where several mobile robots trans-
port the sensors to be synchronized and a camera observe
the movements of the robots. In this scenario with N sen-
sors, the timeline is a straight line in R

N+1 that completely
describes all temporal relations between the sensors and the
stationary calibrated camera. Notice that the space consid-
ered has an additional dimension, indistinguishable from
the other N , which refers to the camera. To compute the
timeline, the trajectories of the moving sensors are assumed
to be known, being related to a fixed reference frame and
estimated with a limited error at a constant sampling rate.
Moreover, it must be assumed that the sensors cross the
camera’s field of view during a given time interval. Impor-
tantly, that time interval should be only enough to apply
our technique, which means that the sensors do not need
to remain in the camera’s field of view during their entire
operations.

An interesting characteristic of the timeline is that even
though its knowledge implies knowledge of the sensors’ tem-
poral alignment, we can compute points on the timeline with-
out knowing this alignment [13]. Using this property as a
starting point, the temporal alignment problem for N sen-
sors is reduced to the problem of estimating a single line
of N + 1 dimensions from a set of appropriately-generated
points in R

N+1.
The remainder of this paper is organized as follows: Sec-

tion 2 presents the problem definition. Section 3 covers our
temporal synchronization algorithm. Experimental results
and discussions are presented in Sect. 4, followed by the
conclusions and suggestions for future work in Sect. 5.

Fig. 1 A 3D scene is monitored by a set S of mobile sensors, for S =
{s1, . . . , sN }. The scene dynamics is captured by a stationary calibrated
camera c

2 Problem definition

Consider a dynamic scene composed by N mobile sensors,
as illustrated in Fig. 1. Suppose that this scene is viewed
by a stationary calibrated camera c. By calibrated camera
we mean a camera with known extrinsic (position and ori-
entation) and intrinsic parameters (focal distance, lens dis-
tortion, pixel size, etc.) [10]. The camera operates with a
constant frame rate and its field of view is crossed by all sen-
sors. Importantly, each sensor si crosses the camera’s field of
view during a certain time interval, which is not necessarily
identical for all of them. Therefore, the sensors may not be
simultaneously viewed by the camera and may not remain
in the camera’s field of view during their entire operations.
Assume that the trajectories of the moving sensors may be
estimated at constant sampling rates (albeit not necessarily
identical) in a fixed reference frame.

Analogously, we consider that each mobile sensor cap-
tures samples with a constant, unknown sampling rate and
that the camera as well as the sensors are unsynchronized,
i.e., they began capturing samples and frames at a differ-
ent time with possibly-distinct sampling rates. In Fig. 2, for
example, we illustrate the temporal misalignment between
a camera and N sensors. In that example, the frame 458
of the camera corresponds in time to the samples 27, 323
and 159 of sensors s1, s2 and sN , respectively. Therefore,
the temporal misalignments between the camera and those
sensors are �T1 = 431,�T2 = 135 and �TN = 299,
respectively. Similarly, the temporal misalignments between
those sensors are �T12 = 296,�T1N = 132 and �T2N =
164. Our goal is to determine a global timeline that recov-
ers the temporal alignment between the sensors, by using
the synchronization offsets between the camera and those
sensors.
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Fig. 2 Temporal misalignment
between a camera and N mobile
sensors. The frame 458 of the
camera corresponds in time to
the samples 27, 323 and 159 of
sensors s1, s2 and sN ,
respectively. Our goal is to
determine a global timeline that
recovers the temporal alignment
between the sensors by using the
synchronization offsets
�T1,�T2, . . . , �TN , between
the camera and the sensors

Since the sampling rate is assumed to be constant for both
camera and sensors, the temporal coordinates (timestamps)
of the sensors samples and the temporal coordinates (frame
numbers) of the video sequence can be related by a one
dimensional affine transformation [13]:

ti = αi tr + βi , (1)

where ti and tr denote the temporal coordinates of the ith
sensor and the temporal coordinates of the camera, respec-
tively. Parameters αi ∈ R and βi ∈ R are unknown constants
describing the temporal dilation and temporal shift, respec-
tively, between the camera and the ith sensor [13].

Equation (1) represent pairwise temporal relations that
induce a global relationship between the sample numbers of
the sensors and the frame numbers of the camera. This rela-
tionship may be represented by a line L of N +1 dimensions,
that is called timeline:

L =
{
[α1 · · · αN+1]�tr + [β1 · · · βN+1]�

∣∣ tr ∈ R

}
.(2)

It is important to say that Eq. (2), which is a parametric
representation of a straight line in a N +1-dimensional space
is nothing but a composition of N lines in two-dimensions
(2D). Actually, each of these lines, represented by Eq. (1), is
a projection of the timeline in the plane formed by the camera
time axis and the axis correspondent to sensor si time. Thus,
the time misalignment among the N mobile sensors and the
camera may be represented, indifferently, by a set of N lines
in 2D as in Eq. (1) or by a single timeline in N+1-dimensions,
as in Eq. (2). In this paper we prefer to use the timeline
in N + 1-dimensions for the sake of compactness of the
notation.

The problem addressed in this work consists in to obtain
an accurate estimate of the timeline based on images of the
mobile sensors’ workspace. To do that it is assumed that
the sensors move along smooth 3D trajectories, which can
be captured in the image plane of the camera by using the
projection matrix obtained during its calibration [10], as
well as by using standard trackers [6,7] that output trajec-
tory segments as parametric curves. In this work, it is con-
sidered that the mobile sensors have the ability to localize

themselves relatively to the world reference frame. Exam-
ples of mobile sensors include mobile robots and human
beings carrying out sensor devices, such as, a global posi-
tioning system (GPS). Although the accurate localization
of mobile robots and moving entities is still an open prob-
lem, which has been a major research topic in the past few
years [3,14,20,24], our experiments in Sect. 4 show that
the proposed methodology is robust to relatively large local-
ization errors, thus requiring fairly simple localization tech-
niques.

3 Methodology

In this section we present the proposed methodology to solve
the problem posed in the previous section. To understand the
basic idea behind this methodology consider the example in
Fig. 3. In this figure, two sensors move along the trajectories
Q1(·) and Q2(·) in a 3D scene, viewed by a camera. Suppose
that these trajectories in the world coordinate system may be
estimated by combining localization devices or using a GPS
receiver. Therefore, Q1(t1) and Q2(t2) represent the sensors
instantaneous positions at the temporal coordinates t1 and t2,
respectively.

Since a camera is observing the movements of the sen-
sors, using an object tracking algorithm [6,7] it is possible
to compute q1(·) and q2(·), the corresponding trajectories
traced by the sensors in the image plane. Assuming that the
camera is calibrated, notice that the projections of the sen-
sors’ trajectories in the image plane may be also computed
by using the projection matrix P . In this case, the projections
of Q1(·) and Q2(·) may be represented by q̃1(·) and q̃2(·)

Given these definitions, it is important to notice that the
trajectories of the sensors in the image plane may be obtained
in two distinct ways: (1) by the tracker (q1(·) and q2(·))
and; (2) by the projections of the trajectories in 3D using
the projection matrix P (q̃1(·) and q̃2(·)). By determin-
ing correspondences between these trajectories we may also
determine correspondences between the temporal coordi-
nates of the frames of the video sequence and the sample
numbers of the sensors.
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Fig. 3 Two sensors move along the trajectories Q1(·) and Q2(·) in a 3D
scene, viewed by a camera. In this case, Q1(t1) and Q2(t2) represent the
3D sensors instantaneous positions at the temporal coordinates t1 and t2,
respectively. The projections of those 3D positions in the image plane,
namely, q̃1(t1) and q̃2(t2) may be computed by using the projection
matrix P , obtained during the calibration of the camera

Coming back to the example in Fig. 3, consider, that q1(tr )
and q2(tr ) represent the sensors instantaneous positions in the
image plane at frame tr , computed by the tracker. Assuming
that q1(tr ) and q2(tr ) correspond in time to, respectively,
Q1(t1) and Q2(t2) in the world coordinate system, the pro-
jections q̃1(t1) and q̃2(t2) should coincide with q1(tr ) and
q2(tr ) or stay at distances of e1 and e2 pixels caused by errors
in the sensors’ localization, in the camera calibration and/or
in the tracking algorithms used.

Given this, it is also possible to establish correspon-
dences between the temporal coordinates tr , t1 and t2 of
q1(tr ), q2(tr ) and q̃1(t1), q̃2(t2), respectively, since they rep-
resent the same 3D instantaneous positions of the sensors
(Q1(t1) and Q2(t2)). In fact, we may estimate for the cam-
era and a general number N of sensors a set V of N + 1-
dimensional points with coordinates [tr t1 · · · tn] that
represent “candidate” temporal alignments for the camera
and the sensors. Specifically, the set V defines a voting space
that is built as follows:

V =
{

[tr t1 · · · tn]�
∣∣ D

(
qi (tr ), q̃ j (t j )

) ≤ ε,
}

, (3)

where D(·) denotes the Euclidean distance between the
points qi (tr ) and q̃ j (t j ), and ε denotes a tolerance in
pixels.

After computing the set V described in Eq. (3) it is nec-
essary to determine the most appropriate subset of candidate
temporal alignments in V that will be used to determine the
timeline that recovers the temporal alignment between the
camera and the mobile sensors. Notice that this step is nec-
essary because, in practice, set V will contain outliers. As in
our previous work [1,13], to estimate the subset we use the
RANSAC algorithm [4], which can be regarded as an algo-
rithm for robust fitting of models in the presence of many
data outliers.

RANSAC randomly chooses a pair of candidate temporal
alignments to define the timeline, and then computes the total
number of candidates that fall within an δ-distance of this
line. These steps are repeated for a number of iterations.
Provided that sufficient repetitions are performed, RANSAC
is expected to identify solutions computed from outlier-free
data. Thus, the two critical parameters of the algorithm are
the number k of RANSAC iterations and the distance δ. In
this paper, based on the methodology proposed in [4] and
previously used by our group [13], we compute k to be 1,840
iterations. This value ensures that with probability 0.99, at
least one randomly-selected pair of candidates is an inlier. To
compute δ, we observe that δ can be thought of as a bound on
the distance between tracked sensor locations in the camera
and their associated projections. Thus, the proper value of δ

depends on the camera resolution and on the set of real data.
In the experiments and simulations shown in the next section,
δ was chosen to be 30 pixels.

The final step of the methodology is to apply, over the sub-
set of candidate temporal alignments estimated by RANSAC,
a least-squares method to compute the timeline parameters.
By combining the computed equations ti = αi tr + βi with
parameters αi and βi , i = 1, . . . , N , we may obtain new
equations that capture the temporal relation between any two
arbitrary sensors, as well as the line L that captures the global
relationship among all the existing sensors.

To summarize the methodology, Fig. 4 presents a block
diagram that shows all steps of the proposed approach. Basi-
cally, a voting space (Step 3) is generated by looking for pairs
of closest points in two estimates of the sensors’ trajectory:
(1) an estimate given by the sensor’s localization system,
which is projected on the image plane using the camera cal-
ibration matrices (Step 2.1), and (2) an estimate given by
a tracker, which works directly on the images given by the
camera (Step 2.2). These pairs of closest trajectories’ points
will generate pairs of sample times that compose the voting
space. We then look for a straight line in this space, the time-
line, using RANSAC (Step 4), which is an outlier removing
algorithm, and a least-squares optimization process, which
in fact estimates the timeline parameters (Step 5).

Next section will present experimental results obtained
both with synthetic and real-world data that illustrate and
validate the proposed methodology.
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Fig. 4 Block diagram of the proposed approach

4 Experiments

In this section we evaluate, by means of simulated experi-
ments, how our method is affected by errors: (1) in the sen-
sors global localization, (2) in the image based tracker and
(3) in the camera calibration. Also, using real-world data, we
show a simple and practical application of the method on the
synchronization of cameras installed on a group of mobile
robots. We start presenting the results obtained in simulation.

4.1 Simulations

By using a Matlab based simulator, dynamic scenes were
artificially created. These scenes contain up to 32 planar
mobile sensors distributed in an ad-hoc wireless network.
The movement of each mobile sensor is performed in a very
simple way. Basically, a direction vector is randomly gener-
ated and the sensor moves in that direction at constant speed
for a fixed time. After that, a new direction vector is gener-
ated. If the sensor reaches the workspace limit, defined as
a circumference of radius 30 m, the direction vector is cho-

sen to point normally to the limit and inside the workspace.
Collisions among the sensors are not avoided. To observe
the mobile sensors, we simulated a single calibrated camera
whose intrinsic parameters were the same of a Sony DCR-
TRV320 Digital Camcorder, used previously by the authors.

In Fig. 5 we present two typical voting spaces and their cor-
responding timelines. In Fig. 5a, we show a two dimensional
voting space obtained in a scene with a single mobile sensor.
The timeline in this case relates the camera and the sensor
sampling rates. Figure 5b presents a timeline estimated in
a scenario where two mobile sensors were observed by the
camera. At this point, it is important to remember that the
proposed algorithm does not necessarily compute the time-
line using the three dimensional voting space directly. In fact,
two voting spaces, one for each sensor, similar to the one in
Fig. 5a may be used. By combining the timelines of each vot-
ing space it is possible to obtain the timeline that capture the
temporal relationships between the sensors. Since the same
procedure may be used for larger sets of mobile sensors, the
complexity of the algorithm grows linearly with the number
of sensors.

Note in Fig. 5 that the points in the voting spaces are
dispersed around the encountered timelines. This dispersion
occurs mainly because a point of the sensor trajectory pro-
jected on the image plane may be related [by Eq. (3)] to one
or more points of the trajectory given by the tracker. This
may happen due to three factors: (1) image tracker error, (2)
camera calibration error, and (3) noise at the sensors’ posi-
tion estimation. To evaluate the effect of these factors in the
success of the method in recovering timeline we perform a
set of controlled simulations.

In the first case, we added white noise with zero mean and
standard deviation varying from 1 to 10 pixels to the tracker
result. The proposed algorithm was executed 100 times for
each standard deviation value (we did the same for all exper-
iments in this subsection). Figure 6a shows the percentage of
success of the algorithm in recovering timelines that yields
a temporal misalignment smaller than three samples. Notice
that if the the tracker has a small noise (<4 pixels) the algo-
rithm is able to find a good timeline in more than 90 % of
the cases. Also, even for higher levels of noise, the rate of
success of the algorithm is higher than 70 %. It is impor-
tant to mention that these rates may decrease for about 80
and 50 %, respectively, if temporal misalignments smaller
than one sample is considered. This is the need of several
applications.

We perform a similar study with the camera calibration
error. To generate a matrix with a given projection error e,
we begin with the actual calibration matrix, add a small con-
stant (10−5) to each element, measure the projection error,
and iterate until the error becomes equal to e. This method
was inspired by the one proposed in [13]. Using such an
approach, the result for temporal alignments smaller than
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Fig. 5 Examples of 2D (a) and 3D (b) voting spaces for an artificial scenario with one and two sensors, respectively. In both cases, the computed
timeline is also presented

three samples with projection errors varying from 1 to 10
pixels is shown in Fig. 6b. Notice that the rate of success
in this case decreases faster with the error if compared with
the previous case, indicating a stronger dependence of the
method on the camera calibration.

Finally, we have performed experiments where we vary
the noise in the sensor 3D positioning. In this case, we added
white noise with zero mean and standard deviation varying
from 1 to 10 % of the size of the workspace (30 m in our case).
The result for temporal alignments smaller than three samples
is shown in Fig. 6c. Observe that the method seems to be very
robust to localization errors, what makes it a practical tool
for synchronizing sensors with simple localization devices.
However, it was observed during the simulations that this
result also depends on the sensors’ path. A path that crosses
itself several times is more sensitive to localization errors,
once it can generate more outliers in the voting space. This
will be also observed in the next subsection, where we present
an experiment with actual robots acting as mobile sensors.

4.2 Real-world data

We applied the proposed method to synchronize sensor data
collected by three mobile robots moving in a laboratory
environment. The movements of the robots are similar to
the ones used in the sensors of the previous section. The
mobile robots used are iRobot’s Create platforms equipped
with simple netbooks running Linux. The data to be syn-
chronized are video images originated from the netbooks’
embedded webcams. Each robot captures an image from the
webcam and store it on the hard drive together with local-
ization information given by a visual based “GPS like” sys-
tem. Since we are not using a real time operating system,
in order to keep the constant sample time required by the

method, we have slowed down the program responsible for
saving the data by using a sleep() function. With this, the
sample rate was reduced to about 3 Hz. Actually, we can-
not know the exact sample time, since the time needed to
store the image on a file and other time delays are unknown
and vary from one computer to another. Therefore, the prob-
lem that we are dealing with in this section is a practical
one, which involves, not only the synchronization of the
sensors, but also the estimation of their unknown sample
times.

To perform the synchronization, we also recorded, with a
Sony DCR-SR62 Digital Camcorder, a video from the robots’
movements. As required by our method, the camera was pre-
viously calibrated in relation to the world reference frame,
which is the same used by the localization system of the
robots. The camcorder frame rate is 30 Hz. Using a simple
particle filter based tracker, we obtained the robots trajecto-
ries on the image plane as shown in Fig. 7.

By comparing the robot trajectory projected on the image
plane with the tracker output in Fig. 7, it is possible to see that
only in small parts they are close to each other. This is mainly
due to a limitation of the tracker used, that was not able to
satisfactory handle multiple similar targets, occlusions, and
light changes. This limitation generated voting spaces with
several outliers, as can be seen in Fig. 8.

Each point of the voting spaces in Fig. 8 was generated
by searching for the pixels in the robot trajectories projected
on the image plane that are within a distant of 50 pixels of
each pixel given by the tracker. This distance was chosen
experimentally. In this way, it can observed that there are
several points in the voting space with the same value in
the vertical axis. Figure 8 also shows the “actual” timeline
and the estimated timeline. The actual timeline was com-
puted manually based on visual events introduced solely
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Fig. 6 Rate of success of the proposed method when it is subject to a
noise in tracker, b camera calibration errors, and c sensor’s localization
noise. All figures represent the percentage of timelines recovered by the
method that yields temporal alignments smaller than three samples

for this purpose. To cause these events we simply turn off
the laboratory’s illumination for a few seconds during the
experiment.

Notice in Fig. 8 that, except for Robot 1, whose trajectory
generated more outliers in the region close to the timeline,
the estimated timelines are very similar to the actual ones.
Numerically, the encountered parameters can been seen in
Table 1. In this table, αi and βi are the parameters of the
line in Eq. (1) that relates the temporal coordinates of the i th
robot and the temporal coordinates of the camera.

Notice in Table 1 that for Robot 1 the difference between
the temporal shift of the two timelines is about 20 samples,
indicating a large synchronization error. The errors for the
other robots are much smaller than this, what indicates the
influence of the tracker and of the robot trajectory. Observe
in Fig. 7 that the trajectory of Robot 1 is the one that has more
self-intersections and the one that yields the worst tracking
performance.

With the data in Table 1 it is clearly possible to make
the pairwise synchronization of the sensors by combining
the timeline equations. Also, it is possible to estimate the
sample time of each robot. For instance, since α2 is the slope
of the timeline and the camera frame rate is 30 Hz, Robot 2
sample rate can be estimated as 30 × 0.097 = 2.91 Hz. In
the next section we present the conclusions of the paper.

4.3 Discussion

With the simulated and real-world results of the previous sub-
sections, we have shown some characteristics of the proposed
approach. The bottom limit of 70 % of success in recovering
a good timeline as noise in the tracker increases up to 10 %
in its standard deviation indicates that the proposed approach
is not highly dependent on good trackers. This suggests that
the method could rely on simple and efficient algorithms.
The results obtained with the real robots corroborate with
this observation. In that case, we have used a tracker with a
extremely poor performance (see Fig. 7) and, despite the large
number of outliers in the voting space, could still recover the
timeline. These results may also indicate that high resolution
cameras are not mandatory for the method, since it seems to
be robust to small variations on the position of the tracked
objects on the image.

The method also seems to be robust to the sensor’s local-
ization errors. In our simulations, 80 % of timeline recovery
was achieved for 2.7 m (9 % of the area) of error. This local-
ization error can be achieved by simple GPS devices, what
makes the method suitable to be used with several mobile
sensors.

The quality of the calibration, however, seems to be a
factor that highly interfere on the timeline recovery. This will
limit the use of the method to situations where it is possible to
determine the extrinsic parameters of the camera in relation
to a fixed reference frame. In situations where we cannot
guarantee that the camera will remain still, because of wind
or other external factor, for example, we will probably have
difficulties to use the proposed methodology.

Another key observation is related to the sensors’ move-
ments. In one hand, the method cannot be applied to static
sensors. For the case of static sensors, network based meth-
ods such as [5,17], or other alternatives that use additional
hardware, such as [11], must be used. On the other hand, we
have experimented some difficulties in recovering the time-
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Fig. 7 Robots’ trajectories
obtained by the tracker (in
color) and their respective
workspace trajectory projected
using the camera projective
matrix (in black). From the left
to the right, top to bottom we
see a frame captured by the
camcorder, and data from robots
1, 2, and 3, respectively (color
figure online)

line, due to an excess of outliers in the voting space, in situa-
tions where we have random sensor movements that caused
several self-intersections in the sensor’s paths. This suggests
that future work should consider the study of approaches for
controlling the paths of the sensors so that the synchroniza-
tion recovering is facilitated.

In the results presented in Sect. 4.1 we have considered
that we have success in recovering a timeline when this line
yielded temporal misalignment smaller than three samples.
If we consider that the frame rate of a typical camera is
30 Hz, misalignments of up to 100 ms were obtained. This
kind of synchronization may be useful for some applica-
tions that involve slow dynamics, such as temperature and
humidity measurements and even robot localization, but can-
not be used in applications that require a high level of syn-
chronization, such as scheduling for media access control in
some network protocols [21]. Since our approach is highly
dependent on the camera frame rate, for these applications
it cannot be used and must be replaced, for example, by
the ones that rely on package exchange through the wire-
less network [5,17,19], where the authors report synchro-
nization errors of about tenths of microseconds. However,
whenever larger synchronization errors are acceptable, our
method has a strong advantage over the previously published
ones, which is energy consumption. As seen in [21], when
there is a need to exchange extra packages through the net-
work, the network based methods are generally very power
consuming. Methods that reduce the communication to save
energy, on the other hand, can only achieve synchronization
in several minutes or even hours [19,21]. Our method do not
require the transmission of extra packages, since the position
of the sensor is the only information required. This is, in gen-

eral, the basic information transmitted by the mobile sensors.
Moreover, once the data is available, synchronization may be
achieved in a few minutes.

5 Conclusions and future work

This paper presented a new methodology for synchronization
of data gathered by networked mobile sensors. The method
is based on the observation of the sensors’ movements by
an external camera and in the determination of a timeline, a
function that captures all temporal relationships among the
sensors. In some specific scenarios, the proposed method
may be an interesting alternative for standard synchroniza-
tion methodologies based on wireless communication and
specific hardware.

The main requirements of our method are: (1) each sensor
node must be mobile and able to estimate (and communicate)
its position in relation to a global reference frame; (2) the
movement of each sensor must be observed for a given and
limited time by a video camera calibrated in relation to the
same global frame; (3) there is a tracker able to estimate the
sensors movements in the image plane; the tracker does not
need to make a distinction among the sensors, although this
would simplify the voting space and facilitate the timeline
recovery.

We presented synthetic and real-world experiments that
showed some important characteristics of the methodology.
First, the method is scalable, since it depends on the pair-
wise synchronization of each sensor with the camera. There-
fore, one could think on the synchronization of N sensors by
estimating N timelines in 2D instead of estimating a single
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Fig. 8 Voting spaces obtained for the trajectories in Fig. 7. From the top
to the bottom, the figures represent the 2D voting spaces that relates the
camcorder frames with the samples of robots 1, 2, and 3, respectively.
The color dots represent the points of each voting space. The black dots
represent the points obtained after RANSAC. The black lines represent
the timeline obtained using those points and the red lines represent the
actual align between the robot’s webcam and camcorder (color figure
online)

Table 1 Parameters of the timelines in Fig. 8

Robot Real Estimated

αi βi αi βi

1 0.098 55.99 0.045 76.83

2 0.098 46.70 0.097 51.65

3 0.079 52.65 0.067 62.79

timeline in a N + 1-dimensional space. Second, the method
present some robustness to noise on tracker and localization
data but, on the other hand, is somewhat sensible to errors in
the camera calibration matrix. Finally, the method is depen-
dent on the sensor’s trajectory. Good trajectories would be
the ones that do not intersect themselves for several times.
Each intersection point generates at least two points in the
voting space, being one of them an inlier and the others out-
liers. Since a large number of outliers can make more difficult
the timeline estimation, a small number of intersections on
the sensor trajectories would facilitate the computation.

Future work includes the proposition of a navigation strat-
egy for the mobile sensors, so that the timeline recovery is
improved. Another interesting direction for future research
is to think on how to use a moving camera to synchronize
the sensors. This comes in consonance with recent advances
in the area of unmanned air vehicles, which are generally
equipped with cameras and could fly above the sensors.
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