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This paper addresses the problem of mobile robot navigation using artificial potential fields. Many potential field based methodologies
are found in the robotics literature, but most of them have problems with spurious local minima, which cause the robot to stop before
reaching its target position. Although some free of local minima methodologies are found in the literature, none of them are easy to imple-
ment and generalize for complex shaped environments and robots. We propose a perfect analogy between electrostatic field computation
and robot path planning. Thus, an easy solution to the problem, which is based on standard finite-element methods, can be applied with
generic geometries and can even take into account the robot’s orientation. To demonstrate the elegance of the proposed methodology,
several experimental results with actual mobile robots are included.

Index Terms—Finite element methods, mobile robots, motion-planning.

I. INTRODUCTION

THE mobile robot navigation problem has attracted at-
tention of many researchers along the years and many

methodologies have been proposed. Considering a static en-
vironment, where the shape and position of the obstacles are
known (by means of a map, for example), the navigation
problem can be stated as follows:

“Given a generic shaped robot in an environment with generic
shaped obstacles, drive the robot to a target position in this en-
vironment by avoiding collisions with the obstacles.”

A wide survey on methodologies to solve the problem
stated above can be found in [1]. Most of the approaches are
based on the concept of configuration space [1]. Consider
a mobile robot navigating in a planar surface, and a reference
point which is fixed on the robot. The robot’s configuration

is composed by the and coordinates of
and the robot’s orientation . Then, by definition, the configu-
ration space, , is the set of all possible configurations of the
robot, while the robot’s trajectory is a continuous sequence of
configurations in . Fig. 1 shows these concepts. Obstacles
are represented in the robot’s configuration space as a set of
forbidden configurations. The regions of the configuration
space free of collisions are referred to as the free configuration
space, [1]. The main advantage of solving the navigation
problem in the configuration space is that the robot can be
considered as point, since its shape is considered only during
the construction of the space. The computation of the robot’s
configuration space can be performed by growing the obstacles
by the size of the robot using Minkowski Sums [2].

After computing the configuration space we must plan the
robot’s trajectory and then control the robot to follow this tra-
jectory. A practical approach to plan trajectories and control the
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Fig. 1. Robot is represented by a point in its configuration space. A trajectory is
then a continuous sequence of configurations that starts at q (the initial robot’s
configuration) and ends at q (the desired configuration).

robot is based on artificial potential fields [3]. In this approach
a scalar field , called potential function, is defined over the
robot’s free configuration space, . The negative gradient of the
potential function is then treated as an artificial force
acting on the robot (represented by its configuration ), and the
resultant force may be used to control the robot. The most basic
instance of this approach is to assign an attractive potential to
the goal and a repulsive potential to the obstacles and add them
together in order to compose . The integral curves of the
vector field formed by define implicit paths from every
start configuration in to the target configuration .

The main drawback of most potential field approaches is that,
due to the presence of spurious local minima in the potential
function, convergence to the target is not guaranteed [1]. In [4]
a free of local minima potential function named navigation func-
tion was proposed, and an analytical method to build such a
function was developed in [5]. The main difficulty with this
method is its implementation for generic shaped and high di-
mensional (i.e., more than two) configuration spaces. At about
the same time the navigation functions were proposed, Connolly
et al. [6] proposed the use of harmonic functions, which are so-
lutions to the Laplace’s Equation, as navigation functions. Dif-
ferently from the authors of [5], who pursuit analytical solu-
tions, Connolly et al. propose the numerical integration of the
Laplace’s equation. The authors discretize the domain in a ho-
mogeneous rectangular grid and applies finite differences to ob-
tain the solution.
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Many other authors have proposed different methodologies to
construct numerical navigation functions [7]–[9]. The work [7]
proposes computing minimal cost navigation functions by using
a linear programming algorithm. In [8], the authors compute
navigation functions for two-dimensional (2-D) domains using
an artificial electrostatic potential field developed by means of
a resistor network, which is derived to represent the environ-
ment. All these algorithms are based on regular grid discretiza-
tion, which is not suitable for representing complex geometries.
Furthermore, they are not practical for high dimensions and do
not address the robot’s orientation.

Most of the issues found in the previous approaches are not
present in ours. We use finite elements methods to compute
robot navigation functions based on electrostatic fields. A
deeper discussion about this computation is in the next section.
Section III presents the robot’s control law based on these
fields. Experimental results with actual robots are in Section IV.
Conclusions and future work are finally presented in Section V.

II. NAVIGATION FUNCTION COMPUTATION

Similarly to [6], we propose computing an artificial potential
field without spurious local minima by solving the Laplace’s
equation

(1)

which is valid in the domain . In this paper, we consider
the function domain to be the robot’s free configuration space,

. Therefore, our approach to the navigation problem is to con-
sider an equivalent electrostatic problem, where the navigation
function is analogous to a scalar electric potential over a do-
main free of electric static charges and constituted by a single
dielectric isotropic material.

Differently from previous works, we solve the robotics
problem using finite elements methods. Since finite elements
work properly with unstructured meshes, we use these meshes
to discretize the configuration space and efficiently compute
potential functions for generic shaped robots in highly complex
domains. Because we focus in planar navigation of mobile
robots our domains are (when we are not concerned
about robot’s orientation) or . Moreover, differently
from [9], that also addresses robot’s orientation and complex
environments, but applies searching algorithms in the config-
uration space, we present a closed-form solution based on the
gradient of the navigation function, as originally proposed in
[3].

In order to guarantee uniqueness in the solution, we must im-
pose boundary conditions to the domain boundary. In our ap-
proach, we consider that the target boundary conditions are con-
stant Dirichlet with value equals to zero, and obstacles boundary
conditions are also constant Dirichlet with identical positive
values. This implies that the negative gradient of the resultant
field close to obstacles is perpendicular outward of the obsta-
cles surface.

It is interesting to notice that, since all the boundaries, ex-
cept the target ones, receive identical Dirichlet boundary condi-
tions, it does not matter the condition value by itself, regardless

it is positive. This value produces different computed potential
values but the directions of the negative gradient vectors remain
the same. As we show in the next section, we make the robot
follow the normalized negative gradient vectors. Thus, only the
gradient orientation is needed.

The inclusion of robot’s orientation into the navigation
problem is needed when complex shaped robots are used, or
when the robot must reach the target with a given orientation.
To consider robot’s orientation, we must consider a three-di-
mensional (3-D) domain, where the axis is periodic over each
interval of radians, . The value of depends
on the axis of symmetry of the robot. For a totally asymmetric
robot we have . It is easy to represent this periodic
property by limiting the domain such that
and imposing a periodic boundary condition in the planes
and

(2)

III. ROBOT CONTROL

We consider that the motion of a robot is described by a
simple kinematic model of the form

(3)

where is the input vector of the system. It is desirable to steer
the robot from its initial configuration at time to
the desired configuration at some time , such
that , where is the free configuration
space.

Given the potential function , the following control law can
be used to solve the navigation problem

if
if

(4)

where is a 2 2 or a 3 3 diagonal matrix used to scale the
solution to a robot compatible velocity value, and is the
gradient of .

Because our artificial robot navigation functions are similar to
scalar electric potentials, the use of (4) makes the robot velocity
to be parallel to the electric field evaluated from this potential.
This analogy allows us to guarantee that our approach always
drives the robot to the target independently of the initial robot’s
configuration. This is because field lines in an electrostatic field
are oriented from higher to lower potential points. Since we have
defined boundary conditions such that a unique global minimum
is placed at the target, the robot can reach the target from every
initial point by following those field lines.

IV. EXAMPLES

This section presents illustrative examples with actual mo-
bile robots. Our testbed consists of remotely controlled robots
with different shapes observed by an overhead camera. A single
computer is responsible to perform all the computation needed
to localize and control the robots. A pair transmitter/receiver is
responsible for sending the velocity vector to the robots in each
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Fig. 2. (a) Diagram of the testbed used to generate the results. (b) Picture of
the robots.

Fig. 3. Typical robot trajectory in a U-shaped workspace. Robot’s trajectories
are parallel to the arrows (normalized electric field) inside each element.

time step. Fig. 2(a) shows a diagram of our testbed. Fig. 2(b)
shows the robots used in the examples.1

Fig. 3 shows a typical trajectory of an actual circular robot
[see Fig. 2(b)] in a U-shaped environment. In this figure, the
arrows represent the normalized electric field in each element.
Since the robot is circular it is not necessary to take into account
the robot’s orientation and so it is sufficient to use a 2-D domain.
This example is useful to visualize how the proposed approach
works. Since we are using first order elements, for each element
of the mesh we have a constant electric field. Thus, observe that
inside each triangular element, the robot’s trajectory is mostly
parallel to the vector representing the field. However, due to the
robot dynamics, a delay can be observed, i.e., after the robot is
localized in an element it takes some time until its velocity as-
sumes the correct field in that element. Also, due to localization

1 Some movies are available at the web page http://www.cpdee.ufmg.br/
~lucpim/compumag2005.

Fig. 4. Typical robot trajectory in a maze-like environment.

errors, it is possible for the robot to follow a vector that is not the
one presented in the element where the robot is. In spite of this,
it can be observed that, since our potential function is computed
for all points in the configuration space, the method is robust to
small localization errors.

A further example with the same circular robot is presented in
Fig. 4. In this case a maze-like environment shows how the ap-
proach can be successfully used in more complex problems. De-
spite the apparent complexity of this environment, it was quite
easy to construct a navigation function for this workspace using
a finite element method.

Fig. 5 presents a result for a more complicated problem:
an actual rectangular shaped robot [see Fig. 2(b)] moving in
a workspace with a narrow passage and an oriented target. In
order to facilitate the visualization of the trajectory we have
fixed an arrow at the robot center. In this example the robot
must reach the target with orientation rad. Although
the figure shows a bidimensional view of the robot’s trajectory,
it should be clear that this problem is solved in a 3-D configu-
ration space, since the robot is not circular and it must reach the
target with a specific orientation. Periodic boundary conditions
are also used in order to treat robot’s rotation properly.

V. CONCLUSION AND DISCUSSION

We have proposed a solution to the problem of computing
navigation functions for complex shaped robots and environ-
ments. The problem is transformed into an equivalent electro-
static problem in the space, subject to Dirichlet and pe-
riodic boundary conditions. Finite elements are used to solve the
resulting problem, and its solution is used in mobile robots navi-
gation. Our approach is able to solve problems that could not be
solved efficiently by previous methodologies. Since a path to the
target exists, our approach guarantees that the robot reaches the
target, independently of the initial robot’s configuration. Fur-
thermore, due to the fact that the artificial potential function is
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Fig. 5. Typical trajectory of a rectangular robot in a complicate workspace
with an oriented target.

Fig. 6. Representation of a U-shaped obstacle in the configuration space of a
rectangular robot.

defined over the free configuration space, the implicit paths de-
termined by the computed vector field are free of collisions. The
introduction of the periodic boundary condition and the control
law proposed in Section III makes the treatment of the robot’s
orientation in a closed form possible.

Since we can establish a perfect analogy between electromag-
netic problems and robotic problems, the numerical techniques
developed in the field of electromagnetics can be directly ap-
plied to solve problems in the field of robotics. Moreover, due to
the nature of the environments considered in the robotics field,
their respective configuration spaces have a quite complex ge-
ometry and thus, could be used as a benchmark for mesh gener-
ation algorithms. Just to illustrate the complexity of such spaces
we show in Fig. 6 the representation of a U-shaped obstacle in
the configuration space of a rectangular robot. In this figure it
can be also seen a boundary box used to limit the domain. Due to
the symmetry of the rectangular robot, the domain must be con-

fined in the interval . Since the robot is not allowed
to navigate inside the obstacle, this obstacle is represented as a
hole in the domain.

The main current limitations of our approach are two: 1) good
knowledge about the environment must be provided, i.e., all ob-
stacles must be modeled previously and 2) only static obstacles
are treated.

Future works include real-time finite element implementation
for allowing unknown stationary obstacles. The treatment of this
type of unknown obstacles is useful when the robot has partial
or no knowledge of the environment. In situations like that the
robot must use its sensors (cameras, ultrasound, infrared, etc.)
to update the environment map in real time.

A more complicated problem concerning moveable obstacles
is also a possible extension of this work. This problem appears
when the robot environment is populated by humans and other
robots. We believe that the use of meshes limits the application
of finite elements for such situations. It seems that mesh free
methods such as element free Galerkin (EFG) methods [10],
[11] are promising for this case.

Finally, one should notice that even though we presented re-
sults in two and three dimensions, this is not a limitation of our
approach. Actually, our immediate plans are to apply this ap-
proach for robots with more degrees of freedom such as manip-
ulators and flying and underwater robots. The main challenge in
these applications is to generate good meshes in domains with
dimensions higher than three.
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