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Abstract Automatic detection of people is essential for
automated systems that interact with persons and perform
complex tasks in an environment with humans. To detect
people efficiently, in this article it is proposed the use of high-
level information from several people detectors, which are
combined using probabilistic techniques. The detectors rely
on information from one or more sensors, such as cameras
and laser rangefinders. The detectors’ combination allows the
prediction of the position of the persons inside the sensors’
fields of view and, in some situations, outside them. Also,
the fusion of the detector’s output can make people detection
more robust to failures and occlusions, yielding inmore accu-
rate and complete information than the one given by a single
detector. Themethodology presented in this paper is based on
a recursive Bayes filter, whose prediction and update models
are specified in function of the detectors used. Experiments
were executed with a mobile robot that collects real data in a
dynamic environment, which, in our methodology, is repre-
sented by a local semantic grid that combines three different
people detectors. Results indicate the improvements brought
by the approach in relation to a single detector alone.
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1 Introduction

In the next years, the development of robotic systems will
dramatically change the way humans move, work, or have
fun. The coexistence of such systems and human beings is
increasing everyday, and because of that, robots should be
designed to interact safely with people. To allow this inter-
action, the robots should efficiently detect the people in their
workspace.

Robotsmay execute complex tasks to help people or coop-
eratewith them, for instance bydoinghomecleaning, guiding
newcomers in a museum, or carrying a load (Pereira et al.
2013). As defined by the International Federation of Robot-
ics (IFR), robots that perform such tasks are called service
robots. A critical issue for service robots in an environ-
ment with people is human–robot interaction. Robots need
to be aware of the presence of people, and in some cases,
it is desirable that the robot is controlled or supervised by a
human operator (Ceccarelli 2011). Therefore, it is essential
that the robots have an advanced perception system, which is
responsible for transforming raw sensor data, such as camera
images and laser scans, into consistent anduseful information
not only to understand the environment and detect objects,
but also to detect people and their location. In this context,
autonomous vehicles are examples of service robots with the
need for people detection (Geronimo et al. 2010). People
detection is also important in smart environments where it
can be used to predict the behavior of the users (Hofmann
et al. 2011).

Robotic systems for people detection usually seek for
candidates in the field of view (FOV) of the sensors using
characteristics such as shape, symmetry, texture, movement,
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and frequency of motion of human legs (Broggi et al.
2009). The most common sensors used in this area are laser
rangefinders, radars, and cameras.

Laser rangefinders and radars are distance sensors that
scan one ormore planes in space, obtaining the distance from
obstacles in relation to its reference frame. The approaches
that detect people with such sensors generally perform the
extraction of geometric features such as border size, convex-
ity, number of points, lines, and corners. The features are
used to train classifiers or to calculate thresholds (Premebida
et al. 2009; Spinello and Siegwart 2008). Other approaches
are based on pattern matching, for example in the works by
Pereira et al. (2013), Oliveira et al. (2010), and Bellotto and
Hu (2009). The approaches which are not based on features
apply local minimum search, detection based on motion or
background subtraction (Cui et al. 2005).

People detectors in camera images are often based on slid-
ing window, segmentation, or keypoint approaches (Dollar
et al. 2012; Varga et al. 2014). The computation of Haar
features in the image and the use of a cascade structure for
detectionwithAdaBoost feature selection is an approach that
serves as a foundation for modern detectors (Pereira et al.
2013; Bellotto and Hu 2009). Another popular technique
for people detection in images is the histogram of oriented
gradient (HOG), introduced by Dalal and Triggs (2005).
The authors perform people and object recognition even
in complex environments and under variable lighting con-
ditions using HOG descriptors classified by support vector
machines (SVM). The basic idea is that the local appearance
and shape of objects can be characterized by the local distri-
bution of intensity gradients, which represent the direction of
the edges. These descriptors are used in several works such as
(Varvadoukas et al. 2012; Oliveira et al. 2010), and (Spinello
and Siegwart 2008). State-of-the-art detectors rely on slid-
ing windows over feature pyramids, which are multi-scale
representations of an image with fast construction, allowing
real-time performance such as some extensions of the work
by Dollar et al. (2014), which uses aggregated features (nor-
malized gradientmagnitude, HOG, and LUV color channels)
and AdaBoost.

Data from laser, radar, and camera can be used simulta-
neously in order to combine the technological advantages
of each sensor and to compensate for their limitations. The
combination of sensing information, known as sensor fusion
or sensor integration, is frequently used in several robotic
applications, such as autonomous navigation, object clas-
sification, and localization (Antunes et al. 2012). In these
cases, the combination may overcome problems caused by
occlusion, direct sunlight, low reflectivity of dark objects,
bad weather conditions, among others.

For people detection, there are approaches which combine
sensor data at feature level or at classifier (or object) level.
In the feature level, raw data from sensors are processed to

obtain features, such as lines, corners, height, speed, and
motion, which are fused to be classified as people or not peo-
ple later. The works by Cho et al. (2014), Utasi and Benedek
(2013), and Bota and Nedesvchi (2008) are based on this
approach. The second approach, which is used in the works
by Premebida et al. (2014), Huerta et al. (2014), and Oliveira
et al. (2010), performs people or object detection on sensor
data separately and then combines the candidates detected.
The methodology presented in this paper lies in this second
approach.

Among the methodologies found in the literature for
people detection, several can be classified as Bayesian
approaches. Either they directly use the Bayes’ rule or they
are based on the various techniques derived from the Bayes’
filter (Kalman filter, particle filters, occupancy grid, etc). The
Bayes’ rule is generally used to, given the extracted char-
acteristics and some confidence about them, compute the
probability that they represent a person. This computation
may or may not use information from the past to compute
the current probability. Examples of works that use such an
approach are (Utasi and Benedek 2013; Bota and Nedesvchi
2008;NgakoPangop et al. 2008).On the other hand,when the
variations of the Bayes’ filter are used, the method includes a
prediction step, based on mathematical models and informa-
tion from the past, and a correction step, when sensor data
are used to update the prediction. Some works that follow
this idea are (Cho et al. 2014; Gidel et al. 2009; Monteiro
et al. 2006).

The methodology proposed in this work can be classified
as a Bayesian approach, falling in the subclass of works that
uses variations of the Bayes’ filter. In our method, the Bayes’
filter is used to combine people detectors. The information
to be combined is data already processed and classified as
people by a set of previously published classifiers. The com-
bined information has a level of confidence that is higher than
the one from each individual people detector. This informa-
tion is available to the applications (people tracking, robot
navigation, human–robot interaction, etc) as a set of num-
bers that indicate the probability that specific regions of the
environment are occupied by people. A block diagram of
our solution is presented in Fig. 1. The main contributions
of the proposed methodology in relation to other Bayesian
approaches for people detection are: (1) A prediction step
executed in two phases: one based on a sensor motion model
and the other based on a people motion model; (2) a new
people motion model, which considers the probability dis-
tribution of people in regions of the workspace and their
probability of movement; and (3) the use of high-level infor-
mation from multiple people detectors in the correction step
using models based on precision and false-negative rate for
these detectors. These contributions indicate that, even being
based on a mature theory, the methodology proposed in this
work constitutes a novel strategy for people detection.
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Fig. 1 Overview of the steps of
the proposed approach, which is
enclosed by the biggest dashed
rectangle. In addition, the
scheme shows other steps to
integrate the approach to some
application

Although the proposed approach can be implemented
using several techniques, including efficient Monte Carlo
variations, such as the particle filter, in this paper it was
implemented and tested using a semantic occupancy grid.
Occupancy grids are being increasingly employed in robot-
ics applications (Liu and von Wichert 2014; Adarve et al.
2012) for being a compact representation of the environ-
ment close to the robot. It also provides information on the
occupancy of the space, allowing the representation of other
detected objects, and reduces the problem of data association
frommultiple sensors to a simplemapping to a cell of the grid
(Yoder et al. 2010). In the experiments presented in thiswork,
an occupancy grid was built to represent the local workspace
of a mobile service robot navigating in a building with peo-
ple inside. The robot is equipped with a laser rangefinder
and a monocular camera and moves autonomously through
the environment, which is subjected to large illumination
changes. The results of this experiment are quantitatively and
qualitatively analyzed, showing an increase in the hit rate of
the detections and in the accuracy of people location when
compared with the results from single detectors.

In the next section, we briefly introduce the main theo-
retical concepts necessary to understand the proposed theory
and its implementation using semantic grids.

2 Background

The objective of the Bayesian approach proposed in this
paper is to determine the chances that a given region of the
space is occupied by a person. Thus, given a 2D workspace
partitioned into regions, wewant to determine the probability
of having a person in a region centered at point (x, y), assum-
ing that we have a probabilistic model for the motion of the
people, a set of stochastic information given by an ensemble
of sensor-based people detectors, and a probabilistic model
for the motion of the sensors in the workspace.

Let X be the random variable that represents the state
of the region centered on (x, y) in relation to the type of
object contained in that region. If the space under con-

sideration is, for example, an area in the road in front of
a vehicle, the experiment to observe this region at time t
may result in the conclusion that there is a person, a car,
a bicycle, an animal, other obstacle, or nothing (the area is
free). In this case, the random variable X can assume the
following values: person, car, bicycle, animal, other obsta-
cles, or free space. Therefore, the sample space S consists of
the possible outcomes obtained from observation, such that
S = {person, car, bicycle, animal, . . . , free space}. Accord-
ing to the second axiom of probability (Papoulis and Pillai
2002), the sum of the probabilities of all events in the sample
space is equal to one:

∑

x∈S
P(X = x) = P(X = person) + P(X = car) + · · · +

+ P(X = free space) = 1. (1)

Since the focus of this work is the detection of people, we
consider that the sample space is partitioned into two subsets:
S = p ∪ np, where p is the event {X = person} and np (not
person) is the event in which can occur other elements of S,
except for person. In this paper, for the sake of simplicity in
the notation, the probability that event p occurs or P(X = p)
will be denoted by P(p). The computation of P(p) depends
on several factors that should be considered, such as: the state
of the region at the time of the last observation, the displace-
ment of people from other neighboring regions to the region
of interest, the information from the sensors that observe the
region, and the movement of these sensors. The Bayes filter,
introduced next, is applied to consistently consider all these
factors.

2.1 The Bayes Filter

Consider X to be a random variable and x a specific value that
X can assume. P(x) is the probability that X becomes x. The
Bayes Theorem is based on the theorem of total probability
and on the conditional probability rule (Papoulis and Pillai
2002). It relates a conditional probability of the type P(x |y)
to a conditional probability P(y|x) as:
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P(x |y) = P(y|x)P(x)

P(y)
. (2)

In the field of probabilistic robotics, the Bayes theorem
is used to infer a quantity x from data y (e.g., a sensor mea-
surement). The quantity x is a state that can be, for example,
the pose or the velocity of a robot, its localization, and/or
features and objects in the environment. The distribution
P(x) is known as prior probability distribution (before the
experiment is conducted) which represents knowledge about
x before incorporating y. The probability P(x |y) is called
the posterior probability distribution (after the experiment is
conducted) (Thrun et al. 2005).

The Bayes filter is derived from the application of the
Bayes theorem to the posterior probability P(xt |z1:t , u1:t ),
which determines the state x conditioned on the sensor mea-
surements (z1:t ) and on information about the change in state
in the environment, which is called control data (u1:t ). As
states may change over time and measurement and control
are performed at certain time instants, the subscript values
of the random variables indicate the time instant considered
in discrete values. For example, z1:t represents the set of all
measurements acquired from the time instant equal to 1 until
time t. The notation used here is similar to the one in (Thrun
et al. 2005), which describes the Bayes filter as a way to
compute the posterior probability, P(xt |z1:t , u1:t ), denoted
by bel(xt ), in two steps:

bel(xt ) =
∫

P(xt |ut , xt−1)bel(xt−1)dxt−1 (3)

bel(xt ) = ηP(zt |xt )bel(xt ). (4)

The Bayes filter is recursive as it calculates the belief
distribution bel(xt ) at time t by using the distribution
bel(xt−1) at time t − 1. Equation (3) takes into account con-
trol ut and the distribution of the state xt−1 to calculate the

distribution of the state xt . This step is known as prediction.
When the state space is finite, the integral in (3) becomes
a finite sum. Equation (4) is known as measurement update
and takes into account the measurement zt . Constant η is
used for normalization, ensuring that the resulting product is
a probability function and its integral is equal to 1.

In practical applications, Gaussian filters (such as the
KalmanFilter and its variations) and nonparametric filters are
tractable implementations of the Bayes filter for continuous
spaces. Nonparametric approaches approximate posteriors
by a finite number of values, each roughly corresponding to a
region in the state space, such as particle filters, histogramfil-
ters, and occupancy mapping algorithms (Thrun et al. 2005).
The implementation presented in this work uses semantic
grids, which are based on occupancy grids. Semantic grids
are presented in next subsection.

2.2 Semantic Grid

An occupancy grid is a stochastic representation of spatial
information of the environment (Elfes 1990). It is arranged in
cells of the same size, each associatedwith a (x, y) coordinate
and a probability of occupancy. As defined in (Thrun et al.
2005), mi is the cell with index i. The occupancy grid, m,
partitions the space into a finite number, N, of cells as m =
{mi |1 ≤ i ≤ N }. Each cell mi has a value of occupancy,
usually binary, indicating whether the cell is occupied or
free. The probability of a cell being occupied is referred to
as P(mi ).

A semantic grid is an occupancy grid that integrates the
spatial representation of the environment with the poses of
objects of known classes (Nüchter and Hertzberg 2008). In
this work, the semantic grid will provide information about
the presence of people in the environment and a measure of
the confidence of this information. An example of semantic
grid is in Fig. 2. Figure 2a shows a scene containing three

Fig. 2 a A scene containing
people and another object being
scanned by a laser positioned at
the middle bottom. b A
semantic grid that represents the
scene colored according to the
information obtained by the
sensor’s readings
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people and an object being scanned by a laser rangefinder
positioned at the middle bottom (its rays are the blue lines)
in a bird’s eye view. Figure 2b shows a semantic grid with
900 (30× 30) cells that represents the scene in (a). The grid
cells are colored according to the readings of the laser: white
for free cells, red to cells occupied by people, black to cells
occupied by obstacles and gray to cells outside the sensor
range.

Given the definitions of this section, next section presents
our methodology to combine information from multiple
people detectors using the Bayes filter. This filter is experi-
mentally tested using a semantic grid, as shown in Sect. 4.

3 Metodology

The proposed approach applies the Bayes filter to (i) predict
the presence of people in a specific region of the space and (ii)
correct this first estimate based on the information given by
an ensemble of people detectors. The following subsections
detail each step of the approach.

3.1 Prediction

In this work, we propose the use of two prediction phases:
one based on people motion and another based on sensor
motion. These phases are detailed next.

3.1.1 Prediction Based on People Motion

Theprediction basedonpeoplemotion is a step that computes
the probability of a particular region to be occupied by people
based on knowledge on the people motion and on knowledge
of the probability of existence of people, in this and in the
neighboring regions, at the preceding time (t−1). Therefore,
given the probability bel(xt−1) of the presence of people at
(x, y) in the preceding time (t − 1) and the people motion
model, represented by a probabilistic density function (PDF),
the probability that the region centered at (x, y) is occupied at
time t is computed by Eq. (5) which is based on the prediction
equation of the Bayes filter.

bel
′
(xt ) =

∫
P(xt |xt−1, v

people
1:t )bel(xt−1) dxt−1 . (5)

Since state x can only assume twovalues, x = p or x = np,
the state space is discrete and the integral in (5) becomes a
finite sum. At time t, the region centered at (x, y) will be
occupied by people in two situations: if there were any peo-
ple at (x, y) at time t −1 and they stood still, or if there were
no people at time t − 1 but some people moved from a sec-
ond region (i, j) to (x, y). Thus, Eq. (5) becomes similar
to the equation used to compute the probability of occu-

pancy of regions by species in the field of ecology, which also
takes into account the movement of individuals (MacKenzie
et al. 2003). This model considers the occupation of areas
(colonization) and its unemployment (extinction), but with
different speed and probabilities of colonization and extinc-
tion. By rewriting Eq. (5) based on this model and assuming
that the state is complete, that is, knowledge of xt−1 imply
that past measurements and information about past velocities
do not contribute to determining the state xt , we obtain:

bel
′
(xt = p) = P(p|xt−1 = p, vpeoplet = 0)bel(xt−1 = p)

+ P(p|xt−1 = np, vpeoplet = vaverage)bel(xt−1 = np) ,

(6)

where:

– bel
′
(xt ) = P(xt |z1:t−1, v

people
1:t ) is the probability of state

xt at time t conditioned on all past measurements z1:t−1

and people velocities v
people
1:t .

– bel(xt−1) = P(xt−1|z1:t−1, v
people
1:t−1 ) represents the prior

belief over state xt−1, i. e., the probability of the state
xt−1 conditioned to all past sensor measurements z1:t−1

and past people velocities v
people
1:t−1 .

– P(p|xt−1 = p, vpeoplet = 0) is the probability of people
do not move way from their current region (x, y).

– P(p|xt−1 = np, vpeoplet = vaverage) is the probability of
people come to occupy region (x, y) given that their veloc-
ity is vaverage.

The probability P(p|xt−1 = p, vpeoplet = 0) is given by:

P(p|xt−1 = p, vpeoplet = 0) = pstationary , (7)

where pstationary is the probability of people to remain in their
current position. On the other hand, probability P(p|xt−1 =
np, vpeoplet = vaverage) is computed as:

P(p|xt−1 = np, vpeoplet = vaverage) =
= 1 − pfree

pfree + ∑
k=(i, j)∈G

pfree pkbel(x
i, j
t−1=p)

(1−pkbel(x
i, j
t−1=p))

(8)

where pfree is the probability of the region (x, y) to remain
free (without people) and pk is the probability of people
to move from (i, j) to (x, y), which can be computed by a
people motion model. These probabilities are related by:

pfree =
∏

k=(i, j)∈G
1 − pk . (9)

The setG in Eqs. (8) and (9) is the space of all regions that
may be occupied by people. In this work, we are considering
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Fig. 3 People motion model: probability density function (PDF) ×
speed (m/s)

that this space is discrete. Moreover, in practical implemen-
tations, G can be restricted to the neighborhood determined
by all locations that a person can reach from (x, y) in a single
time interval.

The people motion model describes the distribution of
velocities at which people usually walks. There is a physical
limit to the maximum speed attainable by a person. Although
unlike for ordinary people, in this work the limit to this speed
is the average speed reached by the fastest athlete in theworld
(Hogenboom 2013). Based on this, the people motion model
considers a low probability to high-speed movements and a
higher probability to speeds around the average speed with
which people usually move. The literature suggests that the
people motion model can be represented by a normal PDF
with mean value of 1.46m/s and standard deviation of 0.63
(Daamen and Hoogendoorn 2007). A plot of this model is in
Fig. 3.

It is also necessary to include in the previous model the
probability that people may stay in the same region between
twoperiods of time.Assuming that the probability of a person
to remain standing still in urban spaces is pstationary , we
propose the following model:

pk =

⎧
⎪⎪⎨

⎪⎪⎩

pstationary, if dist ((x, y), (i, j)) = 0;
(1 − pstationary) × 1

σ
√
2π

e
− (dist ((x,y),(i, j))/Δt−μ)2

2×σ2 , if

dist ((x, y), (i, j)) �= 0.

where Δt is the time interval between t and t − 1 and func-
tion dist (·, ·) computes the Euclidean distance between two
points in a two dimensional space.

In this model, it is assumed that people can walk every-
where (no knowledge about obstacles or the environment
map) and in every direction. Thus, as the velocity has two
components (linear and angular velocity), the linear compo-
nent has a distribution function equivalent to the distribution
of speed and the distribution of angular velocity is uniform
(it is considered that people can move to any direction with
the same probability).

The second step of the prediction is detailed in the next
subsection.

3.1.2 Prediction Based on Sensor Motion

In the second step of the prediction, the probability of the
existence of people in a determined region of the scene
relative to the sensor frame is computed according to the
displacement of the sensors. Assuming that the sensors are
attached to a mobile robot, the motion model can rely on
information given by the robot’s sensors, such as odometers,
inertial measurement units or GPS. Since this information is
subject to errors, a distribution function of the sensors’ posi-
tion at time t indicates that it is possible that the sensors are in
several other positions with some probability. Consequently,
the estimate of the people’s position relative to the sensors’
frame is subject to the same uncertainties. To calculate the
change in the coordinate system, i.e., the new position of
the people after sensors’ motion, the displacement vector of
the sensor can be subtracted from the people’s coordinates.
Thus, even though none of the people in the environment has
moved, relative motion can occur when the sensor moves.

Considering that the prediction based on people’s motion
is computed using (6), the influence of the sensor motion is
then given by:

bel(xt = p) = P(p|vsensors1:t )bel
′
(xt = p) , (10)

which can be written as:

bel(xt = p) = P(p|z1:t−1, v
people
1:t , vsensors1:t ) . (11)

In practical situations, the actual velocity of the robot dif-
fers from the measured velocity, which can be approximated
by a random variable. The probability P(p|vsensors1:t ) can be

found using Eq. (8), when v
people
t is replaced by vsensorst . The

velocity motion model described by Thrun et al. (2005), with
a normal distribution is used to calculate the probability pk .

Next subsection describes the update step of the method-
ology.

3.2 Measurement Update

The measurement update is a step that follows the prediction
and involves determining the probability that a given region
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of space is occupied by people using information from the
sensor-based people detectors and the probability computed
in the prediction step. This step, based on the second equation
of the Bayes filter (Eq. (4)), is also known as correction,
since it incorporates a new measurement zt to the belief by
multiplying bel(xt ) by the probability of the measurement zt
has been observed:

bel(xt = p) = ηP(D1, . . . , DN |xt = p)bel(xt = p) , (12)

where the normalization step is given by η = 1/(bel(xt =
p) + bel(xt = np)) and P(D1, . . . , DN |xt = p) is the prob-
ability of detectors D1, D2 . . . , DN indicate the presence of
people in a region when there is in fact people at the region.
This term is computed as explained below.

The proposed approach uses information from multiple
people detectors in the update step. Thus, the raw infor-
mation from the sensors is processed so that each detector
provides the position of the detected people and a measure
of the confidence for such estimations. This high-level infor-
mation is combined so that when more than one detector
indicates a person at a given position, the detection’s confi-
dence is greater than the one relative to the cases when only
one detector detects a particular person.

When more than one detector is used, their information
can be combined by taking into account their different char-
acteristics. To combine multiple sensors, there are many
possibilities in the sensor fusion literature. Among them, we
find linear opinion pools (Adarve et al. 2012; Baig et al.
2014), Bayesian fusion (Yguel et al. 2006), and maximum
functions (Thrun et al. 2005). As described in Baig et al.
(2014), conflicting information may generate errors in some
of these methods. To deal with conflicting information and
to shorten the confidence of those detectors that do not give
relevant information to the process, in this work, the informa-
tion from all detectors of different sensors are merged based
on De Morgan’s law (Thrun et al. 2005). Considering that
there are N detectors D1, D2, . . . , DN , the confidence of the
fusion when at least one of the detectors detects people in a
given region of the space is written as:

P(D1, . . . , DN |p) = 1 −
∏

i=1:N
(1 − P(Di |p)) . (13)

To compute P(Di |p), positive predictive value (PPV) and
false-negative rate (FNR)were used. PPV, also known as pre-
cision, is the ratio between the number of correct detections
and the total number of detections. It measures the number of
hits in relation to the total number of objects identified by the
classifier as positive. In our case, it is used when the detector
detects people. Thus, in these cases P(Di |p) = PPV. When
the detector does not detect people P(Di |p) = FNR, which
is the ratio between the number of false negatives and total

number of objects actually in the scene. Values of PPV and
FNR are found experimentally for each detector.

When none of the detectors detects people, De Morgan’s
law is not used. To ensure that the probability of people in the
region is reduced, the confidence associated with the pres-
ence of people in this region will be the smaller FNR of the
detectors:

P(D1, . . . , DN |p) = min
i

FNRDi . (14)

In our experiments, shown in the next section, three detec-
tors were used to validate our methodology. Details of the
experiments are shown next.

4 Experimental Results

In this section, we show some of the characteristics of our
methodology using real-world data. Our experimental setup
consists of a laser rangefinder and a camera fixed on amobile
robotic platform calledMARIA (manipulator robot for inter-
action and assistance). A picture of the robot and its sensors
is shown in Fig. 4. Laser and camera were positioned 0.29
and 1.63m above the ground, respectively. The laser was
approximately aligned with the camera x-axis but shifted
about 0.20m ahead. The orientation of the camera relative
to the laser was supplied by a MATLAB-based camera-laser
calibration toolbox (Kassir and Peynot 2010). The orienta-
tion angles about axis x, y, and z obtained using this package
were, respectively, 0.1222, 0.0034, and 0.0175 radians. The
sensors’ positions are in consonance with the height and ori-
entation expected by the detectors used in thiswork. The laser

Fig. 4 Robot used in the experiments of this work
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sensor usedwas the SICKLMS291-S05. It has a field of view
(FOV) of 180◦ and was configured to the maximum range of
32m with 1◦ of angular resolution. The camera used was the
one from the Kinect sensor installed on the robot. Although
the Kinect can provide depth information, in our experiments
we only used the images generated by the RGB camera. The
size of each image is 640 × 480 pixels. The horizontal FOV
of the camera is of 62◦.

In our experiments, the robot navigates autonomously in
an office-like environment using the methodology proposed
by Araujo et al. (2015). The environment considered in this
work is a building that has open and closed corridors, which
causes significant changes in the illumination conditions.
Although these changes turn the environment similar to out-
doors environments in terms of illumination, it is important
to emphasize that the environment is still an indoor environ-
ment in the sense that it presents an even and flat ground,
which does not cause any difficult to the data acquisition
process. During the navigation, the robot speed ranged from
0 to 0.6m/s. To collect data from laser and camera simultane-
ously, ROS (robot operating system) was used.1 The original
frequency of the camera was 30Hz, but it was down-sampled
to 10Hz for faster processing. The laser frequency was 9Hz.
As the frequencies of the sensors differ, synchronization was
performed by taking the laser readings temporally closer to
the last image of the camera.

After laser and camera data were collected, three differ-
ent people detectors were used: two of them based on laser
(Detector 1 by Bellotto and Hu (2009) and Detector 2 by
Spinello and Siegwart (2008)) and the other one based on
images (Detector 3 by Dollar et al. (2014)). Although these
detectors are not state-of-the-art detectors, they were chosen
because they are freely available and have presented satis-
factory results in previously published works (Pereira et al.
2013;Varvadoukas et al. 2012;Benenson et al. 2015).Notice,
however, that the proposed approach allows the use of any
other people detector and different sensor configurations.

We have implemented our methodology using a local
semantic grid of 30 × 30 square cells, each with a side
measuring 0.3m. Observe that the dimension chosen for the
cells allows a person to occupy more than one cell, as well
as two or more people share parts of the same cell. In our
implementation, the constants of the equations in Sect. 3 are
shown in Table 1. The values of PPV and FNR for the detec-
tors were obtained experimentally using a set of data similar
to the one used in this section.

The semantic grid is in the same plane as the laser in a sit-
uation similar to the one illustrated in Fig. 2a. The detectors
provide the relative positions of the detected people, which
are mapped to the local grid. As the sensors have limitations

1 ROS is a software which provides libraries and tools for applications
in robotics (http://www.ros.org/).

Table 1 Constants used in the
experiments

Constant Value

μ 1.46m/s

σ 0.63m/s

pstationary 0.85

Δt 0.1 s

PPV (Detector 1) 0.95

FNR (Detector 1) 0.30

PPV (Detector 2) 0.50

FNR (Detector 2) 0.40

PPV (Detector 3) 0.95

FNR (Detector 3) 0.50

and are noisy, they have a degree of uncertainty regarding
both, the location provided and the result of detection. The
uncertainty in the position provided by the laser was dis-
carded for being negligible compared to the dimensions of
a person (laser position error is about 35mm according to
SICK (2006)). Regarding the image-based detector, since it
used a single camera, the method proposed by Stein et al.
(2003) to estimate the distance between the camera and the
detected person was used. This is based on an approach that
assumes the knowledge of the height of the camera in rela-
tion to the ground. The uncertainty of this estimation was
obtained empirically. The PDF that represents the error of
the estimation was approximated by a normal distribution
with 0 mean and standard deviation of 1.0m on x and 1.7m
on y. Figure 5 shows the effect of the distribution on the loca-
tion of people detected by the camera in the cells (15, 15) and
(15, 16) of the grid.

The proposed approach was prototyped in MATLAB. In
an Intel Core2 Duo 1.8GHz, the execution time of each iter-
ation for a grid with 30 × 30 was about 1.78 seconds. To
implement the method in real time, a C implementation and
a parallelization of some steps of the approach using GPU
should be considered. The use of GPU in other approaches
has showed that it is possible to achieve a considerable
decrease in processing time. In the work by Yoder et al.
(2010), for example, the reduction in time was about 95%
by exploring the parallel structure of their method, which
was also based on occupancy grids. It is important to notice
that the computational complexity of the method is linear in
relation to the number of cells in the occupancy grid.

Figure 6 shows two consecutive snapshots of our experi-
ment. The first one is represented by figures (a) and (c)–(j)
and the second one by figures (b) and (k)–(r). Figure 6a, b
shows images of the camera with detected people marked
by rectangles. The grid in figures (c) and (k) represents the
ground truth data which were annotated manually using raw
laser data projected on the grid. In this grid, only people
were annotated and they are represented by red cells. Notice
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Fig. 5 Effect of the distribution
on the location of people. a Red
cells represent people as found
by the people detector. b
Localization of people detected
in (a) after application of error
distribution. In this figure, the
darker is the cell, the greater is
the probability of people (Color
figure online)

in these figures that there are two persons in the scene: one of
them positioned at the top left (Person 1) that occupies four
cells and the other one in the bottom right (Person 2) that
occupies two cells in figure (c) and three cells in (k). Person
1 and Person 2 are moving in opposite directions. The cam-
era’s field of view is smaller than the laser’s, so the images
in (a) and (b) do not show Person 2. Notice in figures (a) and
(b) that there are some other people detected by Detector 3
that are not represented on the local grid, once they are over
9m from the robot and thus beyond the grid limits.

Figure 6d, l show the prediction step based on people
motion. In these figures, the darker is the cell, the greater
is the probability of occupation by people. The prediction
step is based on the belief computed in the previous time
interval (prior). Therefore, (l) is computed by the application
of the people’s motion model to the grid in Fig. 6j, which is
the final result of the method in the first iteration shown in
Fig. 6. The prior related to Fig. 6d is not shown. By compar-
ing (j) and (l) one can notice that the motion model spreads
the probability around the grid. The prediction step considers
that the probability of existence of people outside the grid is
0.5, meaning that there is no knowledge about the presence
of people in this region. This forces the motion model to take
into account that people from outside can move inside the
grid.

Figure 6e, m shows the results of the prediction based on
sensormotion. Since the robot wasmovingwith linear veloc-
ity of 0.35m/s and angular velocity of 0 rad/s, it is almost not
possible to notice a small shift of the cells from up to down
due to the motion of the robot. This shift would certainly be
visible at higher velocities.

The grids in Fig. 6f–h, n–p show the results given by the
detectors mapped into semantic grids. In these grids, the red
cells correspond to people. Figure 6f refers to Detector 1, a
laser-based detector which detected only Person 2 in the first

time step. In the next iteration, this detector found only Per-
son 1 (Fig. 6n). The other laser-based detector, Detector 2, in
Fig. 6g found Person 1 but incorrectly detected another per-
son at the bottom right of the grid. In the next instant of time,
this detector again found Person 1 and another person, which
was not a correct detection (Fig. 6o). Figure 6h, p shows
the results of Detector 3, a vision-based detector. It success-
fully detected Person 1. Person 2 can never be detected using
images, since it is outside the field of view of the camera.
In Fig. 6h, p, the detection is represented by several cells
because there is a large uncertainty in relation to the position
of people detected with a single camera.

Fusion of the three detectors using Eqs. (13) and (14)
is shown in Fig. 6i, q. Again, darker cells indicates a large
probability of people. The free cells have a lower probabil-
ity, which is represented by light gray. In the first time step,
Person 1 and Person 2 were detected at least by one of the
detectors and then, fusion shows a high probability in the
cells occupied by them (Fig. 6i). On the other hand, notice in
the fusion results of the second time step, shown in Fig. 6q,
that only the position of Person 1 has a high probability, since
Person 2 was not detected in this time step. Also, thanks to
the low confidence assigned to Detector 2, the false posi-
tives (i.e., incorrect detections) in both time steps had their
probabilities minimized during the fusion step.

The posterior probability, which was computed by the
combination of the belief in the prediction step and the prob-
ability obtained by the fusion of the detectors as in Eq. (12),
is shown in Fig. 6j, r. In Fig. 6j, the cells occupied by people
have the largest probabilities, representing the most likely
location of people. It shows that when two different people
detectors detect the same person, the probability in the cells
regarding this detection is enhanced. Figure 6r is the result-
ing grid after the update step in the second instant of time.
The location of Person 1 (top left) is improved by increasing
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Fig. 6 Experimental results in two instants of time: Time t ((a) and
(c)–(j)); time t +1 ((b) and (k)–(r)). The figures show: a camera image
with detections ((a) and (b)); the ground truth with people in red ((c)
and (k)); the predicted grid based on people motion ((d) and (l)); the
predicted grid based on sensor motion ((e) and (m)); the detections of

Detector 1 using laser ((f) and (n)); the detections of Detector 2 using
laser ((g) and (o)); the detections of Detector 3 using image ((h) and
(p)); the fusion of the detectors ((i) and (q)); and the final grid ((j) and
(r)) (Color figure online)

123



626 J Control Autom Electr Syst (2015) 26:616–629

the probability in the cells in which the laser-based detectors
founds that person. Even though the three detectors failed
to detect Person 2, the cells next to his actual location have
a prominent probability (but a bit lighter than in Fig. 6j)
because in the update step of the methodology the informa-
tion from the prediction step, which is based on the belief
computed in the previous time interval, is also considered.

The final result of the proposed methodology is the poste-
rior probability. In the implementation shown in this section,
it consists of a local grid, where each cell represents a por-
tion of the space and their values represent the probability
of the cell is occupied by people. To make this information
useful in a real-world application, it needs to be processed
to decide if people were in fact detected and, in case they
were detected, what are their locations. In this paper, we
call this post-processing step as classification. Several clas-
sification methods could be used, including a simple fixed
threshold, where it is assumed that there are people in a
cell if its correspondent probability is larger than a given
value. We could also have more sophisticated detections
that, for example, would look for regions with given proper-
ties, such as area and velocity. In this context, we call these
regions as blobs and blob detection refers to detecting regions
that differ in properties compared to their neighborhood
regions.

In this paper, for illustrative purposes, we propose a clas-
sification algorithm based on similar probabilities. The first
step of this algorithm is the creation of blobs, which begins
with the selection of cells whose probability value is greater
than a threshold (the value 0.26 was used). Selected cells that
are neighboring each other become part of the same blob. In
the next step, all cells that do not belong to a blob, but that are
neighbors of a blob, are visited. If the difference between the
probability values of these cells and their neighboring cells
in the blob is smaller than a threshold (in our case, 0.40),
the cell is also included in the blob. Otherwise, a new blob
is created. The procedure continues until all cells visited are
part of a blob. A final step is required for selecting the blobs
that represent people. The blobs selected are those that have
an average probability value larger than the average of the
blobs in the neighborhood, the probability of all cells are
larger than 0.1 and have a maximum size of three cells or,
if the blobs contain more than 3 cells, they fulfill all of the
following criteria: (i) the blob may not contain more than 3
cells at the borders of the grid; (ii) the height and width of
the blob is smaller than 8 cells and (iii) the ratio between
the height and width of the blob is smaller than a thresh-
old (0.5). To illustrate the classification step, we applied this
algorithm in the semantic grid of Fig. 6r and show the result
in Fig. 7. In this figure, people is represented by red cells.
Movies that allows a qualitative evaluation of the proposed
methodology followed by this classification procedure can
be found in http://coro.cpdee.ufmg.br/movies/peopledetection.

Fig. 7 Classification applied to the semantic grid of Fig. 6r

Table 2 Results of people detection. The detectors compared are:
Detector 1 (Bellotto and Hu 2009), Detector 2 Spinello and Siegwart
2008, Detector 3 (Dollar et al. 2014) and the classification that follows
the proposed approach

Detector Recall Precision FPCPF

Detector 1 0.36 0.81 0.5

Detector 2 0.29 0.45 1.5

Detector 3 0.68 0.93 5.9

Proposed methodology with
classification

0.72 0.86 3.3

To enable a quantitative evaluation of the proposed
approach, all steps of the approachwere executed followedby
classification based on blob detection in a subset of the exper-
iment’s data containing 2044 iterations. This subset allows
an assessment of different situations witnessed by the robot,
which was moving with changes in its linear and angular
velocities. Among this subset of images, images containing
people with feet occluded were removed, since the mapping
from the image frame to the grid explicitly considers the
position of people’s feet. Images with partial occlusions of
other body parts were maintained. At the end, a total of 1094
iterations were selected and a ground truth constructed. The
ground truth was obtained by manually annotating the image
frames. This process found 1052 people detections on the
1094 images. Table 2 presents numerical results on this data
set.

The results of the two laser-based detectors, the image-
based detector, and the classification based on blob detection
using the proposed methodology were automatically com-
pared with the image ground truth projected on the grid. The
following metrics were used to evaluate the experimental
results: recall, which is the percentage of correct detections
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with respect to the real number of persons; precision, defined
before as the ratio between the number of correct detections
and the total number of detections; and false-positive cells
per frame (FPCPF) which measures the precision in location
of the detections by computing the average number of cells
that the detector considered occupied by people but that are
free in the ground truth (the lower is the FPCPF, the better is
the result).

The proposed approach combined with classification
in comparison with all detectors showed an increase in
recall, which means that the number of false negatives was
decreased and a larger number of people actually in the scene
were detected. The precision value remained among the two
highest values of individual detectors. While Detector 3 pre-
sented a higher precision than the proposed methodology, its
FPCPF was the worse among all detectors, indicating that
it presents errors in the positioning of people, as expected.
These results are in accordance with the idea that fusion
makes the detection of persons more accurate than detec-
tion using single detectors. Notice that this is not a particular
contribution of the proposed methodology, since it consists
one of the main advantages of sensor integration. The results
presented are compatible with the state-of-the-art of peo-
ple detection with respect to precision and recall (Premebida
et al. 2014; Wu et al. 2011; Araújo et al. 2011; Oliveira
et al. 2010). It is important to notice that these results could
be improved if better detectors are used. Another observa-
tion is that our methodology followed by classification gets
higher recall and a small number of false positives per frame
(FAPF=0.12 for a recall of 0.72), demonstrating that it is
possible to obtain a larger number of detections of the people
who are on the scene keeping the number of false detections
low.

The experimental results on this section indicate that, even
with sensor motion, the proposed methodology may provide

a reliable result that can be used as a basic step for several
applications, such as tracking, navigation, people counting,
human–robot interaction, and event detection. To show an
example of application for our methodology, we have used
the final occupancy grid computed by our method to track
a person that is moving in the field of view of the robot’s
sensors. For this task, we have used a sequence of sensorial
information that includes the snapshots in Fig. 9, where a
person was tracked by several sample times, even when she
is not detected by any of the sensors.

The tracked person starts her motion and appears into the
grid as soon as she enters the FOV of the laser. She keeps
moving forward in the corridor and eventually enters the FOV
of the camera. Tracking began with the manual selection
of the blob that represents the person on the grid. The next
blobs were automatically selected in the grid. The criterion
for selecting a blob is based on its position relative to the
centroid of the blob selected at the previous instant of time.
If there aremore than one blob near the centroid, the onewith
the highest posterior probability is chosen.The centroid of the
blob is selected as the cell whose coordinates are the average
of the coordinates of the cells with the higher probability
in the blob. If there is no blob close to the centroid of the
previous blob, a blob that overlaps any of the cells of the
previous blob is chosen or, as the last option, a blob in the
8-neighborhood of some cell of the previous blob is chosen.

Figure 8a shows the results of tracking for 111 consecu-
tive iterations. In this figure, the centroid of the selected blobs
is shown in black. For comparison, the cells where the per-
son passed, according to the manually obtained laser ground
truth, are shown in red in Fig. 8. One can notice by comparing
Fig. 8a, b that the tracking on the grid was successful. During
the tracking, the people detectors based on laser and images
failed simultaneously to detect the person in six instants of
time. Detector 1 found the person in 77% of the iterations,

Fig. 8 Results of people
tracking on the grid. The arrow
indicates the beginning of the
tracking. a Black cells represent
the centroids of selected blobs
(red cells). b Laser ground truth
(Color figure online)
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Fig. 9 Image sequence during the tracking experiment of Fig. 8a (a
picture at every four iterations is shown). From left to right, top to bot-
tom the tracked person crosses the grid starting in a position out of the

field of view (FOV) of the camera. In the first frames she cannot be
detected by the camera but she is already in the FOV of the laser

while detectors 2 and 3 detected the person 30 and 79% of
the time, respectively. This demonstrated the robustness of
the approach in situations where the detectors fail (Fig. 9).

5 Conclusions

This paper proposed a Bayesian methodology for combin-
ing people detectors. To illustrate the approach, experiments
with real data obtained using a laser rangefinder and a camera
fixed on a mobile robot were executed in a dynamic environ-
ment. The fusion of three different people detectors indicated
the improvements brought by the approach in relation to a
single detector alone. In the iteration show inFig. 6, for exam-
ple, one can see that the final result shown in Fig. 6r is (i)
more complete than the information obtained by each of the
individual detectors, which fail simultaneously to detect one
person on the scene, (ii) more precise in relation to detection,
once it does not incorporate the false detection given by one
of the detectors (Fig. 6o), and (iii) more accurate in relation
to positioning, given that it refines the result obtained by the
camera with laser information.

In general, the experimental results using a local semantic
grid to represent the environment, which includes a people
tracking application, show an improvement in relation to the
state-of-the-art of people detection, demonstrating that it is
possible to obtain a larger number of detections of people on
the scene keeping a low number of false alarms.

The proposed approach allows the use of several combi-
nations of people detectors, and it is completely flexible in
relation to the sensors used, what makes their application
possible in many contexts. To be adapted to other detectors
and sensors, the only requirement is the development of a
good detection model. Another flexibility is in relation to

the people motion model, which was proven to be important
for the final results. In the motion model used in this paper,
people have uniform probability to move in any direction. If
the direction of the movement is controlled, by the presence
of a corridor, for example, this information could be used to
determine a more precise model.
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