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Decentralized controllers for perimeter surveillance with teams of aerial robots

Luciano C.A. Pimentaa, Guilherme A.S. Pereiraa*, Mateus M. Gonçalvesa, Nathan Michaelb, Matthew Turpinc and
Vijay Kumarc
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Carnegie Mellon University, Pittsburgh, PA 15213, USA; cDepartment of Mechanical Engineering and Applied Mechanics, University

of Pennsylvannia, Philadelphia, PA 19104, USA

(Received 3 September 2012; accepted 21 December 2012)

This paper presents a decentralized controller to guide a group of aerial robots to converge to and to move along a sim-
ple closed curve specified in a three-dimensional environment. This curve may be considered as a perimeter to be sur-
veilled by the robots. The solution presented in this paper is based on an artificial vector field modulated by a collision
avoidance scheme and relies only on local sensing. Proofs of asymptotic stability of the proposed controller are devised
for a team of kinematically controlled rotorcrafts. Experimental results with a group of autonomous quadrotors are pre-
sented to validate the applicability and performance of the approach.

Keywords: aerial robots; swarms; vector fields

1. Introduction

Aerial robots are particularly adept to the application of
surveillance due to their maneuverability and extended
workspace in comparison to ground robots. However,
there are several challenges in developing a viable sur-
veillance approach. In particular, we must ensure that the
robots maintain some continuous coverage of the envi-
ronment. Further, as we wish to pursue methods that
leverage large numbers of robots to cover large spaces,
the planning and control problems must guarantee con-
vergence, regardless of the system size. In this work, we
focus on an approach that relies on decentralized individ-
ual robot control laws that drive a team of aerial robots
to converge to and circulate along a curve in a three-
dimensional environment.

Several research groups have addressed the problem
of controlling one or more mobile robots to converge to
(and sometimes circulate along) a desired one dimen-
sional curve,[1–7] enabling tasks such as perimeter sur-
veillance and boundary coverage,[8] environmental
monitoring,[9] tracking of mobile targets [10] and artistic
pattern formation.[11]

Although convergence of teams of mobile robots to
curves is not a recent problem (e.g. the work of Sugihara
and Suzuki [12]), most solutions found in the literature
address two-dimensional environments. This is the case,
for example, of the work by Hsieh et al. [8], where the

authors present provably correct and decentralized solu-
tions to control large groups of planar mobile robots to
converge to closed curves. A few authors have proposed
methodologies that control mobile robots in three-dimen-
sional workspaces. In [5], the authors propose a 3D vec-
tor field to guide a single aerial mobile robot to
converge to planar curves. The authors of [2] suggest a
similar methodology but consider generic, time-varying
curves.

The focus of this paper is the development of a con-
trol solution for a large team of micro-aerial vehicles
(MAVs) to converge to and circulate along a closed
curve in a three-dimensional workspace while avoiding
inter-robot collisions. As we aim to work with groups of
tens or hundreds of robots (i.e. swarms), we pursue a
strategy that relies only on local sensing and limited
inter-robot communication.

The methodology proposed in this paper is based on
vector fields, which are extensively used to control aerial
robots.[3,13–16] An advantage of vector field-based tech-
niques over traditional methods is the fact that it is often
possible to specify a potential function, whose gradients
determine the field, and use such a function as a Lyapu-
nov function to formally show the system stability.[10]
Another advantage is that vector fields may be locally
modified without compromising the global properties of
the system.[17] This property is very important in multi-
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robot scenarios where we are dealing with dynamic con-
straints imposed by other robots in the group.

The solution that we propose in this paper builds
upon our earlier work,[2] where the vector field is com-
posed of two terms: (i) a gradient term that attracts the
robots to the target curve and (ii) a tangential term that
is orthogonal to the first one that drives the robots to cir-
culate along the curve. These two components are based
on two implicit functions (n–1 functions for n-dimen-
sional spaces), which also define the target curve. A
practical methodology to specify the implicit functions
based on a set of sample points of the target curve is
also presented in [2].

Differently from [2], which was designed to control a
single robot, in the present work, to allow robot coopera-
tion, the field has three components: two components
with negative projection onto the gradient term and a tan-
gential component, orthogonal to the other two. To avoid
collisions among the robots (which are considered to be
spherical), each term of the field is modulated based on a
set of priority values computed online based on local
information acquired from neighboring robots. This
scheme is similar to the 2D version proposed in [18],
where a single potential function is used to specify the
target curve. In [18], the evaluation of this function at
each robot’s configuration along with the robot’s instanta-
neous velocity imposed by the vector field is used to
compute the priority of the robot among its neighbors.
Priorities are defined at the orthogonal and tangential
directions to the curve, forcing the robots to slow-down
or speed-up in each of these component directions to
avoid collisions. Since in the present paper we are consid-
ering a 3D workspace, the prioritization scheme of [18]
cannot be directly used. Thus, we define priorities in
three directions: two directions related to convergence to
the curve, and one direction orthogonal to the other two,
which is tangent to the curve. With this methodology, we
are able to guarantee that a group of kinematically con-
trolled, spherical holonomic robots converge to and circu-
late along curves in 3D. Our proofs are valid for a large
class of curves, for which we present conditions that may
be verified before the execution of the task.

To the authors’ best knowledge, the methodology
presented in this paper is the first provably correct
decentralized solution that controls a group of mobile
robots to converge to and circulate along curves speci-
fied in three dimensions. Furthermore, the robots may be
heterogeneous in physical size and sensing. Another
important contribution of the paper is the experimental
validation of the methodology with a team of indoor
quadrotor robots.

The next section formally presents the problem state-
ment and Section 3 details the proposed methodology to
solve the problem. Formal proofs of convergence of such
a methodology are presented in Section 4. Experimental

results with aerial robots are discussed in Section 5.
Finally, Section 6 presents conclusions and provides pos-
sible future research directions.

2. Problem statement

Consider a set X of N spherical robots, such that to a
given robot xi is associated a radius ri and a spherical
sensing range with radius Ri. For every instant of time
t � 0, we define the configuration q ¼ ½x(t) y(t)
z(t)�T 2 R3, where x, y, and z denote Cartesian coordi-
nates, and assign to each robot a unique configuration
qi(t) corresponding to the position of the sphere center.
The model for all robots xi 2 X is holonomic and purely
kinematic:

_qi ¼ ui; (1)

where _qi is the velocity vector of robot i and ui is its
control input.

Let ai(x; y; z) :R
3 # R; i 2 f1; 2g be functions with

continuous partial derivatives. Function a1 depends only
on x and y. Also, the projections of any level surface of
a1 onto a plane parallel to the plane xy must be a Jordan
curve (e.g. closed, continuous, and all its parameteriza-
tions are injective maps). Notice, that any level surface
of this function, a1(q) ¼ C, where C is a constant, is
cylindric.

Function a2 is of the form

a2(x; y; z) ¼ rz� U(x; y); r – 0 (2)

where U(x; y) is a function with continuous partial deriv-
atives. It can be seen that the level surfaces of a2 do not
have two points with the same projection onto the
plane xy.

Functions a1 and a2 may define a one dimensional
curve C as:

C : fq 2 R3jfa1(q) ¼ 0g \ fa2(q) ¼ 0gg (3)

Notice that, since fa1 ¼ 0g is cylindric and every
point of fa2 ¼ 0g has a unique projection onto the xy
plane, the curve C is closed, continuous, and also has a
unique projection onto the plane xy. Figure 1 presents an
example that illustrates the composition of a curve from
functions a1 and a2.

The problem that we are addressing in this paper is
to make the set of robots X converge to and circulate
along C. This may be written as:

Problem statement. Given the curve C as defined in
(3), design a controller _qi ¼ ui for every robot xi 2 X
that: (i) guides qi from its initial condition qi(0) 2 R3 to
C and (ii) once in C enforces qi to traverse this curve in
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a fixed direction, while avoiding collisions with other
robots, that is:

kqi(t)� qj(t)k � (ri þ rj)[0 8t � 0;

8(xi;xj) 2 ½X� X�; xi –xj:

The solution to the stated problem is presented in the
next section.

3. Methodology

To solve the problem stated in the previous section,
we propose the use of individual control inputs of the
form:

ui ¼ �uifa2(r(a21))� kifa1(r(a22))þ qira1 �ra2; (4)

where r(a2k) stands for the gradient of the square of ak ,
and function fak (b) :R

3#R3 is defined by

fak (b) ¼ b if ½r(a2k)�Tb � 0
p(b;N (½r(a2k)�T )) otherwise

�
:

The operator p(b;N (½r(a2k)�T )) gives the orthogonal

projection of b onto the null space of ½r(a2k)�T . The
modulating functions qi, ui, and ki, that will be shortly
defined, are of the form:

qi(qi; qHi
) :R3(Mþ1) # ½0; 1�;

ui(qi; qHi
) :R3(Mþ1) # ½0; 1�;

ki(qi; qHi
) :R3(Mþ1) # ½0; 1�;

where qHi
is a vector such that its elements are the sphere

centers qj’s of the corresponding robots xj 2 Hi, and M
is the cardinality of the detection set Hi defined as:

Definition 1. The detection set of a robot xi is com-
posed by all robots in X that are inside its spheric sens-
ing range parametrized by Ri:

Hi ¼D fxj 2 X j fDij � Rig; j – ig;

where

Dij ¼D kqi � qjk:

The intuition behind the definition of the vector field
in (4) is as follows. The first two terms are responsible
for the convergence of the robots’ configuration to C.
The first term defines a vector that, mostly, points
towards the level set a1(qi) ¼ 0 while the vector defined
by the second term points towards a2(q) ¼ 0. When
these two vectors are competitive, i.e. one term has a
component in the opposite direction of the other, func-
tion fak (b) removes this component by projecting one
vector in the null space of the other. The third compo-
nent of (4) is orthogonal to the other two, thus tangent
to the level sets of a1 and a2. This tangential component
ensures circulation of the robots along the curve. Func-
tions ui, ki, and qi are in place to modulate the three
components of each individual control law in order to
prevent inter-robot collisions. A collision avoidance
approach is required to assign proper values to these
functions. We will now provide several useful definitions
prior to detailing this approach.

Definition 2. For all robots xi 2 X, the augmented

radius, ~r, is defined as ~r¼D ri þ si such that si is positive
and is greater than the maximum ri among all robots in
X. Notice that the augmented radius is unique for all
robots in X.

The augmented radius is important in our approach
as it creates a region around the robots that, in deadlock
conditions, may be occupied by other robots. This will
become clear in the next section.

Figure 1. Two manifolds fa1 ¼ 0g and fa2 ¼ 0g with their
intersection curve C.
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Definition 3. The collision distance dij between a pair
is given by:

dij ¼D
D2
ij�(2~rþ�)2

R2i �(2~rþ�)2
if Dij � 2~r þ �

0 otherwise

(
;

where � is a positive constant.

Definition 4. The emergency stop function induced by a
pair (xi;xj) 2 ½X� X� is given by:

d�ij ¼D
1 if Dij > (2~r þ �)

D2
ij�(2~r)2

(2~rþ�)2�(2~r)2
if 0 � Dij � 2~r � �

0 otherwise

8><
>: :

Definition 5. The tangential priority Kij function between
a pair of robots is given by:

Kij ¼ Kqiqj ¼
D
(qi � qj)

T ½ra1(qi)�ra2(qi)�;

Definition 6. The priority sets related to each component
of the vector field are given by:

Ni
u : fxj 2 Hi j ja1(qi)j[ja1(qj)jg;

Ni
k : fxj 2 Hi j ja2(qi)j[ja2(qj)jg;

Ni
q : fxj 2 Hi jKij \Kjig:

Figure 2 presents an example of the priority sets in
Definition 6. Still, related to this definition, it must be
noticed that conditions fja1(qi)j ¼ ja1(qj)jg, fja2(qi)j ¼
ja2(qj)jg and fKji ¼ Kijg are not relevant for practical
applications since they occur only when the pair of
robots are located on zero-measure regions of R3. Thus,
we can conclude that each priority set is pairwise-selec-
tive, that is:

xj 2 Ni , xi R Nj:

Therefore, these sets provide a strong pairwise prior-
ity in the sense that one element of the pair will always
have priority over the other element, with no ambigui-
ties. With the aid of the previous definitions, we define
the following functions:

nil(Hi) ¼
Q

xj2Ni
l

jdijj if Ni
l –£

1 otherwise

(
;

hil(Hi) ¼
Q

xj2Hi

jd�ijj if Hi –£

1 otherwise

(
;

where l is equal to u, k, or q. Then, the values of the
functions ui; ki and qi are set as:

ui ¼ niuh
i
u; ki ¼ nikh

i
k; qi ¼ niq: (5)

From the above definitions, one can conclude that
functions ui; ki and qi modulates each component of the
vector field (4) in function of the robots’ proximity and
priority. It can be observed that if a robot xj has priority
over robot xi in a given component, that is, xj is in the
Ni relative to this component, and the collision distance
dij between the two robots is approximately null (it must
be noted that dij is defined using the augmented radius
plus �), the function associated with the component will
be equal to zero at xi, while xj will be allowed to move
at the direction of this component. Thus, the collision
avoidance scheme establishes a strong priority between
any pair of robots in X in the three components of the
control law (4). A robot will stop at a given component
when the distance between a pair reaches a critical value
and this robot has no priority in that component, thus
allowing the other robot to move. If a pair of robots

Figure 2. Example of definition 6. Three robots are positioned
such that a1(q1) ¼ C, a1(q2) ¼ C0, a1(q3) ¼ C00, where
C\C0\C00. Therefore, assuming that all robots are detect-
able by the others, N1

u ¼ fg, N2
u ¼ fx1g, and

N3
u ¼ fx1;x2g, indicating that no other robot has priority

in relation to x1 in the r(a21) component of the field, and
only x1 has priority in relation to x2. Regarding the tangen-
tial priority, assuming that the black arrows represent
ra1(qi)�ra2(qi), it can be noticed that N1

q ¼ fx2g while
N2
q ¼ fg. By inspection, N3

q ¼ fx1;x2g.
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reaches the distance given by 2~r, both robots will stop at
the two gradient components, as ensured by d�ij, allowing
the robots to move only in the tangential direction to
escape from the deadlock, provided that Assumption 3,
related to the geometry of the curve, is valid, as will be
discussed in next section. An example of such a situation
is shown in Figure 3, that also illustrates the necessity of
the augmented radius definition.

It is important to emphasize that ui, ki, and qi are
continuous functions since functions nil and hil are contin-
uous.

4. Analysis

It is essential to show that the closed-loop system pro-
vides convergence to C. This section presents two lem-
mas and a theorem that demonstrates the effectiveness of
our approach. To prove the first lemma, two assumptions
are made:

Assumption 1. The robots’ initial conditions are inside
a bounded region B � R3 such that C1\a1(q)\C2 and
D1\a2(q)\D2, where C1\0, D1\0, C2[0, D2[0
and: (i) Dij[2~r þ � 8xi; 8xj 2 X, where � is a positive
value, (ii) ra1(qi)– 0 8xi 2 X.

This assumption guarantees that the robots start
in a bounded region of the workspace, as required
by our proofs. Moreover, it also guarantees that there
is no collision among the robots in the initial condi-
tion and that all robots do not start at the critical
points of a1.

Assumption 2. The set ra1(q) ¼ 0, which depends on
the nature of the curve, is repulsive, i.e. the vector field
in the neighborhood of the set repels the robot from the
set. Also, ra1(q) \ C ¼ £.

Assumption 2 is in place to guarantee that the robots
will not be attracted by a local minimum of a1. Thus,

we are assuming that all critical points of a1 are saddle,
unstable points. A proper choice of a1 may assure this
property, as shown in [2].

Definition 7. A condition g ¼ 0 is nonpersistent over
time if g ¼ 0 at a finite time T and there exists a finite
time T 0[T such that g– 0.

Lemma 1. A robot xi 2 X, following the vector field
given by (4) asymptotically converges to C and, once in
the curve, circulates along the curve in a fixed direction
if the conditions ui ¼ 0, ki ¼ 0, and qi ¼ 0 are nonper-
sistent over time.

Proof. Consider the Lyapunov-candidate function

V (a1; a2) ¼ (a1)
2 þ (a2)

2, which is clearly positive-semi-
definite. Also, the set BL ¼ fqi 2 R3jV (a1(qi);
a2(qi))\ Lg is bounded for 0\ L\1. For robot xi,
the time derivative of V is given by:

dV (a1(qi(t)); a2(qi(t)))

dt
¼ rVT _qi

¼ �rVT (uifa2 (r(a21))

þ kifa1 (r(a22))� qira1 �ra2)

¼ �2(a1ra1 þ a2ra2)
T (uifa2 (r(a21))

þ kifa1 (r(a22))� qira1 �ra2)

¼ �2(a1ra1 þ a2ra2)
T (uifa2 (r(a21))

þ kifa1 (r(a22))):

Since the vector (uifa2 (r(a21))þ kifa1 (r(a22))) has
nonnegative projection onto a1ra1 and a2ra2, and ui

and ki are nonnegative, it follows that

dV (a1(qi(t)); a2(qi(t)))

dt
6 0 8t P 0; 8xi 2 X:

As shown in Lemma 4 (Appendix A), the time deriv-
ative of V is null only when uia1 ¼ 0 and kia2 ¼ 0.

(a) (b) (c)

Figure 3. Example of Assumption 3. (a) The robots are at distance 2~r in t ¼ t1; (b) For all t[t1 and t\T robot x1 can move
by following ra1 �ra2, while x2 remains still, given that N2

q ¼ fx1g; (c) At time T the distance between the robots is
greater than 2~r. In these figures, the dashed lines represent the integral curves of ra1 �ra2.
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This guarantees asymptotic convergence to C, provided
that ui and ki are not always null. Therefore, in the limit,
as time goes to infinity, the time derivative of V goes to
zero and the robot configuration qi(t) converges to C,
where a1 ¼ 0 and a2 ¼ 0. We also have that

lim
qi!C

uifa2(r(a21(qi))) ¼ 0;

lim
qi!C

kifa1 (r(a22(qi))) ¼ 0;

which means that only the tangential component
qira1 �ra2 of the vector field (4) remains as the robot
approaches the curve. As is proved in Lemma 3 (Appen-
dix A), ra1 and ra2 are linearly independent and are
never null at C. Thus, it is guaranteed that, qira1 �ra2
is null only if qi is null. If this is a nonpersistent situa-
tion, circulation is guaranteed. �

The previous lemma shows that a robot converges
and circulates C if the conditions ui ¼ 0, ki ¼ 0, and
qi ¼ 0 are nonpersistent. It is still necessary to guarantee
this situation for all robots in X. We start with an
assumption.

Assumption 3. For every pair of configurations q1 2 B
and q2 2 B such that kq1 � q2k ¼ 2~r and
Kq1q2 > Kq2q1 , there exists a time T such that the inte-
gral curve j(t) of the vector field k ¼ ra1 �ra2 that
passes through the point q1 at time t1 \ T satisfies the
following properties: (i) k j(t)� q2 k > ri þ rj, for
t1 \ t\ T , (ii) k j(T )� q2 k > 2~r þ �, where � is a
positive value, and (iii) Kj(t)q2 > Kq2j(t).

This assumption is a strong one. For a pair of robots,
it guarantees that once both gradient components of the
field are set to zero (a situation that happens when
kq1 � q2k ¼ 2~r), one of the robots may still have space
to move in the tangential direction ra1 �ra2. In
Figure 3, for example, because robot x1 has priority
over robot x2, robot x2 stops while x1 is able to escape
by following the tangential component of the vector
field. If Assumption 3 was not satisfied, robot x1 would
get too close to x2, thus causing a collision. In this case,
the distance between the integral curves of ra1 �ra2
(dashed lines in Figure 3) would be smaller than r1 þ r2.
By properly tuning C1 and C2 in Assumption 1, one can
avoid part of this problem, which is caused by the inter-
section of smaller level-sets of a1 and a2. However,
depending on the curvature and the torsion of the inte-
gral curves of ra1 �ra2, and also on the robots’ radii,
this issue may appear in other regions of the workspace,
thus justifying Assumption 3. It is important to note that
this assumption is common to most multi-robot strategies

that consider generic curves and nonpoint robots, such
as [18]. Unfortunately, there is still no published work
that deals with the design of a curve that respects this
assumption. On the other hand, it is not too difficult to
find curves that satisfy Assumption 3 for a given set B.

Before we continue, we define the scalar function
W :R3N ! Rþ as

W (x) ¼
XN
i¼1

V (qi); (6)

where x ¼ ½qT1 . . . qTN �T and V (qi) ¼ a21(qi)þ a22(qi).

Lemma 2. There exists a finite number of robots Nmax

such that:
(i) if there is a robot xi 2 X, qi R C and

ra1(qi(t))– 0 8t � 0, then the condition

dW (x)
dt

¼ 0

is nonpersistent over time.
(ii) if ra1(qi(t))– 0 8t � 0, and qi 2 C 8i then the

condition

XN
i¼1

k _qi k¼ 0

is also nonpersistent over time.

Proof. Let the number of robots N be equal to two.

According to Lemma 4 dV (qi(t0))
dt ¼ 0 if and only if

ui(t0)a1(qi) ¼ ki(t0)a2(qi) ¼ 0. Therefore, if qi R C and
dV (qi(t0))

dt ¼ 0, then ui(t0) ¼ 0 or ki(t0) ¼ 0. Consider the
worst case scenario where k qi � qj k¼ ~ri þ ~rj. In this
case d�ij ¼ 0, which implies that only the tangential com-

ponent direction is available for motion. According to
Assumption 3 and the proposed control law, at t ¼ T 0

we will have k qi � qj k[~ri þ ~rj þ �. If one robot is at

the curve and the other is not, then dW (x)
dt – 0 at t ¼ T 0

since dij – 0 and d�ij – 0. If both robots are at the curve,

then
PN

i¼1 k _qi(t) k – 0 since there is at least one robot
moving in the tangential direction. If both robots are out
of the curve then at t ¼ T 0, at least one robot with prior-
ity in one of the convergence directions will move and

consequently dW (x)
dt – 0.

Since the desired curve is closed, there exists a finite
number of robots M such that k qi � qj k\~ri þ ~rj, 8i; j
if all the robots are placed at the desired curve. In this

case, the robots will never move and
PN

i¼1 k _qi k¼ 0 8t:
Now, suppose these M robots are at the desired curve
and one robot xi is out of the curve. Consider also a
configuration such that k qi � qj k¼ ~ri þ ~rj, Kij\Kji,
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where xj is a robot at the desired curve. In this case, the
robots will never move, as xj will not be able to move
due to the presence of the other robots at C and
dW (x)
dt ¼ 0 8t: Therefore, it follows that there exists Nmax

in the interval ½2;M þ 1� that guarantees the nonpersis-
tence of conditions (i) and (ii). �

Although an exact value for Nmax is hard to obtain,
given that it depends on the geometric properties of a1,
a2, and on the size of the robots, we have not experi-
enced problems with the choice of this number. In practi-
cal applications of boundary coverage, we always have
success if all robots in the team can fit on the curve,
considering their augmented radius. Thus, by combining
Lemmas 1 and 2 and assuming N\Nmax, we are able to
state the following theorem, which guarantees the effec-
tiveness of the proposed vector field.

Theorem 1. Each robot xi in the group of robots X fol-
lowing the vector field given by (4) asymptotically con-
verges to C and, once on the curve, circulates along the
curve in a fixed direction. Furthermore, no collisions will
occur between any pairs of robots.

Proof. By Lemma 2 it is possible to see that dV (qi(t0))
dt ¼ 0

is nonpersitent over time for all robots, unless all robots
are on the curve. Therefore, it is possible to infer that
ui ¼ 0 and ki ¼ 0 will be nonpersistent over time for
robots that are not on the curve. Hence, by Lemma 1, all
robots will converge to the curve as time tends to infin-

ity. Similarly, since
PN

i¼1 k _qi k¼ 0 is nonpersistent, qi
cannot be zero for all robots simultaneously, conse-
quently guaranteeing circulation along the curve via
Lemma 1. Finally, due to the properties of the collision
avoidance approach (5) and Assumption 3, the robots
will never collide and for every pair of robots we will
have k qi � qj k P ri þ rj; 8t. �

5. Experimental results

In this section, we focus on the development of an
approach capable of enabling a single quadrotor robot to
control given the kinematic inputs defined in Section 3
and evaluate the decentralized control laws proposed in
this work on a team of quadrotors. To this end, we first
develop the dynamic model and propose onboard feed-
back control for attitude stabilization and position control
in SE(3) following the methods proposed in [19,20] and
detail how we generate kinematic inputs given this
dynamic model and onboard feedback control. We then
discuss the implementation and infrastructure details fol-
lowed by experiment design. Finally, we review the
experimental evaluation of these methods on teams of up
to six quadrotors.

5.1. Modeling and control

Consider the quadrotor robot model shown in Figure 4
with mass m and rotational inertia J 2 R3�3. Define the
position and rotation of the vehicle in the inertial frame
as q 2 R3 and R 2 SO(3), respectively. The angular
velocity of the vehicle, X 2 R3, is defined as

_R ¼ RX̂ ;

where the hat operator 	̂ :R3 ! SO(3) is defined such
that x̂y ¼ x� y for all x ; y 2 R3.[19] Given that the ith
propeller generates the thrust output fi as a function of
propeller rotational speed, the dynamic model of the
vehicle follows:

m€q ¼ fRe3 � mge3

J _XþX� JX ¼ M;

with e3 ¼ ½0; 0; 1�T, M ¼ ½M1; M2; M3�T, and

f
M1

M2

M3

2
664

3
775 ¼

1 1 1 1
d 0 �d 0
0 d 0 �d
�c c �c c

2
664

3
775

f1
f2
f3
f4

2
664

3
775;

where d is the distance from the robot center of mass to
the rotor and c is an aerodynamic drag term that relates
differences in propeller speed to yawing moment about
the body z-axis.

Figure 4. The vehicle model. The position and orientation of
the robot in the global frame are denoted by q and R, respec-
tively. Control inputs (7) consider both position, q, and the
orientation, w, of the vehicle about the global z-axis (e3).
Each propeller generates a thrust fi along the body-fixed
z-axis (b3).
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Due to the design of the system actuation, it is well
known that the quadrotor is underactuated and differen-
tially flat.[21] The four system inputs allow us to specify
the force along the body-fixed z-axis (b3) and the three
moments in the body-fixed frame. We accordingly
choose four output variables and define the desired state
of the robot as:

xd ¼ qd

wd

� �
¼

xd
yd
zd
wd

2
664

3
775 ; (7)

where wd is the desired vehicle yaw (rotation about the
inertial z-axis). In this work, we restrict w to be constant
and zero (e.g. wd ¼ 0). Given the kinematic control, u,
we transform the desired vehicle commands to the
desired state

xd;t ¼ qt�1

0

� �
þ ut

0

� �
Dt

_xd;t ¼ ut

0

� �

€xd;t ¼
ut�ut�1

Dt

0

� � : (8)

Following the attitude stabilization approach pro-
posed in [19], we design the force and moment inputs, f
and Mi, based on the desired input xd:

f ¼ (�kqeq � k _qe _q þ mge3 þ €qd) 	 Re3
M ¼ �kReR � kXeX þX� JX

(9)

with the error terms defined as follows:

eq ¼ q� qd

e _q ¼ _q� _qd

eR ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tr½RT

dR�
q RT

dR � R T Rd

� �_

eX ¼ X� RTRdXd

and dropping any dependence on time for clarity of pre-
sentation. The operator ( 	 )_ is the inverse of the hat
operator 	̂ and, therefore, it is a mapping from SO(3) to
R3. The gains kr, k _r, kR, and kX are selected to ensure
stable performance. See [19,20] for further explanation
of the derivation of these error terms and proofs of sta-

bility and convergence of the control system to the
desired inputs.

The above attitude stabilization approach operates in
SO(3) (as compared to the traditional Euler-angle param-
eterization approach [22]) and benefits from a stability
basin of attraction that includes the full space of rotation
matrices (excluding an exact inversion). Note that we
assume

k �kqeq � k _qe _q þ mge3 þ €qd k > 0

given the magnitude of the gains and the fact that we do
not anticipate accelerations approaching 1g and thus
define Rd with respect to wd such that Rd ¼ ½r1; r2; r3�
and

r1 ¼ r2 � r3

r2 ¼ r3 � ½coswd; sinwd; 0�
k r3 � ½coswd; sinwd; 0� k

r3 ¼ �k _qeq � k_qe _q þ mge3 þ €qd

k �kqeq � k _qe _q þ mge3 þ €qd k
:

Additionally, the moment stabilization proposed in
[19] includes higher order inertial cancelation terms that
we neglect because their effects are insignificant in the
experiments for this work.

5.2. Implementation details

The robots used in this work are sold commercially [23]
and follow a standard four-propeller design (Figure 5).
The pose of the quadrotor is observed using a Vicon
motion capture system at 150Hz.[24] The pose is numer-
ically differentiated to compute the linear and angular
velocities of the robot. These values are available to
Matlab via ROS [25] and a ROS-Matlab bridge.[26] All
control inputs are computed at 50Hz in Matlab using the

Figure 5. The team of six quadrotors used in experimentation.
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latest state estimate at the rate of the Vicon. This compu-
tation emulates decentralized control by computing each
robot's control in Matlab independent of global knowl-
edge except for the positions of neighbor vehicles. The
commands in Matlab are bridged to ROS where they are
interpreted by a finite-state machine (FSM) which aids in
the experimental process.[22] The FSM manages the
individual robots, places the robots at the appropriate ini-
tial conditions, then relinquishes control to Matlab where
the inputs (7) are computed from (8). Throughout the
experiments, we saturate the commanded velocity of the
robots such that

�ui ¼ vmax
ui

k ui k

where vmax = 0.2m/s and send �ui to each vehicle. The
FSM computes the required inputs (Section 5.1) speci-
fied by the Matlab commands and transmits these values
to the robot via Zigbee at a fixed rate of 50Hz. This
fixed rate is due to the limited bandwidth of Zigbee
(57.6 kbps). These commands are interpreted by the atti-
tude and body-fixed thrust controllers (9) operating on
each robot’s programmable embedded microprocessor
and applied at a 1 kHz update rate.

5.3. Results

We conducted a series of trials that considered a curve C
defined by the intersection of a cylindric surface and a
slightly modified paraboloid specified by

a1 ¼ ax4 � bx2y2 þ cy4 � 1;

a2 ¼ z� d(y2 þ x2)þ e;

Figure 7. The team of six quadrotors during an experimental
trial tracking the desired curve while avoiding inter-robot
collisions.

(a) (b) (c)

(d) (e) (f)

Figure 6. Two, four, and six robots control to the desired curve using proposed vector field (left, middle, and right columns,
respectively). The paths followed by each of the robots to the desired curve (shown in black) are depicted in (a)–(c). Despite the
increasing number of robots, in (d)–(f) we see that, since W in (6) goes to 0 as the time increases, the robots converge to the
desired curve.
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with a ¼ 0:3, b ¼ 0:03, c ¼ 0:3, d ¼ �0:5, and e ¼ 1:0.
The two manifolds fa1 ¼ 0g and fa2 ¼ 0g with their
intersection C are similar to the ones shown in Figure 1.
In these examples, the robots are identical with radius
ri ¼ 0:3 m, augmented radius ~r ¼ 0:6 m, and sensing
radius Ri ¼ 1:0 m.

In Figure 6, we consider the convergence of teams of
two, four, and six robots to the same curve. Figures 6
(a)–(c) show the robots’ paths for these situations while
Figures 6(d)–(f) show the behavior of function W , indi-
cating the convergence of the team to the curve. Figure
7 shows a snapshot of one of the experiments. Videos of
these experiments can be found at http://www.cpdee.
ufmg.br/ coro/movies/curvecontrol.

In Section 5.1, we provide the modeling and control
of the quadrotor robot to enable the application of pro-
posed vector field on the experimental platforms. As
seen in the previous results, this approach enables the
robots to converge to the curve. However, we observe
that the cost of the kinematic assumption becomes more
pronounced as the number and frequency of collision
avoidance maneuvers becomes more frequent. For this
reason, we include an additional study that aims to illus-
trate this point and motivate future research.

Clearly from Figure 8, we see a degradation in con-
trol performance for a team of six robots with an
increase in the sensing radius (now Ri ¼ 1:4 m). We
begin the experiment by ensuring that several of the
robots are within the sensing radius of the others, thus
requiring the robots to enforce inter-robot collision
avoidance. Indeed, one of the greatest sources of
decreased control performance is presumption of a kine-
matic agent in the prioritization methodology. While we
see that the robots continue to control such that inter-

robot distances increase, the immediate and frequent
change in commanded velocity results in poor overall
performance. As such, the extension of these methods to
dynamic systems is clearly motivated and a focus of
future research.

6. Conclusions and future work

This paper presented a decentralized method for multi-
robot control that guarantees convergence and circulation
of a group of aerial robots along closed, simple, and sta-
tic curves defined in three-dimensional spaces. The
method is based on an individual vector field that attracts
the robots to a curve and on a collision avoidance
scheme that modulates the components of the field. This
scheme relies only on neighboring information obtained
by local sensors or limited range communication devices.
Experimental results with a team of quadrotors indicate
that the method may be used to solve real world prob-
lems.

This work focused on groups of unmanned holonom-
ic rotorcrafts that admits null and negative velocities.
Therefore, the proposed approach is not applicable to
aerial robots with minimal forward speed and bounded
turning radius constraints. Our future work includes the
design of controllers to these kind of robot. The method-
ology also assumes a kinematic robot. Although this
may be a practical assumption in several situations, our
experimental results show that it will be important to
consider the robots’ dynamics in our future develop-
ments.

It is also important to say that our approach is
provably correct as long as some assumptions are
verified. A current limitation is the fact that there is no

0 5 10 15 20
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (s)

D
is

ta
nc

e 
(m

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

Su
m

 o
f v

el
oc

iti
es

 (m
/s

)

3.5

3

2.5

1.5

1

1

y(m)
x(m)

1
0

0

-1-1

z(
m

)

(a) (b) (c)

Figure 8. To study the impact of the kinematic assumption on the performance of the dynamic team of robots, we start the robots in
close proximity and increase the sensing distance of each robot. We see in (a) that robots experience degraded tracking performance
resulting from the prioritization approach. However, from (b), which shows the distance between the pair of robots with the smallest
pairwise distance, it is clear that robots successfully enforce the required inter-robot distance. The application of collision-avoidance
is best seen by investigating the magnitude of the sum of the robot velocities (c), where the expected velocity without collision
avoidance is the product of the number of robots and saturation velocity (in this case it is 1:2 m/s).
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analytical method to verify some of these conditions.
Also, there is still no algorithm to build a curve in 3D
that satisfies all assumptions. This will be also consid-
ered a future direction of research. In spite of this limita-
tion, in all the simulations and experiments we have run,
we have not observed any convergence problem or colli-
sions among robots.
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Appendix. Additional Lemmas

Lemma 3. Vectors ra1(q) and ra2(q) are linearly inde-
pendent for every q 2 R3 where ra1(q) – 0. Also, if
ra1(q) – 0 then a1(q)ra1(q)þ a2(q)ra2(q) – 0 for every
point q R C.

Proof. By Equation (2) we have

@

@z
a2(x; y; z) ¼ @

@z
½rz� U(x; y)� ¼ r; r– 0:

Then, it is impossible to have ra2(q) ¼ 0; 8q 2 R3. As
a1 is cylindric and depends only on x and y, we also have
that

@

@z
a1(x; y; z) ¼ 0;

implying that ra1(q) and ra2(q) are linearly independent,
since the z-axis component of ra1 is identically null at
every point in R3, the same z-axis component of ra2 is
non-null for all points in R3 and ra1(q )– 0 by hypothesis.

Also, it can be noted that q R C()fq 2 R3j
fa1(q) – 0g [ fa2(q) – 0gg: Therefore, for q R C:

a1(q)ra1(q)þ a2(q)ra2(q)– 0:

�
Lemma 4. Let xi 2 X and V (q) be defined as in Lemma 1.
If qi R C and ra1(qi)– 0 at time T , then

dV a1(qi(t)); a2(qi(t))ð Þ
dt

����
t¼T

¼D dV (qi(t))

dt

����
t¼T

¼ 0

if and only if ui(T )a1(qi) ¼ ki(T )a2(qi) ¼ 0.

Proof. As presented in the proof of Lemma 1,

dV (a1(qi(t)); a2(qi(t)))

dt
¼ �2(a1ra1 þ a2ra2)

Ta

where a ¼ uifa2 (r(a21))þ kifa1 (r(a22)). According to

Lemma 3, if ra1(q)– 0 then a1(q)ra1(q)þ a2(q)ra2(q)

– 0 for every point q R C. Moreover, (a1ra1)
Ta � 0 and

(a2ra2)
Ta � 0. As (a1ra1)

Ta ¼ 0 and (a2ra2)
Ta ¼ 0 if

and only if ui(T )a1(qi) ¼ ki(T )a2(qi) ¼ 0, then the Lemma

is proved. �
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