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Abstract— The radiation pattern of spherical-rectangular
microstrip antennas is investigated using the Cavity Method
and the Electric Surface Current Method. The thickness of
the dielectric substrate and its relative permittivity are varied
and the effects on the radiation pattern are analyzed.

Index Terms— Microstrip antennas on spherical surfaces,
Cavity method, Electric surface current method.

I. I NTRODUCTION

Microstrip antennas have been widely used due to
their low cost, low weight and ability to integrate with
microwave circuits. They are specially important in sev-
eral applications, like on aircrafts, where the antenna is
required to conform to their external surfaces.

Spherical microstrip antennas have been analyzed using
a variety of methods. The cavity method [1] was used
in [2] to analyze circular disks, wraparound, and annular
ring antennas. The electrical surface current method [3]
was used in [4], when studying a circular disk. While
in [5] an uniform magnetic surface current was used for
modeling a wraparound antenna. The method of moments
[6] has also been applied to spherical microstrip antennas.
In [7] the resonances of a circular disk were determined
using Galerkin’s procedure with basis functions obtained
from the cavity model. While [8] studied the effects of a
superstrate on the properties of the circular disk.

All the previously mentioned works dealt with
symmetric structures to the polar axis of the mounting
sphere, i.e, circular disks, wraparound and annular ring
antennas. Spherical-rectangular antennas were first studied
in [9] using cavity method, but in this case the image
theory was also applied, as if in the presence of an infinite
ground plane. As a consequence the results are inaccurate
for the back-lobes and when the sphere radius diminishes.
In [10] and [11] spherical-rectangular microstrip antennas
were analyzed using the electric surface current method.
However it was assumed that the patch was centered
on the x-y plane, having parallel sides. Arrays were
formed by displacing this patch, maintaining its shape.
Furthermore the electric current was assumed sinusoidal,
which is only appropriate for an almost planar antenna.

In the present paper, we analyze a spherical-rectangular
microstrip antenna, as shown in Fig. 1, using both the
cavity and the electric surface current methods. The
cavity method is limited to analyses where the dielectric
thickness is much smaller than the radius of the mounting

sphere and the wavelength in the dielectric, to assure that
the fields are almost completely confined in the substrate
between the metallic patch and the ground. On the other
hand the fields obtained with the electric surface current
method take into account the dielectric layer and are
sensitive to the changes in the dielectric thickness. Other
than [9], the radiation patterns obtained here are accurate
in the entire region around the mounting sphere, not only
in the front-lobe. Furthermore the patch can be centered
at any point in the sphere, and the electric current
distribution used in the electric surface current method
is obtained from the cavity method, which will prove to
be more accurate than that used in [10]. Comparison and
limitations of the methods are discussed.

II. T HEORETICAL FORMULATION

The geometry of the spherical-rectangular microstrip
antenna is shown in Fig. 1. A perfect electric conducting
sphere with radiusr1 is covered by a dielectric layer
with thicknessδr and relative permittivityεr. A patch
of perfect electric conductor is placed on the dielectric
layer, limited by the anglesθ1 and θ2 (θ2 = θ1 + δθ),
and byφ1 andφ2 (φ2 = φ1+δφ), in spherical coordinates.

Fig. 1. Geometry of Spherical-rectangular Microstrip Antenna



A. Cavity Method

The cavity method is widely used in microstrip antenna
problems. It is based on the fact that the field remains
almost totally confined under the patch, configuring a
cavity that has perfect electric top and bottom walls and
perfect magnetic side walls. For each resonance mode of
the cavity, the equivalent magnetic currents on the side
walls are determined and considered to radiate in presence
of the conducting sphere but without the dielectric layer.
This assumption have been shown satisfactory for a very
thin dielectric layer.

It is known that the TEr cavity modes radiate poorly, as
the corresponding equivalent magnetic currents are always
normal to the surface of the conducting sphere. For the
TMr modes, only the radial component of the electric field,
Ecav

r r̂, can produce equivalent magnetic currents, which
effectively radiate.

The radial component of the magnetic vector potential
is a solution of [12]:
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wherekd = w
√

µoεoεr.

Applying the method of separation of variables and
enforcing the boundary conditions, the radial component
of the magnetic vector potential is given by:
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where Ĵν(x), N̂ν(x), and Ĥ
(2)
ν (x) are the Schelkunoff

type Bessel, Neumann, and second-kind Hankel functions,
respectively. The functionsPµ

ν (x) and Qµ
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Associated Legendre functions of first and second kind,
respectively. The parametersµr, νr and kd are solutions
of the transcendental equations that determine the resonant
modes inside the cavity:
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The radial component of the electric field is then given
by:
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(kdr)− Ĵ ′νr
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whereηd is the dielectric intrinsic impedance.
The equivalent magnetic current, which is superficial,

can be transformed into filamentary current due to the
low thickness of the dielectric layer. In that way,~Meq is
filamentary and given by:

~Meq = −
∫ r2

r1

~n× ~Ecav
∣∣∣side walls dr (7)

where~n is directed outward from the cavity.

The radiation fields due toMeq are obtained without
considering the presence of the dielectric, through the
radial components of vector potentials:
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emnĤ(2)
n (kor)P |m|n (cos(θ))ejmφ (8)

F o
r =

+∞∑
n=1

+n∑
m=−n

fmnĤ(2)
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The coefficientsemn and fmn are determined by the
boundary conditions of the electromagnetic fields on the
conducting sphere surface, which is most easily accom-
plished in the domain of the Fourier-Legendre vectorial
transform [4], [7].

B. Electric Surface Current Method

The surface currents method calculates the radiated field
from the knowledge of the induced electric currents on the
patch. Other than the cavity method, the electric surface
current method takes into account the dielectric layer
through the proper Green’s Functions. A good approxima-
tion for those currents is obtained from the magnetic field
of the cavity theory. Once again it can be considered that
only TMr modes exist inside the cavity, which magnetic
field is given by:
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The induced currents are:

~Jpatch
ind = −r̂ × ~Hcav

∣∣∣top wall (12)

The induced electric currents are the source of the
radiation field which can be expanded in TMr and TEr

modes. The vector potentials in the free-space have the
same form as in (8) e (9), however in the dielectric layer,
they are given by:
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The coefficientsamn, bmn, cmn, dmn, emn e fmn

are determined enforcing the boundary conditions of the
electromagnetic fields on the surfaces of the dielectric
layer. Once again, the matching of the boundary conditions
is most easily accomplished in the domain of the Fourier-
Legendre vectorial transform, [4], [7].

III. R ESULTS

Initially the results from both formulations are compared
with those from [13], using method of moments, for a
spherical circular antenna. The radiation pattern is shown
in Fig. 2 in the E-plane, with the present formulations
operating in the TM10 mode, and a very good match is
observed.

Figure 3 compares the radiation pattern obtained with
the present formulations, operating in TM01 mode, with
that from [10], for a spherical-rectangular patch centered
at the x-y plane. It is observed that the cavity model and the
present electric surface current model provide very similar
results, while that from [10] shows a higher back-lobe. It is
a consequence of theθ-variation of the currents, obtained
here from the associate Legendre functions, solution of the
wave equation, in comparison with a simpler sinusoidal
variation assumed in [10].

Figure 4 and 5 show the radiation patterns of a spherical-
rectangular antenna as a function of the dielectric thickness
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Fig. 2. E-plane Radiation Pattern of spherical circular antenna:εr =
2.47, δφ = 2π, r1 = 5 cm, δr = 0.16 cm, θ1 ≈ 0, r1θ2 = 1.88 cm,
f=2.96 GHz.
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Fig. 3. Radiation Pattern onE-plane for a spherical-rectangular patch
of sides 4.8 x 4.8 cm, centered atθ = π/2, r1 = 0.25λo, εr = 2.32,
δr = 1.58 mm, f=2 GHz.

and dielectric constant, respectively. The constant dimen-
sions are :r1 = 20 cm,θ1 = 25o, δθ = 10o, φ1 = 60o and
δφ = 60o. It is convenient to note that all the dimensions
already consider the fringing fields [14]. In Fig. 4 the
relative permittivity is kept constantεr = 4.4, while the
thickness varies from 1 to 10 mm, obtaining 0.683 GHz
and 0.668 GHz as their fundamental resonance frequencies
respectively. It is observed that while the results from
cavity method are unchanged, as expected, those from
electric surface current method show an increase in the
back-lobes due to the excitation of surface waves. In



the Fig. 5 the dielectric thickness which is kept constant
(δr = 1 mm) while the relative permittivity varies from
1.06 to 3.76, obtaining 1.391 GHz and 0.739 GHz as
their fundamental resonance frequencies respectively. In
this case both methods show an increase in the back-lobe,
due to the surface waves.
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Fig. 4. Radiation pattern of a spherical-rectangular antenna (z-y plane):
r1 = 20 cm, θ1 = 25o, δθ = 10o, φ1 = 60o, δφ = 60o, εr = 4.4.
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Fig. 5. Radiation pattern of a spherical-rectangular antenna (z-y plane):
r1 = 20 cm, θ1 = 25o, δθ = 10o, φ1 = 60o, δφ = 60o, δr = 1 mm.

IV. CONCLUSION

This paper presented two procedures for analyz-
ing spherical-rectangular microstrip antennas, i.e., cavity
method and electric surface current method. It shows the
radiation pattern of such antenna positioned at any point

on the sphere, and the effects of variations of dielectric
constant e thickness.
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