Analysis of Spherical-Rectangular Microstrip Antennas

L. A. Costa, O. M. C. Pereira-Filho e F. J. S. Moreira

Department of Electronic Engineering - Federal Univ. of Minas Gerais

Abstract—The radiation pattern of spherical-rectangular  sphere and the wavelength in the dielectric, to assure that
microstrip antennas is investigated using the Cavity Method  the fields are almost completely confined in the substrate
and the Electric Surface Current Method. The thickness of between the metallic patch and the ground. On the other
the dielectric substrate and its relative permittivity are varied hand the fields obtained with the electric SLJrface current

and the effects on the radiation pattern are analyzed. - ) ]
Index Terms—Microstrip antennas on spherical surfaces, Method take into account the dielectric layer and are

Cavity method, Electric surface current method. sensitive to the changes in the dielectric thickness. Other
than [9], the radiation patterns obtained here are accurate
I. INTRODUCTION in the entire region around the mounting sphere, not only

Microstrip antennas have been widely used due tan the front-lobe. Furthermore the patch can be centered
their low cost, low weight and ability to integrate with at any point in the sphere, and the electric current
microwave circuits. They are specially important in sev-distribution used in the electric surface current method
eral applications, like on aircrafts, where the antenna iss obtained from the cavity method, which will prove to
required to conform to their external surfaces. be more accurate than that used in [10]. Comparison and

Spherical microstrip antennas have been analyzed usingnitations of the methods are discussed.

a variety of methods. The cavity method [1] was used

in [2] to analyze circular disks, wraparound, and annular

ring antennas. The electrical surface current method [3] Il. THEORETICAL FORMULATION

was used in [4], when studying a circular disk. While The geometry of the spherical-rectangular microstrip
in [5] an uniform magnetic surface current was used forantenna is shown in Fig. 1. A perfect electric conducting
modeling a wraparound antenna. The method of momentsphere with radius-, is covered by a dielectric layer
[6] has also been applied to spherical microstrip antennaswvith thicknessdr and relative permittivitye,. A patch

In [7] the resonances of a circular disk were determinedf perfect electric conductor is placed on the dielectric
using Galerkin's procedure with basis functions obtainedayer, limited by the angleg; and 6, (6, = 0, + 36),
from the cavity model. While [8] studied the effects of a and by®; andgs (¢p2 = ¢1+6¢), in spherical coordinates.
superstrate on the properties of the circular disk.

All the previously mentioned works dealt with
symmetric structures to the polar axis of the mounting
sphere, i.e, circular disks, wraparound and annular ring z
antennas. Spherical-rectangular antennas were first studied
in [9] using cavity method, but in this case the image
theory was also applied, as if in the presence of an infinite
ground plane. As a consequence the results are inaccurate
for the back-lobes and when the sphere radius diminishes.
In [10] and [11] spherical-rectangular microstrip antennas
were analyzed using the electric surface current method.
However it was assumed that the patch was centered
on the x-y plane, having parallel sides. Arrays were
formed by displacing this patch, maintaining its shape.
Furthermore the electric current was assumed sinusoidal, Conducting
which is only appropriate for an almost planar antenna. Sphere

In the present paper, we analyze a spherical-rectangular
microstrip antenna, as shown in Fig. 1, using both the
cavity and the electric surface current methods. The
cavity method is limited to analyses where the dielectric
thickness is much smaller than the radius of the mounting Fig. 1. Geometry of Spherical-rectangular Microstrip Antenna
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A. Cavity Method The radial component of the electric field is then given

The cavity method is widely used in microstrip antennaby:

problems. It is based on the fact that the field remains .., . v(vr+1) .

almost totally confined under the patch, configuring a " = JNa 72 sin(61)

cavity that has perfect electric top and bottom walls and X[Nﬁr(kdﬁ)jur(kdr) — jLT(kdm)Nur(de’)]
perfect magneuc s@e walls. For e.ach resonance mod(_e of ><[Qﬁ,j’(cos(&l))P;jj‘(cos(&))

the cavity, the equivalent magnetic currents on the side Lt "

walls are determined and considered to radiate in presence — B (cos(61)) @y (cos(0))]

of the conducting sphere but without the dielectric layer. x cos(pr [ — ¢1]) (6)

This assumption have been shown satisfactory for a very,,,
thin dielectric layer.

It is known that the TE cavity modes radiate poorly, as
the corresponding equivalent magnetic currents are alwangw thickness of the dielectric layer. In that wayi.., is
normal to the surface of the conducting sphere. For th‘?ilamentary and given by: a
TM,. modes, only the radial component of the electric field, v
E¢*v#, can produce equivalent magnetic currents, which M. — _/ 7 x Beav|
effectively radiate. “ . side walls

The radial component of the magnetic vector potentialyheres is directed outward from the cavity.
is a solution of [12]:

heren, is the dielectric intrinsic impedance.
The equivalent magnetic current, which is superficial,
can be transformed into filamentary current due to the

dr @)

Acav The radiation fields due td/., are obtained without
=0 (1) considering the presence of the dielectric, through the
radial components of vector potentials:

(VZ+k3)
whereky = w.\/[to€o€r.
+oo  +n
Applying the method of separation of variables and 4o _ Z Z emnHP (kor) P™ (cos(8))e’™®  (8)

enforcing the boundary conditions, the radial component "
of the magnetic vector potential is given by:

r

n=1m=—-n

+oo  +n
ASY = kg sin(6)) F2 =" 3" funHP (kor) P (cos(6)e™  (9)

X[N! (kgri)dy, (kar) — J', (kar1) Ny, (kqr
[ :E ! 1)9 T(PZT) 6*( ar1)Nu (kar) The coefficientse,,,, and f,,, are determined by the
X[QW/ (cos(61)) By, (cos(6)) boundary conditions of the electromagnetic fields on the
=P} (cos(01))Qpr (cos(6))] conducting sphere surface, which is most easily accom-
x cos(pr [ — ¢1]) (2)  plished in the domain of the Fourier-Legendre vectorial
transform [4], [7].

n=1m=-—n

where j,,(x), N,,(x), and IQI,EQ)(x) are the Schelkunoff B- Electric Surface Current Method

type Bessel, Neumann, and second-kind Hankel functions, The surface currents method calculates the radiated field
respectively. The functions”’(x) and Q*(x) are the from the knowledge of the induced electric currents on the
Associated Legendre functions of first and second kindpatch. Other than the cavity method, the electric surface
respectively. The parameters, v, and k; are solutions current method takes into account the dielectric layer
of the transcendental equations that determine the resonaitiirough the proper Green’s Functions. A good approxima-

modes inside the cavity: tion for those currents is obtained from the magnetic field
- of the cavity theory. Once again it can be considered that
=z m=0,1,2,3,... (3) only TM, modes exist inside the cavity, which magnetic
¢ field is given by:
cav kdlu‘T Sin(gl)
1 / HG =T
Qpr'(cos(01)) P (cos(62)) rsin(0)

= P (cos(61)) QL (cos(B2))  (4) X [N, (kar1) o, (kar) = J, (kar1) Ny, (kar)]

x[QLr' (cos(61)) Pyir (cos(0))
— Pl (cos(61)) QL (cos(6))]
N, (kar) ), (kars) =}, (kar1) N}, (kars) — (5) x sin(p,[¢ — 1)) (10)
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The induced currents are:

Jrateh 5 fjeav (12)

ind top wall 25 1

The induced electric currents are the source of the
radiation field which can be expanded in TMnd TE. -30; e wm w1 w0 o
modes. The vector potentials in the free-space have th 6 [degrees]
same form as in (8) e (9), however in the dielectric layer,
they are given by: Fig. 2. E-plane Radiation Pattern of spherical circular antenpa:=

oo dm 2.47, ¢ = 2w, r1 = 5cm,d, = 0.16 cm, 01 = 0, r162 = 1.88 cm,

A f=2.96 GHz.
AL = ST {amnldukar) + b N (kar)] x z
n=lm=-n
. 0
Pl™(cos(6))eI™?} (13)
+oo  +n S
F¢ = Z Z {omnlJn(kar) + dpn Ny (kqr)] x _
n=1m=-n A gimi
PIml(cos(6))e’™?} 14) ¢
The CoeﬁiCientsamny bmn; Cmn» dmn: €mn € fmn §_15’ 7

are determined enforcing the boundary conditions of the 8

=+ Cavity
electromagnetic fields on the surfaces of the dielectric§ ol Trse“frfi%f"' |
layer. Once again, the matching of the boundary condition: '
is most easily accomplished in the domain of the Fourier-
Legendre vectorial transform, [4], [7]. il )
[1l. RESULTS
-30 I L L L L L L
Initially the results from both formulations are compared 0 %0 100 10 egrecs) 0 0 0

with those from [13], using method of moments, for a
spherical circular antenna. The radiation pattern is ShOWI'}I . Radiation Pattern of’-plane for a spherical-rectangular patch
in Fig. 2 in the E-plane, with the present formulations of S|des 4.8 x 4.8 cm, centered @t= 7/2, r1 = 0.25)\,, € = 2.32,
operating in the TM, mode, and a very good match is 0 = 1.58 mm, f=2 GHz.
observed.
Figure 3 compares the radiation pattern obtained with
the present formulations, operating in §Mmode, with  and dielectric constant, respectively. The constant dimen-
that from [10], for a spherical-rectangular patch centeredsions are r; = 20 cm, 6; = 25°, 6 = 10°, ¢; = 60° and
at the x-y plane. It is observed that the cavity model and thé¢ = 60°. It is convenient to note that all the dimensions
present electric surface current model provide very similaalready consider the fringing fields [14]. In Fig. 4 the
results, while that from [10] shows a higher back-lobe. It isrelative permittivity is kept constant. = 4.4, while the
a consequence of thevariation of the currents, obtained thickness varies from 1 to 10 mm, obtaining 0.683 GHz
here from the associate Legendre functions, solution of thand 0.668 GHz as their fundamental resonance frequencies
wave equation, in comparison with a simpler sinusoidalrespectively. It is observed that while the results from
variation assumed in [10]. cavity method are unchanged, as expected, those from
Figure 4 and 5 show the radiation patterns of a sphericalelectric surface current method show an increase in the
rectangular antenna as a function of the dielectric thicknesback-lobes due to the excitation of surface waves. In



the Fig. 5 the dielectric thickness which is kept constanton the sphere, and the effects of variations of dielectric
(6, = 1 mm) while the relative permittivity varies from constant e thickness.
1.06 to 3.76, obtaining 1.391 GHz and 0.739 GHz as

their fundamental resonance frequencies respectively. In
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Fig. 5. Radiation pattern of a spherical-rectangular antenna (z-y plane):
r1 =20 cm, 01 = 25°, 60 = 10°, ¢ = 60°, 6¢ = 60°, &, = 1 mm.

IV. CONCLUSION

This paper presented two procedures for analyz-
ing spherical-rectangular microstrip antennas, i.e., cavity
method and electric surface current method. It shows the
radiation pattern of such antenna positioned at any point



