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Abstract— This work presents the formulation for the re-
flector shaping of dual-reflector antennas designed to offer
an omnidirectional coverage. The shaping is based on geo-
metrical optics (GO) principles and assumes a uniform phase
distribution for the aperture field. Two distinct dual-reflector
arrangements (based on the ADC and ADE configurations) are
investigated. The GO shaping results are validated by accurate
analyses provided by the moment-method technique.

Index Terms— Reflector antennas, omnidirectional antennas,
reflector shaping.

I. I NTRODUCTION

Reflector antennas are widely used in microwave and
millimeter-wave wireless communication systems demand-
ing large transmission rates. That is basically due to their
inherent broadband radiation characteristics, which are ulti-
mately related to the quasi-optical behavior of the reflector
arrangement. Usually, they are designed for large directivi-
ties (as those in a point-to-point microwave link), but some
attention has been devoted recently to reflector arrangements
providing omnidirectional coverage [1]–[9]. Omnidirectional
reflector configurations are suited for operating as base-
station antennas, covering the surrounding area in a broad-
band point-multi-point radio link.

The studies conducted cover from classical reflector ar-
rangements (i.e., arrangements whose reflectors are gen-
erated by conic sections) [2],[7]–[9] to shaped reflec-
tors [1],[3]–[6]. But no study has been devoted yet to the
synthesis of highly-efficient omnidirectional dual-reflector
antennas, which are achieved by means of a uniform aperture
illumination. So, the objective of this work is to present a
dual-reflector shaping procedure based on geometrical optics
(GO) principles, developed to attain an aperture illumination
with a uniform phase and an arbitrary amplitude distribution
from a prescribed circularly symmetric feed radiation (and
some pertinent geometrical parameters). The arbitrariness of
the aperture field amplitude allows the application of the
present GO shaping procedure in designs aiming maximum
antenna gains (by choosing a uniform amplitude distribution
at the aperture) or low sidelobe levels (by means of a tapered
amplitude distribution).

II. BASIC GEOMETRICAL FEATURES

There are four different types of dual-reflector anten-
nas capable of providing omnidirectional coverages [8],

but those based on the classical axis-displaced Cassegrain
(ADC) and axis-displaced ellipse (ADE) seem to be the most
appropriate ones for yielding compact arrangements. Such
arrangements are depicted in Figs. 1 and 2, respectively,
together with some pertinent geometrical parameters of
the body-of-revolution reflector surfaces. One can inspect
from these figures that the main difference between the
ADC- and ADE-like configurations is that the principal ray
(leaving the antenna principal focus along the symmetry
axis and striking the subreflector at its vertex) meets the
main reflector at its inner (outer) rim in the ADC (ADE)
arrangement. The essential consequence is that the ADE-
like reflector arrangement provides the inverse of the feed
illumination toward the reflector-antenna aperture, whichis
an interesting feature to be taken into account by the antenna
designer.

Among the antennas geometrical parameters, its useful to
point out from Figs. 1 and 2 the width (WA) of the antenna
conical aperture, the main-reflector outer (DM ) and inner
(DB) diameters, the subreflector diameter (DS), the distance
(VS) from the antenna principal focusO (which is also the
origin of the coordinate system) to the subreflector vertex,
thez-coordinate (zB) of the main-reflector central hole (i.e.,
the z-coordinate of pointP2), the subreflector edge angle
(θE), and the angle (γ) between the rays reflected by the
main reflector and the symmetry axis. The angleγ basically
controls the direction of the maximum directivity of the
omnidirectional antenna radiation pattern. For instance,if
the usual directive configurations are desired, one just need
to setγ = 0. Another important parameter is the equal path
length (ℓo) from the principal focusO to the aperture point
A, which comes as a consequence of the desired uniform
phase distribution over the antenna aperture.

III. GO SHAPING FORMULATION

Many GO reflector-shaping algorithms have been devel-
oped since Galindo’s pioneer work [10]. But for the present
task we derive one based on a shaping procedure originally
developed for directive circularly-symmetric dual-reflector
antennas [11]. The procedure is similar to that presented
in [12] but applying Fermat’s principle instead of Snell’s
law to treat the reflection at the subreflector’s surface.

Always with the help of Figs. 1 and 2, letOSM be
a certain optical path length departing fromO, reflecting



Fig. 1. Geometry of the ADC-like omnidirectional dual-reflector antenna.

Fig. 2. Geometry of the ADE-like omnidirectional dual-reflector antenna.

at the subreflector surface atS and arriving at the main-
reflector pointM , before continuing toward the antenna
aperture. Such path must then obey Fermat’s principle (and,
consequently, Snell’s law atS), i.e., OSM must be the
minimum path length fromO to M and, consequently,

d

dθF

OSM = 0 , (1)

whereθF is the feed-ray angle with respect to the symmetry
axis (z-axis), such that0 ≤ θF ≤ θE . As

OSM = rF +
√

(xM − xS)2 + (zM − zS)2 , (2)

whererF is the distance fromO to S, xM andzM are the
coordinates ofM , and

xS = rF sin θF

zS = rF cos θF (3)

are the coordinates ofS, one can show from (1) that

drF

dθF

=
rF (xM cos θF − zM sin θF )

OSM − (xM sin θF + zM cos θF )
, (4)

which is the first-order differential equation to be solved for
the reflector surfaces.

In (4), besidesrF , there are two variables that remain to
be determined: the main-reflector coordinatesxM and zM .
That is accomplished by applying the conservation of energy
along the ray tube and by enforcing the desired equal path
lengthℓo from O to the aperture pointA. However, to render
simpler equations it is appropriate to define first an auxiliary
Cartesian coordinate system (x′ and z′, as illustrated in
Figs. 1 and 2) to describe the main-reflector coordinates,
such that

x′ = x cos γ − z sin γ

z′ = x sin γ + z cos γ . (5)

So, with the help of Figs. 1 and 2 one observes that the
equal path-length condition is simply enforced by

ℓo = OSM − z′M + z′A , (6)

wherez′M is thez′-coordinate of the main-reflector pointM
and z′A is the (predetermined)z′-coordinate of the antenna
aperture, which is actually needed just to prevent the aperture
from intersecting the antenna symmetry axis and, thus, avoid
unnecessary singularities. The coordinatez′M is obtained
from (6), with the help of (2), (3), and (5).

In turn, thex′-coordinate ofM (i.e., x′

M ) is determined
from the conservation of energy [12]. However, as the ADE-
like antenna provides the inverse of the feed illumination at
the antenna aperture while the ADC-like antenna does not, a
distinction must then be made in the shaping algorithm. Note
from Fig. 1 that for the ADC-like configuration the conical
ray tube emanating fromO with semi-angleθF is mapped
at the aperture withx′ ∈ [x′

2
, x′

M ], while from Fig. 2 one
observes that for the ADE-like antenna the mapping occurs
with x′ ∈ [x′

M , x′

1
], wherex′

2
andx′

1
are thex′-coordinates

of the main-reflector pointsP2 and P1, respectively, given
by

x′

2
= (DB/2) cos γ − zB sin γ

x′

1
= x′

2
+ WA . (7)

So, for the ADC-like antenna, the conservation of energy
along the ray tube imposes that

∫ θF

0

F (θ) r2

F sin θ dθ = N

∫ x′

M

x′

2

P (x′) ρ(x′) dx′ , (8)

while for the ADE-like antenna
∫ θF

0

F (θ) r2

F sin θ dθ = N

∫ x′

1

x′

M

P (x′) ρ(x′) dx′ , (9)

whereF (θ) is the circularly-symmetric feed power density,
P (x′) is the desired aperture power density,

ρ(x′) = x′ cos γ + z′A sin γ (10)

is the radial distance from the symmetry axis to the antenna
aperture, and

N =

[

∫ θE

0

F (θ) r2

F sin θ dθ

]

÷

[

∫ x′

1

x′

2

P (x′) ρ(x′) dx′

]

(11)



is the normalization factor assuring that the feed power
captured by the subreflector is conserved at the antenna
conical aperture.

Once x′

M and z′M are obtained from (6)–(11), (5) is
applied to attainxM and zM , which are finally substituted
into (4). The subreflector coordinates are then obtained
from the numerical solution of (4), with the help of (3)
and varyingθF from 0 to θE . The first-order non-linear
differential equation (4) may be numerically integrated using
any widely available method, as the fourth-order Runge-
Kutta method. For that, the initial condition atθF = 0 must
be specified. From Figs. 1 and 2 one immediately observes
that such condition is

rF (θF = 0) = VS . (12)

IV. N UMERICAL EXAMPLES WITH A UNIFORM

APERTUREILLUMINATION

Before proceeding to the shaping and further analysis of
omnidirectional dual-reflector antennas designed for maxi-
mum gain, we establish classical arrangements that will help
in the definition of the initial design parameters. Classical
omnidirectional dual-reflector arrangements withγ = 90◦

are investigated in [8] and [9], where formulas and results for
the specification of geometries with relatively large radiation
efficiencies are presented. So, from [8] and [9] we chose the
classical ADC and ADE arrangements depicted (with dotted
lines) in Figs. 3(a) and 4(a), respectively, together with the
feed geometry (a coaxial horn). Their relevant characteristics
are summarized in Table I. Their omnidirectional radiation
patterns are illustrated in Figs. 3(b) and 4(b), respectively.
The moment-method (MoM) analyses took into account
the complete electromagnetic coupling among reflectors and
horn structures. For the aperture-method (ApM) analyses,
based on the GO aperture field, the following model was
adopted for the electric field radiated from the feed [8],[9]:

~EF (~rF ) =

[

J0(kRi sin θF ) − J0(kRe sin θF )

sin θF

]

e−jkrF

rF

θ̂F

(13)
where J0(x) is the zero order Bessel function andRi =
0.45λ andRe = 0.9λ are the internal and external radii of
the coaxial horn aperture, respectively.

Then, the GO shaping formulation of Sect. III was applied
for the synthesis of maximum-gain configurations [i.e., with
a constant aperture power densityP (x′)] keeping the same
values ofWA, γ, DB , VS , zB , and θE of their classical
counterparts. The feed model of (13) was used to specify
the feed power density

F (θF ) = | ~EF (~rF )|2/(2η) . (14)

The shaped reflector geometries are depicted (with solid
lines) in Figs. 3(a) and 4(a), together with some optical paths
from O to the antenna aperture. The radiation patterns are
those of Figs. 3(c) and 4(c), from which we observe the gain
improvement provided by the reflector shaping. Some of the
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Fig. 3. Omnidirectional ADC-like antenna shaped for a uniform aperture
illumination: (a) classical (dotted lines) and shaped (solid) geometries, and
radiation patterns of the (b) classical and (c) shaped geometries.

relevant characteristics of the shaped reflector systems are
listed in Table I.
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Fig. 4. Omnidirectional ADE-like antenna shaped for a uniform aperture
illumination: (a) classical (dotted lines) and shaped (solid) geometries, and
radiation patterns of the (b) classical and (c) shaped geometries.

V. CONCLUSION

A GO shaping procedure for maximum gain was devel-
oped for dual-reflector antennas, whose body-of-revolution

TABLE I

DUAL -REFLECTORANTENNA CHARACTERISTICS.

Characteristic Classical Shaped Classical Shaped
ADC ADC ADE ADE

WA(λ) 10 10 10 10
γ(◦) 90 90 90 90

DM (λ) 23 21.76 24 21.52
DS(λ) 23 22.33 16.29 16.77
DB(λ) 2 2 2 2
VS(λ) 10.5 10.5 8 8
zB(λ) 0 0 0 0
θE(◦) 56.16 56.16 56.84 56.84

MoM Gain (dBi) 11.80 12.46 12.19 12.26
ApM Gain (dBi) 11.98 12.83 11.61 12.83

surfaces are suited for omnidirectional coverage. The GO
shaping was demonstrated for two different reflector configu-
rations, based on the classical ADC and ADE arrangements.
The results were further validated by accurate MoM anal-
yses, accounting for the complete electromagnetic coupling
among reflectors and feed structure.
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