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Abstract—This work deals with the application of
the Time Domain Uniform Theory of Diffraction (TD-
UTD) in wideband propagation predictions for urban
scenarios. Results are presented and compared against
those obtained by the application of an inverse Fourier
transform upon the usual frequency-domain UTD and
method of moments (MoM). In the frequency domain,
multiple diffractions and lossy obstacles can be ac-
counted for. However, in the adopted TD-UTD for-
mulation only a single diffraction and perfect electric
or magnetic conductors are considered. For the present
TD-UTD analysis and for a typical urban radio channel
where the antennas’ heights are small compared to the
buildings’ heights, it is shown that the consideration
of ground as a perfect magnetic conductor instead
of an electric one provides a better approach for a
vertical polarization over lossy ground. The buildings
are treated as perfect electric conductors.

Index Terms—Urban propagation channel, ultra
wideband, time domain uniform theory of diffraction.

I. Introduction

Recently, technologies based on ultra wideband (UWB)
transmission are being developed, like impulse radio and
high resolution radars. According to the U.S. Federal
Communications Commission (FCC), UWB signals are
those with a bandwidth greater than 25% of the central
frequency, measured from the 10dB attenuation points,
or greater than 1.5 GHz [1]. In principle, it is more
convenient to analyze such systems directly in the time
domain, as they are generally based on the transmission of
many consecutive pulses and the representation of a pulse
in time domain is simpler than in frequency domain.

To obtain the radio channel response due to a pulse
excitation, two techniques can be used. One is to calculate
the channel response for a lot of discrete frequencies and
then apply an inverse fast Fourier transform (IFFT) to
establish the time response. Another is to perform the
analysis directly in time domain. Being Nf number of
discrete frequencies, it is known that the IFFT requires
Nf log2 Nf operations whenever Nf is a power of 2 and N2

f

otherwise [2]. Consequently, the shorter the pulse is, the
greater will be the number of frequencies to be analyzed.
In the time domain, however, the analysis requires just
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Nf instants of time for the same time window. Another
problem that arises from the IFFT operation is aliasing.
To avoid this problem, it is necessary the use of larger time
windows and, consequently, larger Nf values, increasing
the computational burden. In time domain this problem
does not occur, and the time window may only have the
desired instants of time. So, for the appropriate wideband
characterization of radio channels, it is more convenient
to adopt a time domain formulation whenever possible.

II. TD-UTD Impulse Response

Here, the radio channel will be approximated as a linear
system, in which case its characterization is evaluated
with the helpof its transfer function (or impulse response).
In electromagnetic problems where space and time vari-
ations must be considered, this response is known as the
time-domain Green’s function, which is obtained from the
environment response to a time-impulse source in a given
location and with a proper polarization. Afterwards, the
time response to more realistic signals is evaluated from
its convolution with the associated Green’s function as [3]

f(t) ∗ g(t) =
∫ ∞

−∞
f(τ) g(t− τ) dτ , (1)

where g(t) and f(t) represent the Green’s function and a
Maxwellian excitation of any kind, respectively.

To obtain the radio channel impulse response, it is used
a combination of ray-tracing, Time Domain Geometric
Optics (TD-GO) and TD-UTD. The TD-GO and TD-
UTD expressions are obtained from the application of
the Analytic Time Transform (ATT) in the well known
frequency domain GO and UTD expressions for perfect
conductors [4]. The TD-GO and TD-UTD expressions are
valid near the arriving time of the ray [4].

A. ATT and some useful properties
The ATT is defined as [4]
+

f (t) =
1
π

∫ ∞

−∞
F (ω) u(ω) ejωt dω, for Im (t) > 0, (2)

where ω is the angular frequency, F (ω) is the Fourier
transform of f(t) given by

F (ω) =
∫ ∞

−∞
f(t) e−jωt dt , (3)



and u(ω) is the Heaviside step, given by

u(ω) =

 0 ω < 0
1/2 ω = 0
1 ω > 0

. (4)

The “+” sign over f means an analytical signal in a
complex-time domain. As no radiation occurs for ω = 0,
the ATT can be rewritten as [4]

+

f (t) =
1
π

∫ ∞

0

F (ω) ejωt dω , for Im (t) > 0. (5)

The relation between
+

f (t) and the desired real function
f(t) is given by [4]

+

f (t) = f(t) + jH[f(t)] , for Im (t) = 0 , (6)

whereH[f(t)] the Hilbert transform of f(t). Consequently,

f(t) = Re
[

+

f (t)
]

, for Im (t) = 0. (7)

It is important to observe from (5) the close relation
between the ATT and the inverse Fourier transform,
which eneables the use of several properties of the Laplace
and Fourier transforms [4].

B. TD-GO electromagnetic fields
In this work the environment is assumed linear,

isotropic, homogeneous and non-dispersive (i.e., the atmo-
sphere is the vacuum and any obstacle will be assumed a
perfect conductor). Recalling the phasor representation in
the frequency domain and that the UTD is an asymptotic
theory, the time-harmonic radiation is represented by ray
fields and only the transmitter gain and the phase of the
field will vary with the frequency. The gain variation will
be discussed afterwards, when the time dependance of the
source is modeled. The phase variation, under the present
circumstances, will be always of the form exp[−j(ω/c)s],
where c is the light velocity and s represents the distance
along the ray path. So, from (5), the phase term is
transformed by the ATT into the analitic delta function
+

δ (t− s/c), given by [4]

+

δ (t) =
{

j/(πt) , Im (t) > 0
δ(t) + pv[j/(πt)] , Im (t) = 0 , (8)

where pv(·) stands for the Cauchy principal value.
So, applying the ATT to the usual GO expressions [5],

the impulse response for a TD-GO field is simply given
by [4]

+

~eI (s, t) = jm |A(s)|
+

δ (t− s/c) p̂ , (9)

where A(s) is the usual GO attenuation factor, p̂ repre-
sents the electric field polarization, and m is the number
of line or smooth caustics that the ray has to transverse
in the forward direction (i.e., for s > 0). In practical
terms, m is the number of negative radii of curvature
of the wavefront at s = 0 and may be equal to 0, 1, or

(a) (b)

Fig. 1. (a) Single and (b) multiple reflections optical paths.

2. For example, for radiation from line or point sources,
m = 0. Consequently, the term jm accounts for the Gouy
phase shift. The reason for stressing it in (9) is to simplify
the manipulation of the real and imaginary parts of the
analytical signal, before the application of (7). Finally,
the index I in (9) stresses that this analytic field is to be
interpreted as one of the many multipath components in
a radio channel.

C. Reflected fields
The treatment of reflections by the TD-GO is quite

direct if one assumes a perfectly conducting surface. Let’s
assume the geometry depicted by Fig. 1(a). In the fre-
quency domain, the phasor representation of the reflected
field at the receiver (R) is given by [5]

~E(R) = R̄1 · ~E(Q1) jm1 |A(s1)| e−jks1 , (10)

where k = ω/c, R̄1 is the dyadic reflection coeficient
for the problem at hand, given in terms of the Fresnel
reflection coeficients, m1 is the number of negative radii
of curvature of the reflected wavefront just after Q1, and
~E(Q1) is the incident field just before Q1, whose ray-field
representation may be represented as

~E(Q1) = Eo jm0 |A(s0)| e−jks0 p̂ , (11)

where m0 is defined as usual, now for the incident wave-
front, and Eo is an arbitrary amplitude, assumed constant
for the time being.

It is important to observe that for lossless surfaces, the
reflection dyad does not vary with ω and, consequently,
will not be affected by the ATT. For instance, for perfect
conductors the Fresnel reflection coeficientes are equal to
±1, with the sign depending on the wave polarization and
on the conductor being a perfectly electric or magnetic.
So, substituting (11) into (10) and applying (5) after-
wards, the analytical representation of the reflected field
is given by [4]
+

~eI (R, t) = Eo j(m0+m1)|A(s0)A(s1)| R̄1·p̂
+

δ

(
t− s0 + s1

c

)
.

(12)
For multiple reflections, like in Fig. 1(b), the result is quite
obvious:

+

~eI (R, t) = Eo jMT |AT | ~RT

+

δ

(
t− ST

c

)
, (13)



Fig. 2. Edge fixed coordinate system.

where

~RT = R̄r · R̄r−1 · . . . · R̄2 · R̄1 · p̂ , (14)
MT = m0 + m1 + m2 + . . . + mr−1 + mr , (15)
AT = A(s0)A(s1)A(s2) . . . A(sr−1)A(sr) , (16)
ST = s0 + s1 + s2 + . . . + sr−1 + sr . (17)

From the previous equations it must be clear that, once
the ray trajectories are obtained, the calculation of the
field at the receiver is a simple task, as far as the reflection
coeficients do not depend on ω. In the present work, the
ray tracing algorithm is that of [6], based on the image
theory and also accounting for ground reflection.

D. Time Domain Uniform Theory of Diffraction

The analytical impulse response for the field diffracted
by a perfectly electric conducting (PEC) wedge was de-
veloped in [4] and only the final expressions are presented.
Such formulation does not include slope diffraction. The
geometrical parameters of interest are illustrated in Fig. 2.
Assuming that the wedge is illuminated by an incident
field with a phasor representation in the frequency domain
like the one in (11), the analytical difracted field at an
observation point R is given by [4]:

+

~eI (R, t) = Eo j(m0+md) |A(s0)A(sd)|
+

D̄
(

t− s0 + sd

c

)
· p̂ ,

(18)
where sd is the distance from the diffraction point (located
at the wedge’s edge) to R, A(sd) is the usual UTD
attenuation factor (as it does not depend on ω for a PEC
wedge) [5], md = 0 if the edge caustic distance is positive

and 1 otherwise, and
+

D̄ (τ) is the dyadic diffraction
coefficient given by

+

D̄(τ) =
+

Ds (τ) β̂d β̂i +
+

Dh (τ) φ̂d φ̂i , (19)

with the unit directions β̂i, β̂d, φ̂i, and φ̂d defined as in
Fig. 2. Note that here β̂d and φ̂d are the opposite of those
usually defined, for example, in [4] and [5]. The soft and

Fig. 3. Multiple reflections with a single diffraction.

hard analytical diffraction coefficients for the PEC wedge
are given by [4]:

+

Ds,h (τ) =
+

D1 (τ)+
+

D2 (τ)∓
+

D3 (τ)∓
+

D4 (τ) , (20)

where, for a wedge with flat faces,

+

D1 (τ) = Bo cot
(

π + β−

2n

)
+

F (x1, τ) ,

+

D2 (τ) = Bo cot
(

π − β−

2n

)
+

F (x2, τ) ,

+

D3 (τ) = Bo cot
(

π + β+

2n

)
+

F (x3, τ) ,

+

D4 (τ) = Bo cot
(

π − β+

2n

)
+

F (x4, τ) , (21)

with

Bo =
−1

2n
√

2π sinβ0

,

+

F (x, τ) =

√
x/π (j

√
τ +

√
x/c)√

τ (τ + x/c)
,

x1 = Li a+(β−) ,

x2 = Li a−(β−) ,

x3 = Lrn a+(β+) ,

x4 = Lro a−(β+) ,

β+ = φd + φi ,

β− = φd − φi .

All the above parameters refer to the usual frequency
domain UTD for PEC wedges and are explained in a
comprehensive fashion in [5] and [4].

E. Multiple reflections with a single diffraction

Now let’s consider the situation depicted in Fig. 3 where
the PEC wedge’s diffraction occurs between two reflec-
tions. In this situation, from the Dirac’s delta property,
togheter with (13) and (18), the analytic field at the
receiver is given by

+

~eI (R, t) = Eo j(m0+m1+md+m2) |A(s0)A(s1)A(sd)A(s2)|

× R̄2 ·
+

D̄
(

t− s0 + s1 + sd + s2

c

)
· R̄1 · p̂ . (22)

The exclusion or inclusion of other reflection mechanisms
in (22) is quite direct for the present scenario.



F. Inclusion of a realistic antenna radiation
In practice, the antenna radiation characteristics change

with ω and the field complex amplitude Eo must not be
considered as a constant, specially for wideband applica-

tions. So, the actual multipath componente
+

~eI (t) must
be convoluted with

+
eo (t), which is the ATT of Eo(ω).

An efficient way to evaluate such convolution is presented
in [4] and briefly discussed below. The technique is based
on the expansion of Eo(ω) into a series of exponentials:

Eo(ω) =
N∑

n=1

Ane−αnω, for ω > 0, (23)

where N , An, and αn are specified according to the
antenna radiation characteristics. Applying (5) and (8),
+
eo (t) is readly obtained [4]:

+
eo (t) =

N∑
n=1

jAn/π

t + jαn
=

N∑
n=1

An

+

δ (t + jαn) , for αn > 0.

(24)
As

+
eo (t) is represented as a series of analytical delta

functions, the convolution becomes a simple task and,
consequently, the multipath components presented in (9),
(12), (13), (18), and (22), for the many possible multipath
mechanisms considered in this work, should be substituted
as follows:

+

~eI (t) −→
+

~eI (t) ∗ +
eo (t) =

N∑
n=1

An

+

~eI (t + jαn) , (25)

in which case (9), (12), (13), (18), and (22) are still
extremely useful.

In the simulations to be presented, the adopted Eo(ω)
is given by [4]

Eo(ω) = Co (1− e−ωT )P1 e−ωP2T , (26)

where
T =

1
2πfc

ln
(

P1 + P2

P2

)
, (27)

fc is the pulse central frequency, P1 and P2 are exponents
used to control the shape of Eo(ω), and

Co =
(

P1 + P2

P1

)P1
(

P1 + P2

P2

)P2

. (28)

Once the desired representation of Eo(ω) is established
with the help of (26), than the parameters N , An, and
αn of (23) are readly obtained following the procedure
presented in [4].

III. Numerical Results

The ray-tracing algorithm used in this work is based on
multiple image theory for obtaining rays with a limited
number of reflections. More details about this theory can
be found in [6], [7].

First, it will be analyzed the case shown in Fig. 4, where
the cylinder is an electric perfect conductor with 2 m

side. The transmitter antenna is a current line and the
receiver antenna is isotropic. The channel response will be
analyzed for some values for the angle φ, in a circular path
with 4 m radius. The excitation pulse have fc = 2 GHz,
M = 1 and N = 2. Its shape is shown in Fig. 5. It will be
analyzed the results obtained from the UTD [8] and TD-
UTD, and the reference will be the Method of Moments
(MoM) [9]. In this work, the results of UTD and MoM
after the IFFT operation will be labeled UTD-IFFT and
MoM-IFFT, respectively. In ray-tracing algorithm, it will
be considered rays until 2 diffractions for the UTD-IFFT
and until 1 diffraction for the TD-UTD [6]. For the MoM,
it will be used 5 segments for wavelength otherwise.

Fig. 4. Geometry to be analyzed. The environment is 2D and
the transmitter antenna is a line current. The receiver antenna
is isotropic. All dimensions are in meters.

(a) Pulse spectrum. (b) Pulse in time.

Fig. 5. Excitation shape for M = 1, N = 2 and fc = 2 GHz.

The results for φ = 90 are shown in Fig 6. The results
obtained from TD-UTD are equal the UTD-IFFT results,
because the TD-UTD formulation is obtained from UTD
without any approximation. For φ = 180, there is a re-
flected pulse, and its arriving time is near the arriving time
of diffracted rays in wedges (−1m,−1m) and (−1m,1m).
The results for both polarizations agree with the results
obtained from MoM-IFFT.

Now, it will be analyzed a real case according to
Fig. 8 [10]. The quasi-3D model will be used for the ray-
tracing, i.e., the reflections in plain ground are consid-
ered [6], [7]. The transmitter antenna is a infinitesimal
electric dipole, vertically polarized, 8,5 m height and local-
ized in (241m,263m). The receiver antenna R is isotropic,
3,65 m height and localized in (510m,270m). It will be
considered here only the UTD-IFFT and TD-UTD results,
where it will be analyzed the lossy effect in a typical urban
scenario. The excitation used has fc = 5 GHz, M = 1 and
N = 2, which has a spatial dimension (approximately



(a) TMz polarization

(b) TEz polarization

Fig. 6. Results for geometry of Fig 4 with φ = 90. For MoM
where used 5 seg/λ.

0,18 m) very less than the dimensions of obstacles into
the environment. The pulse width is into characteristics
for Time-Modulated UWB (TM-UWB) system, i.e., be-
tween 0.2 and 1 ns [1]. For UTD-IFFT prediction, it was
considered εr = 7 and σ = 0.2 S/m for obstacles and
εr = 15 and σ = 0.05 S/m for the ground. For ray-tracing
algorithm, it was considered rays until 5 reflections and 1
difraction.

In Fig 10 is shown the first pulses that arrives at
the receiver antenna R, considering all obstacles and the
ground electric perfect conductors for TD-UTD simula-
tion. Some pulses predicted by TD-UTD are inverted
when compared with those obtained by UTD-IFFT. This
pulses are those reflected in ground, and the cause is that
the approach of the ground as a perfect conductor it is
not good enough. As the antennas heights are small when
compared with the distance between them, the ray that
reflect in ground has a grazing incidence, and for vertical
polarization, the approach of the ground as a magnetic

(a) TMz polarization

(b) TEz polarization

Fig. 7. Results for geometry of Fig 4 with φ = 180. For MoM
where used 5 seg/λ.

Fig. 8. Region of Ottawa city, in which the receiver is in the
line of sight of the transmitter. The transmitter antenna T
is an infinitesimal electric dipole vertically polarized, and the
receiver R is isotropic. All dimensions are in meters.



(a) Pulse spectrum. (b) Pulse in time.

Fig. 9. UWB excitation used. The pulse parameters are: M = 1,
N = 2 and fc = 5 GHz.

perfect conductor is the right one. Using this approach,
the results shown in Fig. 11 were obtained. Now the
pulses are not inverted, but they still have a difference in
amplitude due to the TD-UTD not consider the losses in
reflection and diffraction phenomena. The responses have
a correlation coefficient of 0.967, that is a good result.

Fig. 10. Comparison between UTD-IFFT and TD-UTD in
channel radio response. For TD-UTD, the obstacles and the
ground were considered perfect electric conductors.

IV. Conclusions

Despite not considerate the losses, the Time Domain
Uniform Theory of Diffraction (TD-UTD) is a good tool
for field scattering prediction of UWB signals in urban
environment whether the ground is considered as a perfect
magnetic conductor and the obstacles as perfect electric
conductors in the cases of vertically polarized antennas.
When, for a single ray, the number of reflections increases,
the difference between the UTD-IFFT and TD-UTD re-
sults becomes greater because the TD-UTD does not
consider the attenuation causes by losses in obstacles and
ground.

Acknowledgment

The authors wish to thank Daniela N. Schettino for her
help with the ray-tracing software.

Fig. 11. Comparison between UTD-IFFT and TD-UTD in
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