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Abstract—This work presents a generalized study of classical
axially symmetric dual-reflector antennas. The antenna dishes are
simply described by conic sections, arranged to reduce the main-
reflector radiation toward the subreflector surface. The dual-re-
flector configuration provides a uniform-phase field distribution
over the illuminated portion of the aperture, starting from a spher-
ical-wave feed source at the antenna primary focus. All possible
configurations are characterized into a total of four distinct groups.
Simple closed-form design equations and the aperture field distri-
bution are derived, in a unified way, for all these kinds of gen-
eralized antennas using the principles of geometrical optics. The
formulation is applied in a parametric study to establish the con-
figurations yielding maximum radiation efficiency (not including
diffraction effects). The design procedure is exemplified in the syn-
thesis of a novel configuration, which is further analyzed by the
moment method.

Index Terms—Aperture fields, design methodology, electromag-
netic reflection, geometrical optics, reflector antennas.

I. INTRODUCTION

CLASSICAL axially symmetric Cassegrain and Gregorian
reflectors have been used for many years in high-gain an-

tenna applications [1], [2]. The main disadvantage of these con-
figurations is the subreflector blockage, which causes a number
of deleterious effects such as the decrease of the antenna aper-
ture efficiency. However, this problem can be minimized by re-
ducing the main-reflector radiation toward the subreflector. This
may be accomplished by either shaping both reflectors [3] or
using alternative classical configurations, where the generating
curves of the axially symmetric reflectors are described by conic
sections [4]–[8]. In this paper, the second option is considered
by presenting generalized classical axially symmetric dual-re-
flector antennas that prevent, from a geometrical optics (GO)
standpoint, the main-reflector scattered energy from striking the
subreflector surface while providing a uniform-phase aperture
distribution. A closed-form design procedure (starting from rel-
evant geometrical parameters) and the GO aperture field are es-
tablished, in a unified way, for all possible configurations. The
formulation to be presented can be applied to determine the op-
timum classical geometry.

The next section introduces the basic parameters of the gener-
alized classical axially symmetric dual-reflector antennas. It is
shown that all possible configurations can be characterized into
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four distinct groups, according to the location of the subreflector
caustics. Starting from five relevant geometrical parameters, the
antenna closed-form design equations are derived in Section III.
The design procedure is of easy implementation and use, as it is
general and no transcendental equations are required. The GO
aperture-field distribution is obtained in Section IV. Although
the GO principles do not account for diffraction mechanisms,
the results are very useful for design purposes. From the GO
aperture fields, a parametric study is conducted in Section V in
order to determine the antenna geometries providing maximum
radiation efficiency. In Section VI, a case study is conducted to
demonstrate the design procedure, where the moment method
is applied to analyze the resulting antenna. This paper is con-
cluded in Section VII.

II. GENERALIZED CLASSICAL AXIALLY SYMMETRIC

DUAL-REFLECTORGEOMETRIES

There are four distinct types of classical axially symmetric
dual-reflector antennas that avoid the main-reflector scattering
toward the subreflector. Their generating curves and relevant pa-
rameters are depicted in Figs. 1–4. They are obtained from GO
concepts by imposing a uniform-phase field distribution over
the antenna aperture, starting from a spherical-wave feed source
at the antenna primary focus (point, the origin). The three-di-
mensional reflector surfaces are yielded by spinning the gener-
ating curves about the-axis (symmetry axis). At the
plane of Figs. 1–4, the basic geometrical parameters of the four
configurations are defined as follows. and are the main
and subreflector diameters, respectively. is the blockage di-
ameter, and the condition provides the subre-
flector clearance. and are the -coordinates of the main
and subreflector points corresponding to the feed principal ray,
respectively. is the focal length of the parabola generating the
main reflector, and 2and are the interfocal distance and ec-
centricity of the hyperbola or ellipse generating the subreflector,
respectively. is the subreflector edge angle andis the tilt
angle between the-axis and the axis of the subreflector gener-
ating conic section. and are the lower and upper angles
of the main reflector, respectively. Finally, the angledefines
an arbitrary feed-ray direction in the plane (such that

), with a corresponding main-reflector angle .
It is important to note that in this paper, positive (negative) an-
gular values correspond to counterclockwise (clockwise) angles
in the plane shown in Figs. 1–4.

The four classical configurations are basically characterized
by the location of the two subreflector caustic regions. One
caustic (a ring caustic) is located by the rotation of the parabola
focal point (point ) about the symmetry axis. The second
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Fig. 1. Basic geometry of the axially displaced Cassegrain configuration.

Fig. 2. Basic geometry of the axially displaced Gregorian configuration.

caustic (a line caustic) corresponds to the portion of the sym-
metry axis intersected by the subreflector reflected rays (point

). The first geometry (Fig. 1) has virtual ring and line caustics
and is classified here as an axially displaced Cassegrain (ADC).
This geometry was previously studied in [5] and named axially
tilted hyperbola (ATH). The second geometry (Fig. 2) has real
ring and line caustics and is defined as an axially displaced
Gregorian (ADG). The third geometry (Fig. 3) has a real ring
caustic and a virtual line caustic and is named axially displaced
ellipse (ADE) [6], [7]. It was previously studied in [5] under
the denomination axially tilted ellipse (ATE) and is also
known as the Yerukhimovichian configuration. Finally, the last
configuration (Fig. 4) has a virtual ring caustic and a real line
caustic and is denominated axially displaced hyperbola (ADH).
In all these configurations, the main reflector is generated by
a parabola, while the subreflector generating curve is either a
hyperbola (ADC and ADH) or an ellipse (ADG and ADE). The
feed is located at one of the hyperbola/ellipse foci (point) and
the parabola focus coincides with the other hyperbola/ellipse
focus (point ). For the ADC and ADH, the hyperbola can
be convex or concave , and

Fig. 3. Basic geometry of the axially displaced ellipse configuration.

Fig. 4. Basic geometry of the axially displaced hyperbola configuration.

yields a straight line. The basic parameters of the four antenna
configurations are summarized in Table I, where the parameter

is the -coordinate of the subreflector generating-curve
extreme .

The classical Cassegrain and Gregorian configurations [1] are
particular cases of the ADC and ADG, respectively, yielded by
taking the limit . The statement made in [5] about the
classical Gregorian geometry’s being a particular case of the
ADE (or ATE) is incorrect.

III. CLOSED-FORM DESIGN EQUATIONS

From the previous discussion and Figs. 1–4, the geometry
of a given generalized classical configuration is uniquely deter-
mined once the following parameters are established: the conic-
section parameters and 2 , the tilt angle , and the edge
angle (which ultimately defines the antenna aperture region).
So, five input parameters are needed and, for design purposes,
a suitable set is composed by and

, where is the total path length from the feed to the antenna
aperture (assumed at the plane ). Note from Figs. 1–4 that

2 is approximately equal to the distance between the main
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TABLE I
PARAMETERS OF THEGENERALIZED CLASSICAL GEOMETRIES

and subreflector surfaces (the antenna length). All expressions
to be derived in this section are valid for the four different con-
figurations as far as the sign convention previously adopted is
observed (see Table I).

To obtain the generating-curve parameters, the equations de-
scribing the conic sections are defined as follows. The parabola
generating the main reflector in Figs. 1–4 is described by

(1)

where is the distance from the parabola focal pointto
the main-reflector point . The conic section generating the
subreflector is described by

(2)

where is the distance from point to the subreflector point
, is the distance from point to , and the positive (neg-

ative) sign corresponds to the ellipse (hyperbola) conic section.
Starting from the five input parameters, the design process

first establishes the values of and (see Table I), then the
values of and , and finally the conic-section parameters
2 , and . From Figs. 1–4 one directly obtains

(3)

where, accordingly to Table I, the negative angleis either
or and is either or , depending on the adopted
configuration. From the same figures, the constant path lengths
associated with the principal-ray and the subreflector-
edge-ray directions are given by

(4)

(5)

respectively, where the negative angleis either or and
is either or (see Table I). Combining (3) and (4),

is obtained from

(6)

and, from (5), is then calculated as

(7)

To derive the remaining antenna parameters, one applies (2)
and the law of sines to the triangle in Figs. 1–4 to obtain

(8)

and also to the triangle to obtain

(9)

The combination of (8) and (9) yields

(10)

which can be trigonometrically manipulated to establish

(11)

where the quadrant ambiguity of is removed using Table I.
From (8) and (9), is then given by

(12)

The parameter is an important result in the design process,
as it indicates if the feed phase center is prohibitively close to
the subreflector vertex or, on the other extreme, behind the main
reflector. Although is not directly needed to obtain the de-
sired antenna parameters, it is a useful information and some-
times necessary to establish the initial condition of the differen-
tial equation to be solved in a GO shaping process [3]. At this
point, can be calculated from (3). Note that althoughis
always a positive quantity, may assume either positive or
negative values (see Figs. 1–4).

With the values of and established from (6), (7),
(11), and (12), respectively, the conic-section parameters are fi-
nally obtained. From (8) and (9), the interfocal distance 2and
the eccentricity of the conic section generating the subreflector
are given by

(13)

(14)

From Figs. 1–4 and (1) (with ), the parabola focal
length is then calculated

(15)

The commonly encountered classical Cassegrain and Grego-
rian configurations [1] can be directly obtained from the ADC
and ADG, respectively, by taking the limit in (3)–(15)
[8].
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An important issue concerning the antenna designer regards
the blockage effects. For the present antenna geometries, three
blockage mechanisms may be present (according to GO con-
cepts and not considering the blockage provided by the subre-
flector supporting structure): subreflector, feed, and self block-
ages. The subreflector blockage is characterized by the inci-
dence of main-reflector reflected rays upon the subreflector. It
is avoided when (see Figs. 1–4). The feed
blockage occurs when part of the subreflector reflected rays im-
pinges upon the feed structure, depending on the feed phys-
ical dimensions. The adopted formulation assumes a feed illu-
mination provided by a point source. Under this condition, the
feed blockage never occurs for the ADC and ADE (see Figs. 1
and 3, respectively). For the ADG and ADH, it is avoided pro-
viding that the subreflector real line caustic is located between
the primary focus (point ) and the subreflector vertex (point

). From Figs. 2 and 4, this is accomplished whenever

(16)

The self blockage refers to the intersection of rays reflected by
the subreflector lower (upper) half with the subreflector upper
(lower) half surface, which can only occur for the ADG and
ADH configurations (see Figs. 1–4). The geometric conditions
for the avoidance of such blockage mechanism are found in [8].

IV. GO APERTUREFIELD DISTRIBUTION

The basic antenna radiation characteristics (e.g., gain, effi-
ciency, radiation pattern, etc.) can be calculated from the GO
aperture field distribution. However, diffraction effects are ig-
nored by GO, and this might be a significant source of inaccu-
racy in all but reflector systems with very large electric dimen-
sions (where GO is the dominant effect). Besides the diffrac-
tion effects, the GO aperture field distribution also neglects the
direct feed contribution to the antenna radiation pattern, mul-
tiple bounces over the reflector structure, etc. In any event, for
antenna design purposes, the information contained in the GO
aperture distribution is very useful.

The GO field distribution over the aperture plane is obtained
from the geometries in Figs. 1–4 and from the corresponding
conic-section equations [(1) and (2)]. On doing so, one must
recall that Figs. 1–4 represent the reflector generating curves
in the plane—the three-dimensional configurations are
obtained by spinning these curves about the symmetry axis. The
feed spherical-wave radiation is assumed equal to

(17)

where is the electric field of the feed TEM radiation;
; and and are the spherical coordinates

associated with the feed system (such that , ac-
cording with the previously adopted angular notation). Equation
(17) allows the representation of most practical feeds, assumed
sufficiently away from the subreflector.

The aperture cylindrical coordinates and are defined
as usual. Using GO concepts and Figs. 1–4, one observes that,

after the reflection by the two surfaces, the feed electric field po-
larized in the positive (negative) -direction is mapped at the
aperture in the positive -direction, and the feed electric field
polarized in the positive (negative) -direction is mapped at
the aperture in the positive -direction for the ADC and ADE
(ADG and ADH) configurations. As the aperture field has a uni-
form phase distribution, the GO electric-field Cartesian compo-
nents and at the aperture plane are then given by

(18)

where is the Gouy phase shift [9] and is the ampli-
tude of the GO aperture fields. The relation betweenand
is obtained from

for the ADC and ADE
for the ADG and ADH

(19)

The Gouy phase shift is obtained by adding a 2 phase
shift each time the ray trajectory crosses a real caustic [9]. From
Figs. 1–4, one then has

for the ADC
for the ADE and ADH
for the ADG

(20)

The amplitude is obtained using GO concepts, with
the help of (1), (2), and Figs. 1–4. The expressions to be derived
are valid for all the generalized classical antennas, as long as one
observes the previously defined sign convention (see Table I).

is represented as [10]

(21)

where
distance between the primary focus and the
subreflector surface along the feed ray
(segment );
distance between the sub- and main-reflector
surfaces along the reflected ray (segment

);
and subreflector-reflected wavefront principal

radii of curvature at point (associated with
the ring and line caustics, respectively).

and are positive (divergent wave) or negative (conver-
gent wave) if the corresponding caustics are virtual or real, re-
spectively. The absolute values of and are given by the
lengths of and , respectively. From Figs. 1–4 and (2), the
distance is given by

(22)

and the principal radius of curvature is given by

(23)
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Note that (23) already takes into account the correct sign of
for the different classical geometries. The distance
corresponds to the length of , which is given by (1) as

(24)

Applying the law of sines to the triangle in Figs. 1–4, the
principal radius of curvature is given by

(25)

noticing that is a negative angle. Similarly to in (23),
this equation already accounts for the sign of. The distance

corresponds to the length of and is obtained
from (1) and by applying the law of sines to the triangle

(26)

In order to eliminate from (24)–(26), one uses the following
relation, obtained from Figs. 1–4 and (2)

(27)

Finally, the substitution of (22)–(27) into (21) yields, after
straightforward algebraic manipulations, the desired expression
for of (18)

(28)

where

(29)

(30)

(31)

(32)

The relation between and , obtained from (1) and (27), is
given by

(33)

where

(34)

Note that the correct sign of is already taken into account by
(33).

V. CONFIGURATIONS FORMAXIMUM EFFICIENCY

In this section, a parametric study is conducted to determine
the geometries providing maximum radiation efficiency, based
on the GO aperture distribution derived in the previous sec-
tion. The feed is modeled as an-polarized circularly symmetric
raised-cosine feed (RCF) [11], in which case (18) reduces to [8]

(35)

where the parametercontrols the circularly symmetric pattern
of the RCF model. Instead of characterizing the RCF from,

(a)

(b)

Fig. 5. ADC (a) maximum efficiencies� and (b) corresponding feed tapers.
F : ` =D = 0:5 (solid lines), 1 (dashed lines), and 2 (dash-dot lines).

it is preferable to define its far-zone taper toward ,
given by

(36)

The antenna radiation efficiencyis calculated from

(37)

where is the antenna boresight gain calculated from the
far-zone radiation of the GO aperture distribution given by (35)
and accounting for the total feed power [11]. Due to the GO con-
cepts used to derive (35), the efficiencyis identical for sim-
ilar antennas when the same feed illumination is applied [11].
An antenna is considered similar to another if they only differ
by a scale factor. Under a GO perspective, it is then possible to
study the efficiencies of different geometries using any one of
the antenna linear dimensions as a normalization factor (in this
work, is this factor). So, the efficiency of a desired gen-
eralized classical configuration is obtained once the values of

and are specified.
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(a)

(b)

Fig. 6. ADG (a) maximum efficiencies� and (b) corresponding feed tapers.
F : ` =D = 0:7 (solid lines), 1 (dashed lines), and 2 (dash-dot lines).

In order to provide the maximum illuminated aperture area,
is always assumed equal to . The parametric study is

performed by varying the values of
and .

For each triplet, the values ofand (yielding the maximum )
are then obtained. The resultingvalues and the corresponding

values are shown for the ADC (Fig. 5), ADG (Fig. 6), ADE
(Fig. 7), and ADH (Fig. 8) configurations.

The efficiencies of the ADC and ADG approximately have
the same behavior (Figs. 5 and 6, respectively). Their max-
imum values are about 83%, occuring when
and dB. These results come as no surprise as, for
small values, the geometries approximate the classical
Cassegrain and Gregorian configurations, respectively. So, ap-
plying the equivalent-paraboloid principle, the maximum

% with dB is expected [11]. As explained at the
end of Section III, feed and self blockages may occur for the
ADG. It was observed that in the adopted ranges of
and , the self blockage is only avoided for .

(a)

(b)

Fig. 7. ADE (a) maximum efficiencies� and (b) corresponding feed tapers
F : ` =D = 0:5 (solid lines), 1 (dashed lines), and 2 (dash-dot lines).

As the value of is increased, feed blockage becomes the
concern. In Fig. 6, the contour lines are abruptly interrupted in
the regions where the feed blockage is at play. From this figure,
when , the feed blockage appears for small values of

and large values. For , this blockage
mechanism occurs whenever .

The ADE and ADH provide maximum efficiencies around
91% (see Figs. 7 and 8, respectively), somewhat higher than
those obtained by the ADC and ADG. This is due to the con-
verse of the feed energy redistribution in the aperture plane [5].
The results indicate thatis improved as , which
permits the use of relatively small subreflectors without com-
promising the antenna performance. Furthermore, these high
efficiencies are obtained in conjunction with large values of

, which indicates that reduced forward spillover can also
be attained. However, the self and feed blockages are of great
concern for the ADH configuration. In the present ranges of

and , the self blockage stops to occur only when
(only the results for and are shown
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(a)

(b)

Fig. 8. ADH (a) maximum efficiencies� and (b) corresponding feed tapers
F : ` =D = 1 (dashed lines) and 2 (dash-dot lines).

in Fig. 8). The feed blockage is always present when
and the contour lines in Fig. 8 are interrupted whenever this
blockage is in action.

VI. ADH CASE STUDY

To demonstrate the design procedure of the present antennas,
the novel ADH configuration (see Fig. 4) is adopted. The re-
sulting dual-reflector antenna is analyzed by the method of mo-
ments (MoM) [8] to establish the diffraction effects to the an-
tenna efficiency (which are not considered in the previously
presented theory). is set equal to 100 . Although the re-
sults of Fig. 8 indicate that higher efficiencies are obtained for
smaller subreflectors, to minimize the ef-
fects of the subreflector diffraction. To avoid blockage mech-
anisms, and (see Fig. 8, noting that

for the ADH). From Fig. 8, a maximum efficiency
% is expected with dB [ from (36)].

The antenna excitation is provided by a linearly polarized

(a)

(b)

Fig. 9. ADH configuration withD = 100� ;D = D = 15� ; � =

�15 ; ` = 100� ; andF = �21:5 dB: (a) geometry and (b) MoM radiation
pattern.

improved raised-cosine feed model (IRCF). The IRCF correctly
accounts for the near- and far-zone electromagnetic behavior of
the feed, departing from an initial RCF model [12]. The adopted
IRCF has parameters and ,
according to (36) and [12].

From the above input parameters, the values of

and
are obtained from (6), (7), (11), (12), (3), and

(13)–(15), respectively. The resulting antenna is depicted in
scale in Fig. 9(a). To avoid diffraction from the main-reflector
internal rim (see Fig. 4), its surface is extended toward the
symmetry axis (using its generating parabola). From Fig. 9(a),
one observes that the reflected rays departing from the sub-
reflector rim almost intersect the antenna primary focus.
However, this does not arouse great concerns regarding feed
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blockage, as the corresponding reflected field is highly tapered
( dB). The antenna radiation pattern (obtained
from the MoM analysis, including the IRCF rediation) in the
diagonal plane is shown in Fig. 9(b). The antenna gain is 48.96
dBi, corresponding to a radiation efficiency of 79.7%, which
is approximately 9% smaller than the result of Fig. 8(a) due to
the diffraction effects. The cross-polarization peak is 2.9 dBi
at , corresponding to a large polarization isolation of
about 46 dB. The copolarization gain at is about 2
dBi, corresponding to an expectedly small feed spillover.

VII. CONCLUSION

This paper presented, in a generalized way, all possible
classical axially symmetric dual-reflector antennas providing
a uniform-phase aperture distribution from a spherical-wave
point source located at the antenna primary focus. These
antennas are characterized into four distinct configurations: the
axially displaced Cassegrain, Gregorian, ellipse, and hyper-
bola. Useful closed-form design equations and aperture-field
expressions were uniformly derived for all configurations
from geometrical optics concepts. These expressions were
then used in a parametric study to establish the conditions
for maximum radiation efficiency. It was found that the ADC
and ADG can provide, without considering any diffraction
effects, efficiencies up to 84%, while the ADE and ADH can
reach efficiencies beyond 90% with reduced feed spillovers
and relatively smaller subreflector diameters. The design
procedure was exemplified with the novel ADH configuration
and its radiation characteristics further analyzed by the moment
method for the sake of completeness.
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