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Introducao a Transformada de
Laplace



A Transformada de Laplace (TL)

« TL: técnica para analise de circuitos de parametros

concentrados

 Facilita a analise de circuitos com elevado numero

de nds e/ou de malhas



A Transformada de Laplace em
Circuitos Elétricos

Determinar a resposta transitoria de circuitos;

Encontrar a funcao de transferéncia: descricao da resposta em
regime permanente;

Relacionar os comportamentos de um circuito nos dominios do
tempo e da frequéncia;

Transformar um conjunto de equacoes integro-diferenciais
(tempo) em equacoes algébricas (freqléncia).



A Transformada de Laplace Bilateral

A Transformada de Laplace Bilateral da funcio f(t) € dada por:

0.0)

LIF )] = f F(O)etdt

Representagéo alternativa: ~ F(s) = L[f(t)]

Ou seja, a TL é uma funcao da variavel s.

Dominio da

Dominio do tempo Transf. Laplace frequidncia




A Transformada de Laplace Unilateral (TLU)

A Transformada de Laplace Unilateral da funcao f(t) € dada por:

F(s) = LIF(0)] = jo F(Detdt

* A TLU envolve uma integral impropria
« Condicao de existéncia da TL: a integral tem de convergir

« Fungoes sem TL.: i, exp(t?)



A Transformada de Laplace Unilateral (TLU)

A Transformada de Laplace Unilateral da funcao f(t) € dada por:

F(s) = LIF(0)] = jo F(Detdt

« ATLU “ignora” informacgoes para t<0

* O que ocorre antes de t=0 é “traduzido” nas condic¢des iniciais.



A Transformada de Laplace Unilateral (TLU)
F) = LIFO) = [ f@ede
0

« Se houver uma descontinuidade na origem?
 [imite inferior 0O+: exclui a descontinuidade
e [imite inferior O-: inclui a descontinuidade

f(1) f (1)
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A funcao degrau

Ku(t) =0, =<0,

Ku(t) = K, = 0.

J(0)

K

()

» Descontinuidade na origem (t=0)=> e.g.: chaveamento

* Se K=1: funcao degrau unitario



A funcao degrau

Ku(t) =0, t<< 0,
Ku(0) = 0,5K.

aul(t) = K, = 0.
f (1)
K
0.5 K |-

[
0~ 0*

» Assume-se transicao linear de 0. para 0,.



A funcao degrau deslocada

« Degrau ocorrendo em t=a (a=>0):

Ku(t-a) =0, t<a,
Ku(t - a) =K, t > a.
f(1)

K

0! a



A funcao degrau

* Funcao igual a K para t<a (a>0):

Ku(a -t) =K, t<a,
Ku(a-1t) =0, t > a.
i)
K

U a



Outras funcoes




Outras funcoes

f()
« Pode-se formar outras funcoes

a partir da funcao degrau:

f(t) =

(=2t+Du(t—1)—u(t—3)] +

(2t = 8)[u(t —3) —u(t —4)]




Outras funcoes

» Pode-se formar outras funcoes
a partir da funcao degrau:

f(t) =2tlu(t) —u(t — 1] +

(2t = 8)[u(t —3) —u(t —4)]

f)

0

1)




Outras funcoes

» Pode-se formar outras funcoes
a partir da funcao degrau:

f(t) =2tlu(t) —u(t — 1] +

(=2t+Du(t—1)—u(t—3)] +

fin)

0




A funcao impulso (ou Delta de Dirac)
Quando ha descontinuidade finita em f(t), a Y
derivada nao € definida no ponto de
descontinuidade.

()

A funcao impulso permite definir a derivada em uma
descontinuidade =» permite definir a TL dessa derivada.



“Caracteristicas” da funcao impulso

» Possui amplitude infinita e duracao zero
* Nao existe na natureza

» Modelo matematico se aproxima de alguns casos
praticos

e.g.: operagoes de chaveamento e excitacao com
fontes impulsivas



Derivada de uma funcao em uma descontinuidade

—€

f(1)

1,0

0.5

f(0)

« Assume-se variacao
linear na descontinuidade:
derivada=1/2 €

« Quando €—0, ocorre
descontinuidade abrupta
em t=0.

« Quando e—0, f'(t) —

* A area sob a curva A;
permanece constante
(igual a 1, neste caso)



A funcao impulso

N » Quando €—0, '(t)
aproxima-se de um
R impulso unitario, d(t)

—a b f'(0) — o(t), quando €—0

« Quando A#1, a funcéo impulso é denotada por Ka(t),
onde K é a area ou intensidade da funcao impulso.



A funcao impulso
» Pode ser obtida a partir de uma funcao de parametro €
gue apresenta as seguintes caracteristicas, quando €—0:
« a2 amplitude tende a infinito;
 a duracao tende para zero;

 a area sob a fungao permanece constante.

« Ha muitas funcoes que apresentam esta caracteristica.



A funcao impulso: definicao
A funcao impulso € matematicamente definida por:

J_O:OKS(t)dt =K

6(t)=0, t+0

 Impulso que ocorre em t=a € denotado por K §(t-a)

r(0)
|

(K) (K)

0! a



Propriedade de amostragem do impulso

J@)s(t — a)dt = f(a)

Decorre de: 5(t—a)=0, t+a
S(t—a)=1, t=a



A Transformada de Laplace da impulso

* Propriedade de amostragem do Impulso:

f (t)o(t — a)dt = f(a)

 Esta propriedade nos permite determinar a TL do impulso:

F{o(t)} = / S(e ™ dt = / o(t)dt = 1
JO JO



Derivada do impulso

* A funcdo f(t) gera um (1)

iImpulso quando €—0: | /e

—e €

» Derivada da fungao -
geradora do impulso |/€*
(doublet):

d'(t), quando €—0




TL da derivada do impulso

f'(1)
|— ll,-'ffz
|
|

—€ 3
_],,-'62 I—
 Calculando a TL de f'(t):
0 { € I
L{&'(t)} = lim|:/ —e 'dt + / (——Je‘”d{|
e—0 — € 0* =
— lim € + e — 2 Aplicando L'Hopital
e—() S€Ee” /
e ) 5 =
, XET—EE™ . 5%€* + s°e ¢
= |lim = lim =5

e—0 2€S e—0 2s



TL da derivada n-ésima do impulso

« Pode ser obtida de forma semelhante ao
procedimento realizado para a primeira derivada:

PLE(D) } =



Relacao entre degrau e impulso unitario

« A funcao impulso pode ser considerada a derivada

da funcao degrau: Tu(t
¢ g 5(1) = dz(;il‘)

Aproxima-se de uma
funcao degrau unitario
qgquando €—0

Aproxima-se de uma
funcao impulso unitario
, quando €—0

—e () €



Transformadas Funcionais



Transformada de Laplace do
Degrau unitario

Plu(t)} = / f(t)e™ dt

)



Transformada de Laplace do
Degrau unitario

» X

Plu(t)} = f(t)e™'dt = / le"dt

JUO "l
—S1 | oC
1

—5 |o* §




Transformada de Laplace da funcao
exponencial decrescente

F(s) = LIF(D)] = fo F(O)e—stdt

2 0
Fle ™} = / e e dt
JOF

f(1)

1.0

0




Transformada de Laplace da funcao
exponencial decrescente

F(s) = LIF(D)] = fo F(O)e—stdt

o K] o X 1
F{e ™™} = / e e dr = / e ATy =
JOT ()

+ S+ a

f(1)

1.0 =

0



Transformada de Laplace do seno

co

L[senwt] = | (senwt)e Stdt
o-

f(r)

1.0

0

—1,0 —




Transformada de Laplace do seno

00 00 eja)t _ e—jwt
L[senwt] = j (senwt)e Stdt = j < , )e‘“dt
0~ 0- 2]

00 e—(s—ja))t — e_(5+ja))t 1 1 1
=j - dt = ( . : )
o- 2j 2j\s —jw s+ jw

w

2 4 2
f(r)

1.0

—1,0 —




Tabela de Transformadas

Tipo f(®)(E>07) E(s)
(impulso) o(t) 1
1
(degrau) u(t) N
1
(rampa) t =
2
. e r l
(exponencial) e S+ g
w
(seno) sen it & 4 3
s
(co-seno) cos ot > 5
s + o
. , 1
(rampa amortecida) te (s + a)’
w
(seno amortecido) e “sen wt

(s + a)* + &’

s+ a
(S—+-a)3+a)2

(co—seno amortecido) e cos wt




Propriedades da Transformada
de Laplace
(“Transformadas Operacionais”)



Multiplicacdo por uma constante

F(s) = LIF(D)] = jo FDetdt

Se PIF(H)} = F(s),
entao
PIK (D)} = K F(s).



Adicao (subtracao) no dominio do tempo

F@>=Lv@n=j;fawﬂ%u

Se P, (1)} = Fy(s),

entao



Diferenciacao

» Diferenciar no tempo corresponde a multiplicar F(s)
por s e subtrair o valor inicial:

oA\ 0
_f,{ o }SF(S) £(07)

Ou seja, a diferenciagcao no tempo reduz-se a uma
subtracao na freqténcia.



Diferenciacao

- Demonstragéo: {df(f)} i /‘“W_eﬂdf.
J O

* Integrando por partes: u=est e dv=df(t)

”f{df(t)} = ¢ "'f (1) . / f(t)(—se*dt).
dt o~ Jo

» Assumindo que a Transformada existe, entdo: est(t)=0
para t=°:

—f(07) +s oof(t)e_“ dt = sF(s) = f(07)
o-




Transformada da Derivada de
segunda ordem

* Desejamos calcular:  d?f(t)
dt?

« Vamos tomar a 12 derivada de f(t): (1) = M

dt

» A Transformada de Laplace de g(t) € dada por:

G(s) =sF(s) — f(0 )



Transformada da Derivada de
segunda ordem

df(1)

g(t) = 7

2
- Mas desejamos: 290 _ 47/ (1)

dt dt?

-, ) dg(t) d’ f() _______ B
20} {59} - -

ero\ L. o df(0)
{ 172 }—SF(S) sf(07) 0




 TL da

by 74

Transformada de Laplace da
Derivada de ordem n

Derivada de ordem 2:

(d*f (1) df(07)
| B _ SF(07) |

| dr } SF(s) — sft di

 TL da Derivada de ordem n:

¥ 4

drll

A" f .
f(f)} _ S”F(S) o Su—]f(()—) — N2

L d*f(07) d" £ (07)
S = 7 - L . — —




Integracao

« TL da Integral:

(f:’{[)f(x)dx} = [

* Integrando por partes:

¥ { /.f(x)dx}




Integracao

* Integrando por partes: 0




Deslocamento no tempo

F(s) = LIF(D)] = fo F(O)e—stdt

2 (X

F{({t — a)u(t — a)} = / u(t — a)f(t — a)e ™ dt

0

« Como u(t-a)=0 para t<a:

Pt — a)u(t — a)} =




Deslocamento no tempo

F{({t — a)u(t — a)} = / f(t — a)e™dt
 Mudando a variavel de integracao: x=t-a (t=x+a)
LIf(t —a)u(t —a)] = J f(x)e S+ dy = e‘SaJ f()e™* dx
0 0

* Logo:
LIf(t = a)u(t —a)] = e™*F(s)



Deslocamento na frequéncia

* O deslocamento na frequéncia corresponde a uma
multiplicagcao por uma exponencial no tempo:

F{e*f(t)} = F(s + a)

Demonstrar...



Mudanca de escala

F{f(at)} = lF(i) a > 0.

a a

Demonstrar...



Usando as propriedades da TL

S
s2 + w?

» Sabendo que

L[cos wt] =

* E, dada a propriedade do deslocamento na frequéncia:

F{e“f(t)} =F(s +a)

e Temos: at s+a
Lle ™ cos wt] = > >
(s+a)+w




Propriedades da TL

Operacio ft) F(s)
Multiplicagdo por uma constante Kf(t) KF(s)
Adicdo/subtracdo filf) + () — fi(f) +... fi(s) + fi(s) — fi(s) +...
. - df(t) L
Derivada de primeira ordem (tempo) 7 sF(s) — f(07)
d*f (1) ) . df ()
Derivada de segunda ordem (tempo) e s F(s) — sf(07) — ar
d"f(t df (0~
Derivada de ordem n (tempo) [;;E ) s"F(s) — s"7HF(07) — 5”"2%
L B A ()
drz drn—l
ol ‘ F(.S']
Integral em relagdo ao tempo j f(x)dx S
0

Deslocamento no tempo fit—a)u(t —a),a>0 e~ F(s)
Deslocamento na freqiiéncia e f(t) F(s + a)

1 (s
Mudanga de escala flat),a>0 EF(E)

dF(s)
Derivada de primeira ordem (em s) tf (t) s
d"F

Derivada de ordem » (em s) " f(1) (—=1)" (5)

.f 0
Integral (em s) % / F(u)du




Aplicacao da TL a analise de

circuitos
Nao ha ? " ¢ ©
energia inicial e
armazenada e ‘%& R § 5 C—~
no circuito
¥ & ® &

« Descrevemos o circuito por meio de uma equacao
integro-diferencial em v(t) (equacao nodal):

(1) ; Cd o(t) ;
» LL v(x)dx + P u(t)




Aplicacao da TL a analise de
circuitos

Abertura da chave=degrau de corrente

() dv(t)
- L/ﬂ o(x)dx + €=




Aplicacao da TL a analise de
circuitos

® ® ® ®
lQb N/ R% LE C
» ® ®

« Transformar a equacao para o dominio da frequéncia:
equacao algebricaem s

(1) . 1 dvo(t)

1
— dx + C——— = [__.u(t

L 4




Aplicacao da TL a analise de
circuitos

® & & ®
lQb Ve RS LE Co
& & L @

Transformar a equacao para o dominio da frequéncia:
equacao algebricaem s

o) 1 [ dv(r)
S 4+ EL v(x)dx + CT = [ .u(t)
V}(;) N iViS) + C[sV(s) — v(0)] = Icc(é)



Aplicacao da TL a analise de circuitos

. i . 4 L 4 $ L J
Nao ha _
energia inicial / | -

. RS L3
armazenada « \4_ T
no circuito
L 2 L L 4 ®

Resolvemos a eq. Algébrica (v.(07)=0):

_ 0 _
6 LYO) L vy - -1 = gw(i)
R L s §

(1 1 I..
V(s)(R + T + SC) =
I../C
s+ (1/RC)s + (1/LC)

V(s) =



Aplicacao da TL a analise de circuitos

® & & ®
lQb Ve R L3 C=R
& & L @

e (Calcular a Transformada Inversa de Laplace para
obter v(t) a partir de V(s):

I /C
s> + (1/RC)s + (1/LC)

Vi(s) =

« Verificamos a validade da expressao no dominio do
tempo.



