OFICINA DE SIMULAÇÃO DE SISTEMAS DINÂMICOS - PC3

Entrega na sala de aula no dia 25/10/11

Exercício 1. Considere a EDO abaixo que descreve um sistema mecânico tipo massa-mola-amortecedor cuja mola possui característica cúbica:

$$m\ddot{x} + b\dot{x} + kx + k_1x^3 = f$$

Linearize o sistema em torno do ponto de operação \bar{x} e obtenha a função de transferência entre ΔX e ΔF . Indique o valor de \bar{f} em função de \bar{x} .

Exercício 2. Considere a EDO abaixo que descreve um sistema mecânico sujeito a um atrito não-linear e a uma força f:

$$m\ddot{x} + b\dot{x}|\dot{x}| = f$$

Linearize o sistema para o ponto de operação com velocidade constante $\dot{\bar{x}}$ e obtenha a função de transferência entre ΔX e ΔF . Indique o valor de \bar{f} em função de $\dot{\bar{x}}$.

Exercício 3. Considere a EDO abaixo que descreve um braço robótico de duas juntas:

$$I\ddot{\theta}_1 + mgl \operatorname{sen}\theta_1 + k(\theta_1 - \theta_2) = 0$$

$$J\ddot{\theta}_2 - k(\theta_1 - \theta_2) = f$$

Linearize o sistema para o ponto de operação $\bar{\theta}_1 = \pi/4$ e obtenha a função de transferência entre $\Delta\Theta_1$ e ΔF . Quais devem ser os valores correspondentes de $\bar{\theta}_2$ e \bar{f} ? Dica: Para obter a função de transferência, resolva o sistema linear de duas equações após aplicar a transformada de Laplace.

Exercício 4. Considere a EDO abaixo que descreve um pêndulo invertido com ângulo θ montado sobre um carrinho com posição p:

$$(M+m)\ddot{p} - ml\ddot{\theta}\cos\theta + ml\dot{\theta}^2 \sin\theta = f$$

$$l\ddot{\theta} - g \sin\theta = \ddot{p}\cos\theta$$

Linearize o sistema para o ponto de operação $(\bar{\theta},\bar{p})=(0,0)$ e escreva suas equações na forma

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

em que $x = [\Delta \theta \ \Delta \dot{\theta} \ \Delta p \ \Delta \dot{p}]^T, \ u = \Delta f \ e \ y = \Delta \theta.$

Use os comandos s
s e tf do Matlab para obter a função de transferência entre
 $\Delta\Theta$ e ΔF para $M=1,\,m=0.1,\,l=1$
eg=9.8.

Exercício 5. Considere o sistema dinâmico a tempo discreto abaixo:

$$x_1[k+1] = \sqrt{x_2[k]}$$

 $x_2[k+1] = x_1[k] + f[k]$

Encontre seu ponto de equilíbrio quando $f[k]=2, \forall k,$ linearize o sistema em torno desse ponto e escreva-o na forma

$$x[k+1] = Ax[k] + Bu[k]$$
$$y[k] = Cx[k] + Du[k]$$

em que $x = [\Delta x_1 \ \Delta x_2]^T, \ u = \Delta f$ e $y = \Delta x_1.$

Use os comandos s
s e tf do Matlab para obter a função de transferência entre Y e
 U (use tempo de amostragem 1).

Exercício 6. Calcule a função de transferência de V_s para V_o para o circuito abaixo e indique como você usaria o comando tf para definir essa função de transferência no Matlab a partir de seu numerador e denominador.

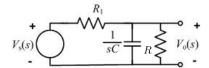


FIGURA 1. Filtro passa-baixas