Universidade Federal de Minas Gerais - Programa de Pós-Graduação em Engenharia Elétrica

EEE945 - INTRODUÇÃO AOS PROCESSOS ESTOCÁSTICOS

FINAL PROJECT PROPOSAL

Instructors: Alexandre R. Mesquita and Eduardo M. A. M. Mendes

Consider the following model for the price S_k of some security:

$$\begin{split} S_{k+1} &= \mu S_k + S_k \sqrt{\nu_k} w_k \\ \nu_{k+1} &= \alpha \nu_k + (1-\alpha) \bar{\nu} + \sqrt{\nu_k} v_k \end{split}$$

where ν_k is the stochastic volatility, w_k and v_k are i.i.d. normal random variables, and the parameters $\mu > 1$, $\alpha < 1$, $\bar{\nu} > 0$ are known. The prices S_k are observable but the volatility ν_k and the noises w_k and v_k are not. Simulate this model for a set of parameters of your choice in order to generate a set of observations $\{S_k\}_{k=0}^N$. Next, apply some particle filter algorithm to estimate the stochastic volatility from the observations. Examples of particle filters may be found on Section VI of the reference below.

CHEN, ZHE, Bayesian filtering: From Kalman filters to particle filters, and beyond, Statistics, vol. 182, number 1, pp. 1 – 69, 2003.