Universidade Federal de Minas Gerais - Programa de Pós-Graduação em Engenharia Elétrica

EEE945 - INTRODUÇÃO AOS PROCESSOS ESTOCÁSTICOS

Homework 3

Instructors: Alexandre R. Mesquita and Eduardo M. A. M. Mendes

Note: You must hand in all simulation codes.

Problem 1. Consider the Markov process with the generator matrix

$$A = \begin{bmatrix} -10 & 1 & 9 & 0 & 0 \\ 0 & -2 & 0 & 0 & 2 \\ 6 & 0 & -8 & 2 & 0 \\ 0 & 3 & 0 & -3 & 0 \\ 0 & 0 & 0 & 3 & -3 \end{bmatrix}$$

Draw its graph representation and find its transition matrix P_t and its invariant probability distributions. *Hint:* Use diagonalization or Cayley-Hamilton's theorem to compute matrix exponentials. Alternatively, you may use Matlab's symbolic math toolbox.

Problem 2. For the process above, find the expected time before it leaves the set $\{0, 1\}$.

Problem 3. Consider the Markov process on $\{1, 2, \ldots, 6\}$ with generator matrix

	0	0	0	0	0	0]
A =	2	-4	2	0	0	0
	0	1	-2	1	0	0
	0	0	0	-1	0	1
	0	0	0	1	-1	0
	0	0	0	0	5	-5

- (1) Draw its graph and identify its communicating classes.
- (2) Identify its recurrent and transient classes.
- (3) Is this process irreducible?
- (4) Find its ergodic invariant probability distributions and identify their support.
- (5) Identify the period of each ergodic class.
- (6) Find the time average of $f(X_t) = X_t$ for $X_0 = 6$?

Problem 4. Simulate the Michaelis-Menten model presented in class. Derive the ODEs for the concentration of species, simulate them and compare with the stochastic simulation.

Problem 5. Consider a queue with arrival rate λ , service rate μ and a maximum size 8. When the queue is at its maximum size, newly-arrived objects are discarded. Simulate this queue and obtain its stationary distribution (from simulation) for

- a) $\lambda = 2$ and $\mu = 1$;
- b) $\lambda = 1$ and $\mu = 2;$
- c) $\lambda = 1$ and $\mu = 1$.