Universidade Federal de Minas Gerais - Programa de Pós-Graduação em Engenharia Elétrica

EEE945 - INTRODUÇÃO AOS PROCESSOS ESTOCÁSTICOS

HOMEWORK 4

Instructor: Alexandre R. Mesquita and Eduardo M. A. M. Mendes

Problem 1. Define a hidden Markov model of your choice with a 6×6 transition matrix A and a 6×4 observation matrix B. Simulate this model in order to obtain an observation sequence Y_{0}^{100}. Apply the forward-backward algorithm, Viterbi's algorithm and the Baum-Welch algorithm to this data set. In your solution, compare the filtered states with the real ones known from simulation.

Problem 2. Consider the Markov chain on \mathbb{R} given by:

$$
X_{n+1}=a X_{n}+W_{n}
$$

where $a<1$ and $\left\{W_{n}\right\}_{n=0}^{\infty}$ are i.i.d. with $W_{n} \sim \gamma(w), \gamma(w)>0$ on $(-1,1)$ and $\mathrm{E}\left[W_{n}^{k}\right]<\infty$. Using the Foster-Lyapunov theorem, show that X_{n} is positive recurrent and that its k-th moment is bounded.

