
1

Jump Control of Probability Densities with

Applications to Autonomous Vehicle Motion

Alexandre R. Mesquita,Member, IEEE, and Jõao P. Hespanha,Fellow, IEEE

Abstract

We investigate the problem of controlling the probability density of the state of a process that is

observed by the controller via a fixed but unknown scalar non-negative function of the state. The goal

is to control the process so that its probability density at apoint in the state space becomes proportional

to the value of the function observed at that point. Our solution, inspired by bacterial chemotaxis,

involves a randomized controller that switches among different deterministic modes. We show that

under appropriate existence conditions, this controller guarantees convergence of the probability density

to the desired function. The results can be applied to the problem of in loco optimization of a mea-

surable signal using a team of autonomous vehicles that measure the signal but do not have access to

position measurements. Alternative applications in the area of mobile robotics include deployment and

environmental monitoring.

Index Terms

Piecewise-deterministic Markov processes, mobile robotics, hybrid systems

I. INTRODUCTION

This paper addresses the control of a Piecewise-Deterministic Markov Process (PDP) through

the design of a stochastic supervisor that decides when switches should occur and to which mode

to switch. In general, the system’s statex cannot be measured directly and is instead observed
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through a scalar non-negative outputy = g(x), whereg(·) is unknown to the controller. The

control objective is to achieve a steady-state probabilitydensity for the statex that matches the

unknown functiong(·) up to a normalization factor.

We were motivated to consider this control objective by problems in the area of mobile

robotics. In this type of application,x typically includes the position of a mobile robot that

can take point measurementsy = g(x) at its current location. Indeployment applications, a

group of such robots is required to distribute themselves inan environment based on the value

of these measurements, e.g., the measurements may be the concentration of a chemical agent

and one wants the robots to distribute themselves so that more robots will be located in areas of

higher concentration of the chemical agent. Insearch applications, a group of robots is asked to

find the point at which the measurement has a global maximum (or minimum), in which case

one wants the probability density function ofx to have a sharp maximum at the pointx where

g(x) is maximum (or minimum). These applications are often referred to as “source seeking”

motivated by scenarios in which the robots attempt to find thesource of a chemical plume,

where the concentration of the chemical exhibits a global maximum. Finally, in monitoring

applications, one attempts to estimate the value of a spatially-defined function by keeping track

of the positions of a group of robots whose spatial distribution reflects the spatially-defined

function of interest (much like in deployment applications). Potential applications for this work

thus include chemical plant safety, hydrothermal vent prospecting, pollution and environmental

monitoring, fire or radiation monitoring, etc.

The control algorithms proposed here are motivated by the chemotactical motion of the

bacteriumE. coli. Due to its reduced size,E. coli is unable to perceive chemical spatial gradients

by comparing measurements taken by different receptors on the cell surface. Nevertheless, this

organism is still able to follow the gradient of a chemical attractant, despite the rotational

diffusion that constantly changes the bacterium orientation. This is accomplished by switching

between two alternate behaviors known asrun andtumble[1], [2]. In the run phase, the bacterium

swims with constant velocity by rotating its flagella in the counter-clockwise direction. In the

tumble phase, by rotating its flagella in the clockwise direction, the bacterium spins around

without changing its position and in such a way that it entersthe next run phase with arbitrary

orientation. Berg and Brown [1] observed that the only motion parameter that is affected by
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the concentration of a chemical attractant is the duration of runs. Roughly speaking, the less

improvement the bacterium senses in the concentration of the attractant during the run phase,

the more probable a direction change (tumble) becomes. Sucha motion leads to a distribution

whose peak usually coincides with the optimum of the sensed quantity, much like the search

applications in mobile robotics mentioned above.

The parallel betweenE. coli’s chemotaxis and some search problems involving autonomous

vehicles is remarkable: In mobile robotics, gradient information is often not directly available,

either because of noisy and turbulent environments or because the vehicle size is too small to

provide accurate gradient measurements, challenges also faced byE. coli. This bacterium also

does not have access to global position information, which is analogous to the lack of position

measurements that arise in applications for which inertialnavigation systems are expensive, GPS

is not available or not sufficiently accurate (as in underwater navigation or cave exploration), or

where the vehicles are too small or weight-constrained to carry this type of equipment. These

observations led us to design a biologically-inspired control algorithm for autonomous vehicles,

namedoptimotaxis [3]. While mimicking chemotaxis is not a new solution to optimization

problems, see e.g. [4], [5], [6], [7], [8], optimotaxis is distinct in that we are able to provide

formal statements about the stationary density and the convergence to it.

In this paper, we show that the principles behind optimotaxis can be used in the much more

general setting of controlling the probability density function of a PDP through the design of

a stochastic supervisor that decides when switches should occur and to which mode to switch.

We establish necessary and sufficient conditions under which such a controller may exist and,

when these conditions hold, we provide a controller that guarantees the ergodicity of the desired

invariant density. As a consequence, the probability density of the PDP converges to the desired

invariant density in the Cesàro sense and results like the Law of Large Numbers apply. In

addition, we provide general results that have wide application in the study of ergodicity in

PDPs, beyond the specific control design problem addressed in this paper.

A substantial body of work related to the objective of controlling probability densities can

be found in the literature of Markov Chain Monte Carlo (MCMC)methods [9]. These methods

involve the design of a Markov chain whose stationary distribution is given by a known (but

usually hard to compute) function. Samples from the Markov chain are then used to estimate
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integrals associated with that function. MCMC is largely used in statistical physics and in

bayesian inference. According to the classification in [10], our approach can be regarded as

a dynamical/hybrid MCMC type method. In particular, thehit-and-run method [11] resembles

optimotaxis in that it also executes a piecewise linear random walk. The main difference between

our approach and traditional MCMC is that the latter is a numerical method whereas the former

is intended to be used in physical systems with dynamic constraints. In MCMC, for example,

a trajectory may have samples discarded in order to generatea new trajectory with the desired

distribution. However, this is not possible in trajectories originating from a physical system.

Our work may be related also with the field of reinforcement learning, specially with TD

or Q-learning where unknown value functions are identified using only local observations of

the cost function [12], and with the fields of Hidden Markov Models and particle filters, where

one seeks the convergence of conditional distributions. The idea of looking at the aggregate

distribution of multiple agents modeled as stochastic hybrid systems has also appeared in [13]

and subsequent works.

This paper is organized as follows: the description of the problem is given in Section II; the

existence and the design of controllers is discussed in Section III; Section IV presents results

concerning the convergence of the probability densities ofthe controlled process; examples are

given in Section V; conclusions and final comments are given in Section VI.

II. PROBLEM DESCRIPTION

We start by briefly describing the concept of Piecewise-Deterministic Markov Processes (PDP)

that is used in the paper. The reader is referred to [14] for a formal (and slightly more general)

definition. In a PDP, state trajectories are right continuous with only finitely many disconti-

nuities (jumps) on a finite interval. The continuous evolution of the process is described by

a deterministic flow whereas the jumps occur at randomly distributed times and have random

amplitudes.

We consider state variablesx ∈ R
d and m ∈ M, whereM is a compact set. During the

deterministic flows,x(t)1 evolves according to the vector fieldx 7→ f(x,m), whereasm(t)

remains constant and only changes with jumps. For a fixedm ∈ M, we denote byϕm
t x the

1We use boldface symbols to indicate random variables.
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continuous flow at timet defined by the vector fieldx 7→ f(x,m) and starting atx at time

0. The conditional probability that at least one jump occurs between the time instantss and t,

0 < s < t, givenx(s) andm(s), is

1− exp

(

−

∫ t

s

λ(ϕ
m(s)
τ−s x(s),m(s))dτ

)

, (1)

whereλ(x,m) is called thejump rateat (x,m) ∈ R
d ×M. At each jump,m assumes a new

value governed by thejump pdf Tx(·, ·). Namely, if a jump occurs at timeτ k, then

Pr
{

m(τ k) ∈ B | x−(τ k) = x,m−(τ k) = m
}

=

∫

B

Tx(m
′, m) ν(dm′) , (2)

where the superscript minus indicates the left limits of therespective processes,ν is a Borel

probability measure onM andB is a Borel set. We further assume that the spaceM is a compact

subset of a locally compact separable metric space and thatsupp ν = M. Note that, as opposed

to [14], we do not requireM to be countable. Under this more general setting, [15] showsthat

the above characterization defines a strong Markov process(x(t),m(t)).

This PDP model is captured by several stochastic hybrid system models that appeared in the

literature, including the stochastic hybrid models discussed in [16], or the general stochastic

hybrid models introduced in [17]. Fig. 1 depicts a schematicrepresentation of our PDP.

ẋ = f(x,m)

ṁ = 0

λ(x,m)

m ∼ T
x
−(·,m−)

Fig. 1. Hybrid automaton for the PDP

We definep(x,m, t) as the joint probability density of the state(x,m) at timet with respect

to the measureℓ× ν, whereℓ denotes the Lebesgue measure inR
d. We denote byL1(Rd ×M)

the space of real functions integrable with respect toℓ× ν. It is then true thatp ∈ L1(Rd ×M)

and
∫

Rd×M
p(x,m, t) ℓ(dx)ν(dm) = 1, ∀t ≥ 0.

In our setting, the vector fieldf is given andm(t) should be viewed as a control variable. The

controller cannot measure the statex directly; instead, an observation variabley(t) = g(x(t))
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is available. In general, the functiong is not known to the controller, which only has access to

y(t).

Assuming thatg is nonnegative and integrable, our objective is to design the jump rateλ

and the jump pdfTx such that a randomized controller will selectm(t) as a function of the

observations{y(τ); 0 ≤ τ ≤ t} collected up to timet so that the marginal
∫

M
p(x,m, t) ν(dm)

converges tocg(x) as t→ ∞, wherec is a normalizing constant such thatcg integrates to one.

We shall see later that the knowledge of the normalizing constantc is not necessary to implement

the proposed control law.

In practice,g is a chosen function of some physical measurementsF . For example, we can

selectg(x) = Q(F (x)), where the functionQ(·) is a design parameter used to guarantee that

Q(F ) is nonnegative and integrable. The functionQ(·) may also be used to accentuate the

maxima ofF . For example, if the physical measurement corresponds toF (x) = 1 − ‖x‖2, a

reasonable choice forQ(·) that leads to a nonnegative integrable function is

Q(F ) =

{

F , if F > δ

δeF−δ , if F ≤ δ
, (3)

for someδ > 0. Alternatively, if one is mainly interested in the positionof the maxima ofF (x),

a possible choice forQ(·) is given by

Q(F ) = F n , (4)

for somen > 1, provided thatF n is already nonnegative and integrable [if not one could

also useQ to achieve this, as it was done in (3) above]. The well-known optimization method

of simulated annealing arises from a similar objective whenn is increased to infinity along

consecutive iterations [18].

III. CONTROL DESIGN

In this section we provide a family of control laws that achieve our first objective: to make a

given probability density a stationary probability density for the PDP. Only in the next section we

will show convergence to this stationary density. In designing such controllers, a key auxiliary

result is the generalized Fokker-Planck-Kolmogorov equation that governs the evolution of

probability densities. A derivation of this equation may befound in [19, Sec. 3.4]. A more
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general treatment for stochastic hybrid systems is given in[20]. In the following, we use “∇x”

to denote differentiation with respect tox only. In this way,∇x · fp denotes the divergence of

fp with respect tox.

Assumption 1. It is assumed throughout the paper that

i. f and∇xf are continuous functions onRd ×M;

ii. there is no finite escape time for the differential equation ẋ = f(x,m) and only a finite

number of jumps occur in finite time intervals for the PDP(x(t),m(t)).

Theorem 1. A continuously differentiable pdfp(x,m, t) is a pdf for (x(t),m(t)) if and only if

it satisfies the following generalized Fokker-Planck-Kolmogorov equation:

∂p

∂t
+∇x · fp = −λp +

∫

M

Tx(m,m
′)λ(x,m′)p(x,m′, t)ν(dm′) . (5)

Proof: Necessity follows from [20, Cor. 6]. Sufficiency follows from (4) in [20] and

the fact that continuously differentiable functions separate the space of Radon measures, i.e.,

for two Radon measuresµ1 6= µ2 there exists a continuously differentiable functionϕ such

that
∫

ϕ dµ1 6=
∫

ϕ dµ2. Since PDPs do not have a diffusion component,p only needs to be

continuously differentiable instead of twice continuously differentiable as in [20].

Whenf(x,m) = m ∈ R
d, equation (5) is known as the linear Boltzmann equation and has an

important role in transport theory, where it models particles moving with constant velocity and

colliding elastically [21]. In this case, regardingp as the density of particles, (5) has a simple

intuitive interpretation: on the left-hand side we find a drift term ∇x ·mp corresponding to the

particles straight runs, on the right-hand side we find an absorption term−λp that corresponds

to particles leaving the state(x,m), and an integral term corresponding to the particles jumping

to the state(x,m). Equation (5) also appears in mathematical biology where itmodels bacterial

motion [22].

Equation (5) will be used in our control design to determine ajump rateλ and a jump pdf

Tx such that the joint invariant density of the process [which is obtained by setting∂p/∂t = 0

in (5)] corresponds to an invariant marginal distribution
∫

M
p(x,m, t) ν(dm) that is proportional
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to g(x). In fact, it will even be possible to obtain ajoint invariant distributionp(x,m, t) that

is independent ofm. For simplicity of presentation, in the sequel we assume that g has been

scaled so that it is a probability density:
∫

g(x) ℓ(dx) = 1. However, none of our results require

this particular scaling.

A. Controller Existence and Construction

We start with an analysis that gives necessary and sufficientconditions on the vector fieldf

for the existence of a jump control strategy that achieves the steady-state solutionp(x,m, t) =

h(x,m), ∀(x,m) ∈ R
d × M, t > 0, for a probability densityh(x,m) that integrates to1:

∫

Rd×M
h(x,m) ℓ(dx)ν(dm) = 1. We say thath is anadmissible invariant densityif there exists

a jump rateλ and a jump pdfTx such thath is an invariant density for the PDP.

Theorem 2. Given a continuously differentiable probability densityh(x,m) > 0, ∀(x,m) ∈

R
d × M, with ∇x · fh ∈ L1(Rd × M), a necessary and sufficient condition forh to be an

admissible invariant density is given by
∫

M

∇x · fh(x,m) ν(dm) = 0, ∀x ∈ R
d . (6)

Moreover, when this condition is satisfied, the PDP has the desired invariant densityh for the

uniform jump pdfTx(·, ·) ≡ 1, and the jump rate

λ(x,m) =
α(x)−∇x · fh(x,m)

h(x,m)
, (7)

whereα(x) can be any function for whichλh is nonnegative and integrable.

Proof: To prove necessity, assume thath is an invariant density and substitutep(x,m, t) =

h(x,m) in (5):

∇x · fh = −λh +

∫

M

Tx(m,m
′)λ(x,m′)h(x,m′)ν(dm′) . (8)

Recall that, sinceTx(·, m′) is a pdf,
∫

M
Tx(m,m

′)ν(dm) = 1. Using this fact, condition (6) is

obtained by integrating both sides of (8) onm and changing the order of integration on the

right-hand side.

To prove sufficiency, we selectTx(·, ·) ≡ 1 andλ as in (7), which leads to

λh = α(x)−∇x · fh (9)
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Provided thatλh is integrable and thatλ is a valid jump rate (i.e.,λ ≥ 0), we can replace (9)

andTx in (8) to conclude from Theorem 1 thath is indeed an invariant density for our choice

of the pair (λ,Tx). One choice for the functionα(x) that would satisfy these two conditions is

α(x) = maxm∈M |∇x · fh|. Indeed, sinceM is compact,fh is continuously differentiable and

∇x · fh ∈ L1(Rd ×M), we have thatα is bounded,λ ≥ 0 andλh ∈ L1(Rd ×M).

Remark1. It may happen that a jump rateλ satisfying (9) is not uniformly bounded, which is an

issue in proving convergence to the invariant density. Withα = maxm∈M |∇x · fh|, a sufficient

condition (and also necessary when (6) holds) to haveλ(x,m) < 2M , ∀(x,m), for some finite

constantM , is |∇x · fh(x,m)| ≤Mh(x,m), ∀(x,m).

Remark2. The control law provided by (7) in Theorem 2 also results in the desired invariant

density for a more general jump pdf: one can verify that the conclusions in the theorem hold

for any jump pdf satisfyingTx > 0,
∫

M
Tx(m,m

′)ν(dm′) = 1,
∫

M
Tx(m,m

′)f(x,m′)ν(dm′) = 0

and
∫

M
Tx(m,m

′)∇x · f(x,m
′)ν(dm′) = 0.

Condition (6) may be restrictive on the vector fieldf . Sinceg is not known in advance, we

need (6) to hold independently ofg. If, however, we allowh(x,m) to be arbitrary, the only vector

field f that satisfies (6) for all possible densitiesh(x,m) is f ≡ 0. A less restrictive condition is

obtained when the desired density can be factored ash(x,m) = β(m)g(x), ∀(x,m), for some

densityβ. In this case, the compactness ofM and the continuity off and of∇xf allow us to

interchange integration and differentiation in (6) to obtain the following corollary.

Corollary 1. Consider continuously differentiable probability densities h that can be factored

as h(x,m) = β(m)g(x) > 0, ∀(x,m) ∈ R
d × M, whereβ > 0 and g > 0 satisfyβ∇x · fg ∈

L1(Rd ×M). Then, a necessary and sufficient condition for allh of this form to be admissible

invariant densities is given by
∫

M

f(x,m) β(m)ν(dm) = 0, x ∈ R
d . (10)

Remark3. The existence condition (10) may be restrictive for some dynamical systems since it

essentially requires the ability to “reverse” the vector field, i.e., changing the control signal from

m1 to m2 in such a way thatf(x,m1) = −f(x,m2). This is a problem for systems with relative
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degree larger than zero. For example, consider the case in which d = 2, M = [−1, 1], ν is the

uniform probability measure onM and f(x1, x2, m) = [x2 m]T . This PDP cannot satisfy the

existence condition (6) withh(x,m) = β(m)g(x), ∀(x,m). In this case, one would be interested

in achieving
∫

M
h(x,m)ν(dm) = g(x) with a more general invariant densityh. However, it is

not clear whether that can be done using output feedback.

B. Output Feedback Controller

Next we discuss whether it is possible to implement the control law (7) proposed in Theorem 2

using only information from the output. To this purpose, Corollary 1 is especially useful because

the condition in (10) does not depend on the functiong, which is not known in advance. We

will therefore chooseh(x,m) = β(m)g(x). Without loss of generality, we setβ ≡ 1, which is

equivalent to redefining the reference measure toν̄(dm) = β(m)ν(dm).

The uniform jump pdfTx(·, ·) ≡ 1 is trivial to implement since it does not depend onx and

the controller has the freedom to selectm. Now, consider the jump rate given by (7), which we

can rewrite as

λ = η − f · ∇x ln g −∇x · f , (11)

whereη(x) := α(x)/g(x). To computeλ(x,m), the controller needs to evaluate three terms:

• To evaluate the termf · ∇x ln g, we observe that

f · ∇x ln g(x(t)) =
d ln g

dt+
(x(t)) , (12)

where ‘+’ denotes the derivative from the right. Therefore,it is sufficient for the controller

to have access to the time derivative of the observed outputy(t) = g(x(t)) in order to

evaluate this term.

• To evaluate the term∇x · f , the controller must know the vector fieldf and the current

statex of the process. However, when∇x · f is independent ofx, state feedback is not

necessary to evaluate this term.

• Regarding the termη(x) = α(x)/g(x), we have the freedom to selectα(x) under the

constraint that we keepλ nonnegative and bounded, which can be achieved if we keep

η ≥ |f · ∇x ln g +∇x · f | = |∇x · fg|/g.
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In particular, when there exists some functionφ : M → R such that∇x · f(x,m) =

φ(m), ∀(x,m), and a functionM that satisfiesM(g) ≥ maxm∈M |∇x · fg|/g, we can use the

following output feedback realization of the jump rate:

λ(x,m) =M(y)−
d lny

dt+
− φ(m) . (13)

A slight generalization of this is used in Example A, in whichan output feedback law is achieved

when∇x · f(x,m) = f(x,m) · ∇x ln γ(g(x)) + γ(g(x))φ(m) for some known functionγ.

Implementation of the Output Feedback Controller:Assume, for simplicity, thatM is constant

and thatφ = 0 in (13). According to (1), the probability of the process maintaining the same

modem in the interval[0, t] is given by

exp

(

−

∫ t

0

λ(x(τ),m(τ))dτ

)

= exp

(

−

∫ t

0

M −
d

dτ
(ln g(x(τ)))dτ

)

= e−Mt g(x(t))

g(x(0))
. (14)

This provides a simple and useful expression for the practical implementation of the control:

Suppose that a jump happens at timeτ k. At that time pick a random variabler uniformly

distributed in the interval[0, 1] and jump when the following condition holds

y(t) ≤ r eM(t−τk)y(τ k), t ≥ τ k . (15)

As opposed to what (13) seems to imply,one does not need to take derivatives oflny(t) to

implement the jump rate. Also, the control law is not changed if a constant scaling factor is

applied tog, which is important because we cannot apply a normalizing constant to the unknown

function g.

Often physical quantities propagate with spatial decay notfaster than exponential, and this

allows for the uniform boundedness of‖∇x ln g‖ and the existence of a constantM in (13).

If, however, the measured quantity has a faster decay rate, it may still be possible to achieve

boundedness of‖∇x ln g‖ by preprocessing the measurements (as explained at the end of Section

II). In addition, the constantM may be identified on-line. This can be done, for example, with

the following update rule:

M(t) =







ǫ⌈ǫ−1|d(lny)/dt+|⌉+ ǫ, if M−(t) < |d(lny)/dt+|+ ǫ

M−(t), else
(16)

for t > 0, M(0) = 0 and someǫ > 0. A more elaborate adaptation could obtained by allowing

M to depend ong. This would have the advantage of reducing the number of unnecessary jumps

in some parts of the space.

June 21, 2011 DRAFT



12

IV. ERGODICITY OF THE CONTROLLED PROCESS

In this section we investigate whether the above control strategy makes the probability density

of the PDP converge tog as time goes to infinity. We summarize the results in this section with

Theorem 3, which gives necessary and sufficient conditions for convergence.

Let Br(x) denote the open ball with radiusr centered atx ∈ R
d. We say that the system

ẋ = f(x, u), u ∈ M, is approximately controllableif, for every x0, x1 ∈ R
d and ǫ1 > 0, there

exists a timet1 > 0 and a measurable controlu(t) ∈ M that steers the state fromx(0) = x0 to

x(t1) ∈ Bǫ1(x1).

Theorem 3. Suppose that

1. g > 0 is a continuously differentiable density;

2. there exists a uniformly bounded continuous functionM and a constantǫ > 0 satisfying

|∇x · fg|/g + ǫ ≤ M(g);

3. ∇x · f(x,m) = φ(m), ∀(x,m).

Consider the PDP(x(t),m(t)) with the output feedback control:

Tx(·, ·) ≡ 1, λ(x,m) =M(y)−
d lny

dt+
− φ(m) . (17)

Then,p(x,m, t) → g(x) in total variation ast → ∞ for all initial densities if and only if the

vector field satisfies

i.
∫

f(x,m) ν(dm) = 0, ∀x ∈ R
d;

ii. the systemẋ = f(x, u), u ∈ M, is approximately controllable.

Moreover, the above convergence implies the following convergence of empirical averages:

for everyτ > 0 and everyψ such thatψg ∈ L1(Rd ×M),

n−1
n−1
∑

k=0

ψ(x(τk),m(τk)) →

∫

Rd×M

ψ(x,m)g(x) ℓ(dx)ν(dm) a.s. (18)

for all initial conditions.

The proof of this theorem (with slightly stronger convergence) will appear later in this section.

Before that, we discuss the assumptions and conclusions of the theorem.
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Remark4. We say that a setF ⊂ R
d is a positive basisif 0 is in the (algebraic or topological)

interior of the convex hull ofF. A typical case in which condition(ii) is satisfied is when

{f(x,m);m ∈ M} contains a positive basis forRd for all x ∈ R
d (see the Filippov-Wazewski

argument in Proposition 2). If, for example, this basis is independent ofx, we can always define

a reference measureν to satisfy condition(i).

In monitoring applications, the convergence of empirical averages in (18) provides the basis

for a procedure to estimateg by observing the positionsxn of S identical vehicles perform-

ing the jump control strategy above. To achieve this, we start by partitioning the region of

interest into a family of sets{Ai ⊂ R
d}, then we sample the vehicles’ positions at times

kτ ∈ {0, τ, 2τ, . . . , (N − 1)τ}, for someτ > 0, and count the frequency with which vehicles

are observed in each setAi. It turns out that this frequency provides an asymptotically correct

estimate of the average value ofg on the setAi. To see why this is the case, we define

GS,N(Ai) =
1

NS

N−1
∑

k=0

S−1
∑

s=0

1Ai
(xs(kτ)) , (19)

where1A denotes the indicator function of the setA. Assuming that the vehicles have mutually

independent motion, we have by (18) that

GS,N(Ai) → G(Ai) :=

∫

Ai

g(x) ℓ(dx) a.s. (20)

asN → ∞. This shows thatg can be estimated by averaging the observations of the vehicles’

position as in (19). The use of multiple independent agents (S > 1) improves the estimates

according to the relation

var(GS,N) =
var(G1,N)

S
. (21)

The following result proven in the end of the section shows that convergence is preserved if

M is identified on the run using (16).

Corollary 2. Suppose thatsupRd×M |∇x ·fg|/g <∞ and that∇x ·f = 0. Then, the conclusions

in Theorem 3 hold when the jump rate (17) is replaced by

λ(x,m) = M(t)−
d lny

dt+
, (22)

whereM(t) is identified on-line using (16).
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Remark5. In [3] it is shown that convergence of the probability density to g can also be achieved

with a diffusion controller, i.e., a controller that makes use of brownian motion rather than Poisson

jumps. However, the diffusion technique cannot be extendedas easily to more general vector

fields. Indeed, one can verify that a result similar to Theorem 3 would only be valid for vector

fields that have an (complex) exponential dependence on the controlled parameters, which may

be very restrictive.

A. Elements of the Ergodic Theory for Markov Chains

Next, we present some concepts from ergodic theory that are needed to characterize the

convergence of our PDP and prove Theorem 3. We consider a time-homogeneous Markov process

Φ(t) taking values in a locally compact separable metric spaceY equipped with a Borelσ-algebra

B. We define the transition kernel

P t(y, A) := Pr{Φ(t) ∈ A | Φ(0) = y}, y ∈ Y, A ∈ B . (23)

We say that aσ-finite measureµ is an invariant measurefor P t if

µ =

∫

Y

P t(y, ·)µ(dy), ∀t ≥ 0 . (24)

We define theoccupancy timeof the setA ∈ B as

ηA :=

∫ ∞

0

1A{Φ(t)} dt . (25)

For a nontrivialσ-finite measureψ, we say thatΦ is ψ-irreducible if, for A ∈ B,

ψ(A) > 0 ⇒ E[ηA | Φ(0) = y] =

∫ ∞

0

P t(y, A) dt > 0, ∀y ∈ Y . (26)

We say thatΦ is positive if it is ψ-irreducible and if it has an invariant measureµ satisfying

µ(Y) < ∞. We say thatΦ is aperiodic if some sampled chainΦ(nτ) is ψ-irreducible, i.e., if

there exists someτ > 0 such that

ψ(A) > 0 ⇒
∞
∑

n=0

P nτ(y, A) > 0, ∀y ∈ Y . (27)

A ψ-irreducible process is calledHarris recurrent if ψ(A) > 0 implies that{ηA = ∞}

almost surely. It is well known [23, Thm. 6.1] that aperiodicpositive Harris recurrent processes

are ergodic in the sense that

‖P t(y, ·)− µ‖ → 0 as t→ ∞, ∀y ∈ Y , (28)
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whereµ denotes the invariant measure and the norm is the total variation norm. A setH is said

maximal absorbingif

y ∈ H ⇐⇒ Pr{ηH = ∞ | Φ(0) = y} = 1 .

A setH is calledmaximal Harris setif H is maximal absorbing andΦ restricted toH is Harris

recurrent.

Next, we define an important continuity property used in the proof of our results. We say that

Φ is a T-processif, for some sampling distributionθ on R
+,

Rθ(y, A) :=

∫ ∞

0

P t(y, A) θ(dt) ≥ K(y, A), y ∈ Y, A ∈ B ,

whereK(·, A) is a lower semicontinuous function for allA ∈ B andK(y,Y) > 0 for all y ∈ Y.

For aψ-irreducible T-process, we have a disjoint decomposition of the space [23, Thm. 3.4]

Y = H ∪ E , (29)

whereH is a maximal Harris set andE is transient in the sense that{ηH = ∞} ∪ {Φ → ∞}

almost surely. We prove next thatE must be open.

Lemma 1. The setE in the decomposition (29) is an open set.

Proof: Suppose thatE is not open. Then, there isy ∈ E such thatO ∩ H 6= ∅ for every

neighborhoodO of y . Sincey ∈ E andH is maximal absorbing,P t(y, E) > 0 for all t > 0.

Then, by Theorem [24, Thm. 9.3.2], there exists a neighborhoodO of y and a distributionθ such

thatRθ(y0, E) > 0 for all y0 ∈ O ∩H. This contradicts the fact thatH is maximal absorbing.

Therefore,E must be open.

B. Ergodicity for the PDP

In this section we derive some new results regarding the ergodicity of invariant measures of

PDPs and prove Theorem 3. While some ergodicity results specific for PDPs may be found in

the literature (see e.g. [25]), those rely mostly on Foster-Lyapunov criteria and do not appear

to be suited for the purposes of this paper, since we try to prove ergodicity for general vector

fields f . On the other hand, our task of proving ergodicity is made somewhat easier since we

know, by design, that an invariant measure exists.
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Let us call jump Markov chaina new PDP obtained from the original one by replacing the

vector fieldf by f(x,m) = 0, ∀(x,m). We say that the jump Markov chain ismode-irreducible

if, for each initial (x,m) ∈ R
d×M and any setB with ν(B) >0, there is a positive probability

that{x}×B will eventually be reached from(x,m). The following assumption will be needed

in the results of this section.

Assumption 2. i. the jump Markov chain is mode-irreducible.

ii. λ(x,m) is a bounded continuous function onRd×M and, for any bounded and continuous

ψ, the map

(x,m) 7→

∫

M

Tx(m
′, m)ψ(x,m′) ν(dm′) (30)

is continuous.

iii.
∫

f(x,m) ν(dm) = 0;

iv. the systeṁx = f(x, u), u ∈ M, is approximately controllable.

We denote byP t the transition kernel of the PDP(x(t),m(t)).

Proposition 1. Suppose that Assumption 2 (i)-(ii) holds. Letm̄ : R
+ → M be a piecewise

constant function with finitely many jumps and letx̄(t) be the solution tȱx(t) = f(x̄(t), m̄(t))

with initial condition x̄0. Then, given the initial condition(x̄0, m̄(0)) and anyǫ1, t1 > 0, the

PDP (x(t),m(t)) visits the ball of radiusǫ1 centered at(x̄(t1), m̄(t1)) with positive probability

at time t = t1, i.e.,

P t1
(

(x̄(0), m̄(0)), Bǫ1(x̄(t1), m̄(t1))
)

> 0, ∀t1, ǫ1 > 0. (31)

Proof: By Assumption 2(i), given a timet1 > 0 and ǫ0 > 0, there existsm(t) satisfying

m(t) ∈ supp Tx̄(t)(·, m
−(t)) andm(t) = m̄(t) on [0, t1]\S, whereS has Lebesgue measureǫ0.

Thus, if ẋ(t) = f(x(t), m(t)) and x(0) = x̄0, the assumption of continuity of∇xf and of no

finite scape time implies have that‖x(t1)− x̄(t1)‖ < κǫ0 for some constantκ > 0. On the other

hand, the smoothness off and the irreducibility and continuity assumptions in Assumption 2

(i)-(ii) imply that (x(t1),m(t1)) is found in any neighborhood of(x(t1), m(t1)) with positive

probability. Combining the two facts, we have the result in the proposition.
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Let co(A) denote the closure of the convex hull of the setA.

Proposition 2. Suppose that Assumption (i)-(ii) holds and letx̂(t) be a solution to the differential

inclusion ˙̂x ∈ co {f(x̂, m), m ∈ M} with initial condition x0. Then, givenǫ1, t1 > 0 and

m0, m1 ∈ M, the PDP (x(t),m(t)) with initial condition (x0, m0) visits the ball of radius

ǫ1 centered at(x̂(t1), m1) with positive probability at timet = t1, i.e.,

P t
(

(x0, m0), Bǫ1(x̂(t), m1)
)

> 0, ∀t, ǫ1 > 0 (32)

and for allm0, m1 ∈ M. As a consequence, under Assumption (i)-(ii), approximatecontrollability

is equivalent toℓ× ν-irreducibility.

Proof: Let xu(t) denote the solution tȯxu(t) = f(xu(t), u(t)) for the initial conditionx0

and some controlu(t). By the continuity of∇xf and the assumption of no finite scape time

(Assumption 1), we can apply the Filippov-Wazewski theorem[26, Thm 10.4.3] to conclude that,

given t1, ǫ0 > 0, there exists a measurable controlu(t) ∈ M such that‖xu(t1) − x̂(t1)‖ < ǫ0.

Under Assumption 1(i), we can apply Theorems 2.20 and 2.24 of [27] to conclude that there

exists a piecewise-constant controlm(t) ∈ M with finitely many jumps that approximates the

measurable controlu(t) in the sense that‖xu(t1) − xm(t1)‖ < ǫ0. Thus, by Proposition 1,

we conclude thatP t1((x0, m(0)), Bǫ1(x̂(t1), m(t1))) > 0 for any ǫ1 > 0. As in the proof of

Proposition 1, this holds for arbitrary initial and final modesm(0) andm(t1) since the PDP is

jump-irreducible andm may take arbitrarily small time on those states.

Similarly to [24, Chap. 7], we establish a link between controllability and irreducible T-

processes in the next proposition.

Proposition 3. Under Assumption 2 (i)-(iv), the PDP(x(t),m(t)) is an aperiodic ℓ × ν-

irreducible T-process.

Proof: By Proposition 2,ℓ × ν-irreducibility is equivalent to the controllability condition

(iii) . From condition(iv), we have that0 ∈ co{f(x,m);m ∈ M} and Proposition 2 implies

that P t((x0, m0), Bǫ0(x0, m0)) > 0 for all t > 0 and ǫ0 > 0. This implies aperiodicity of the

ℓ× ν-irreducible process since trajectories starting on any open set return to the set at any time

with positive probability. By [14, Thm. 27.6], Assumption 2(ii ) implies that the PDP has the

(weak) Feller property, i.e., the functionξ 7→
∫

Rd×M
ψ(y)P t(ξ, dy) is continuous for all bounded
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continuous functionsψ and all t > 0. Given the Feller property, theℓ× ν-irreducibility and the

fact thatsupp(ℓ×ν) = R
d×M has non-empty interior, we can use [24, Thm. 6.0.1] to conclude

that the PDP is aT -process.

Proposition 4. Suppose that Assumption 2 (i)-(iv) holds and that the PDP(x(t),m(t)) admits

an invariant probability densityh(x,m) > 0. Then, the PDP is an aperiodic positive Harris

recurrent process and convergence to the invariant measurein total variation holds as in (28).

Proof: Let µ denote the invariant measure corresponding toh. By Proposition 3, the PDP

is an aperiodicℓ×ν-irreducible T-process. Therefore, the spaceR
d×M admits a decomposition

into a maximal Harris setH with invariant measureµ and a transient setE as in [23, Thm.

3.4]. Sinceµ(H) = 1 andh(x,m) > 0, we must haveℓ × ν(E) = 0. However,E is an open

set by Lemma 1. This implies thatE = ∅ and therefore the PDP is an aperiodic positive Harris

recurrent process. By [23, Thm. 6.1], we have convergence asin (28).

Proof of Theorem 3: (Necessity)The necessity of condition(i) follows from Corollary 1. To

see the necessity of condition(ii) , note that the convergence ofp(x,m, t) to g(x) implies that the

process isµ-irreducible, whereµ(dx, dm) = g(x)ℓ(dx)ν(dm), which implies the controllability

condition sinceg > 0.

(Sufficiency)It follows from Theorem 2 and Corollary 1 thatg is an invariant density for

the pair(λ, Tx) presented. To prove convergence, we show that Assumption 2 holds and apply

Proposition 4. The inequality|∇x · fg|/g + ǫ < M implies thatλ = M − (∇x · fg)/g ≥ ǫ

and thatλ is uniformly bounded. Therefore, Assumption 2(i) holds sinceλ ≥ ǫ and a uniform

jump distribution imply mode-irreducibility. Sincefg is continuously differentiable inx, we

have thatλ is continuous and, therefore, Assumption 2(ii) holds. Assumption 2(iii)-(iv) follows

from conditions(i) and (ii) . Therefore, we have that the process is aperiodic positive Harris

recurrent and convergence in total variation holds. Clearly, the same convergence result as in

(28) must hold for the kernelP kτ . This implies that(x(kτ),m(kτ)) is positive Harris for all

τ > 0. Then, the convergence of the empirical averages for all initial conditions follows from

[24, Thm. 17.0.1].

Proof of Corollary 2: We consider the Markov process formed by(x(t),m(t),M(t)). Let
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M̄ = ǫ⌈ǫ−1 supRd×M |∇x · fg|/g⌉+ ǫ. From (16),M(t) increases by at leastǫ at every update.

Thus,M(t) must achieve a limitM0 ≤ M̄ in finite time almost surely. SupposeM0 ≤ M̄ − ǫ

and let C0 = {(x,m) ∈ R
d × M : |f · ∇x ln g| + ǫ ≤ M0}. This definition implies that

(x(t),m(t)) ∈ C0 for all time. Let g0 be a probability density such thatg0 = g on C0 and

|f · ∇x ln g0|+ ǫ ≤ M0. Sinceλ ≥ 0 on C0, we can apply Theorem 3 to conclude thatp(x, v, t)

converges tog0. But, sinceM0 ≤ M̄ − ǫ,
∫

Cc

0

g(x)ℓ(dx)ν(dm) ≥

∫

{|f ·∇x ln g|+ǫ>M̄−ǫ}

g(x)ℓ(dx)ν(dm) > 0 , (33)

where the last inequality follows from the continuity off · ∇x ln g. This contradicts the conver-

gence ofp(x,m, t) to g0(x) since
∫

C0
g0(x)ℓ(dx)ν(dm) < 1. Therefore,M(t) achieves the limit

M0 = M̄ in finite time almost surely. From the proof of Theorem 3, thisis the same to say that

(x(t),m(t),M(t)) reaches the Harris recurrent setR
d ×M× {M̄} in finite time almost surely

from any initial condition. Using the strong Markov property as in [24, Prop. 9.1.1], this implies

that the process is Harris recurrent and the proof proceeds as in the proof of Theorem 3.

V. EXAMPLES

In this section we present applications of our main result tothree systems characterized by

different dynamics. The first dynamics are heavily inspiredby the tumble and run motion of

E. coli and correspond to a vehicle that either moves in a straight line or rotates in place. The

second is a Reeds-Shepp car [28], which has turning constraints, but can reverse its direction of

motion instantaneously. The third dynamics corresponds toa vehicle that is controlled through

attraction/repulsion by one of three beacons in the plane.

A. Optimotaxis

Optimotaxis was introduced in [3] as a solution to an in loco optimization problem with point

measurements only. We consider vehicles moving with position x ∈ R
d and velocityvρ(x),

wherev belongs to the unit sphereM = S
d and the uniformly bounded functionρ(x) is the

space-dependent velocity amplitude. The reference measure ν is the normalized surface measure

on the sphere. In this case, the mode is represented byv and we havef(x, v) = vρ(x). Our

objective is to make the probability density of the vehiclesposition converge to an observed
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function g and then have an external observer that can measure the vehicles position to collect

information aboutg.

In [3], we were forced to consider a constant velocity amplitudeρ, but now we can allow the

velocity amplitudeρ to depend onx through the outputg(x). This modification is important

since it is generally advantageous to move fast through regions whereg is small and slowly

through regions whereg is large. This idea is pursued further in [29].

Here we apply Theorem 3 with a small modification. The assumption in the theorem that

∇x · f be independent ofx is only needed to make sure thatλ in (11) can be implemented

with output feedback. Although this assumption is not satisfied in our example, we can still

manipulate (11) to obtain the following output feedback implementation:

λ(x, v) = ηρ− vρ · ∇x ln ρg , (34)

whereη > ‖∇x ln ρg‖. Because the divergence off is nonzero, we must alter the implementation

rule (15) to

ρ(x(t))y(t) ≤ reη(t−τk)ρ(x(τk))y(τk), t ≥ τk . (35)

Since{f(x, v); v ∈ M} is a positive basis for allx provided thatρ(x) > 0, ∀x (see Remark

4), we conclude convergence of our controlled process as in Theorem 3.

Next, we present numerical experiments to illustrate the proposed optimization procedure. The

desired stationary density is taken to beg(x) = cF n(x), whereF are the physical measurements,

c is a normalizing constant andn is an integer.

The ability of optimotaxis to localize the global maximum isstressed in Fig. 2. We observe

a swarm of agents that starts from the upper left corner (I), initially clusters around a local

maximum (II) and then progressively migrates to the global maximum (III,IV). We notice that

the center of mass of the swarm goes straight through the local maximum to the global one. When

the equilibrium is reached, most agents concentrate in a neighborhood of the global maximum,

while a few remain near the local maximum as one should expect. The proportion of agents at

each maximum reflects the values ofg as expressed by (20).

To quantify the convergence of the positions of the agents tothe desired distributiong,

we compute the correlation coefficient between the vectors[G(Ai)]i and [GS,N(Ai)]i in (20).
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Fig. 2. Different stages of optimotaxis in the presence of two maxima. Black dots represent agents position whereas the

background intensity represents the signal intensity.F (x) = 0.4e−‖x‖ + 0.6e−‖x−[1.5 −1.5]′‖, g(x) = Fn(x) with n = 10,

ρ(x) ≡ 1 andη chosen as in (16).

This coefficient was calculated using a space grid with resolution 0.068 and its time evolution

appears Fig. 3. Also included in Fig. 3 is the evolution of thecorrelation coefficient when the

measurements are quantized and when exogenous noise is added. For the quantized case, we

used a quantized version of the desired densityg to calculate the coefficient. Interestingly, the

addition of noise does not seem to affect considerably the speed of convergence. Nevertheless,

the residual error is greater due to the fact that the observed stationary density is not exactly

equal tog. On the other hand, quantization has a negative impact on convergence time.

Many factors may affect the convergence speed. In optimization applications withg = F n,

we have studied in [3] the influence of the parametern on the convergence. The results suggest

that there exists an optimal choice ofn that maximizes the speed of convergence. The velocity

amplitudeρ(x) is another design parameter that influences convergence speed. In Fig. 4, we

observe that the transient response forρ ≡ 25 is initially faster when compared to the transient

response forρ ≡ 10, but it becomes ultimately slower after a level of70% of correlation is

reached. In the same figure we see that one can speed up convergence by adjustingρ(x) to be

large wheng(x) is small and to be small wheng(x) is large. The use of a space dependent

velocity amplitudeρ(x) is further studied in [29].
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Fig. 3. Evolution of the coefficient of correlation for: the noiseless case (solid), the quantized measurements case (cross), and

the exogenous noise case (dashed). The number of quantization levels is 64. The noise added tov̇ is white Gaussian with standard

deviation10−2 along each axis.N = 100 agents were uniformly deployed in the rectangle[−2.5,−1.5] × [1.5, 2.5] ×M and

simulated with sampling time1. Refer to Fig. 2 for more details.
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Fig. 4. Correlation coefficient for the casesρ ≡ 25 (dashed),ρ ≡ 10 (dash-dotted) andρ = 25 tanh(g−2/25) (solid) with

n = 1 and other simulation details as in Figs. 2 and 3.

Chemotaxis and Optimotaxis:Chemotaxis in the bacteriumE. coli can be seen as an

example of how the jump control of probability densities is used for the optimal distribution

of individuals. The run and tumble behavior discussed in theintroduction can be cast into our

optimotaxis framework for some specific expressions forλ and Tx. It is remarkable that the

expression forλ in (34) obtained in the optimotaxis example is an affine function of d(lny)/dt,

which coincides with simple biochemical models for the tumbling [jump] rate of theE. coli;
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see, for instance, [30, Sections 6.1 and 8.3] or Alt [2, Equation 4.8]. The latter author proposed

the existence of a chemical activator for the locomotion mechanism such that a tumble would

take place each time the concentration of this activator becomes smaller than a certain value.

The concentration of this activator would jump to a high value at tumbles and decrease at a

rate corresponding toη in (34). A receptor-sensor mechanism would then regulate the additional

generation of the activator [this corresponds to the termv · ∇ ln g(x) in (34)], which would

modulate the run length.

Though the use of tumble and run in optimotaxis was inspired by chemotaxis, one would not

necessarily expect that our choice of the jump rate would lead to control laws that resemble

the biochemical models in bacteria. More precisely, we haveborrowed the PDP structure from

chemotaxis, but the parametersλ andTx were designed independently of it. It turns out that, if

we make the natural assumption that the jump pdf is uniformlydistributed, the jump rate given

by (34) is the unique jump rate that achieves a stationary density g (this can be seen from the

Fokker-Planck-Kolmogorov equation). This suggests that also bacterial chemotaxis is aimed at

achieving a stationary density that is a function of the measured profile of chemical attractant.

As a consequence of this fact, our control law can be used to analyze the bacterial motion and

to predict what stationary distribution is aimed by the bacteria.

Let us imagine that bacteria are performing optimotaxis as it is described in this paper,

let p(x, v, t) be the spatial density of bacteria and letg(x) be some function related to the

concentration of nutrients at pointx. Suppose also that the bacteria are in a static environment

like a chemostat, which would maintain the level of nutrients constant in time, or that the

consumption of nutrients happens in a timescale that is muchslower than chemotaxis. Under

these conditions, we will show that we can translate the objective of p(x, v, t) converging in total

variation tog as the minimization of a biologically relevant quantity. From [31], convergence of

p to g implies that

H(t) = −

∫

X

∫

M

p(x, v, t) ln

(

1

2
+

1

2

g(x)

p(x, v, t)

)

ℓ(dx)ν(dv) → 0 , (36)

whereH(t) is the Kullback-Leibler divergence betweenp(x, v, t) and the convex combination

1/2 g(x)+1/2 p(x, v, t). SinceH(t) ≥ 0, ∀t, and is equal to zero if and only ifg(x) = p(x, v, t)

a.e., one can regardH(t) as a cost functional that is being minimized by bacterial chemotaxis

(and, in fact, also by optimotaxis). More specifically, we notice that what is being maximized

June 21, 2011 DRAFT



24

is the expected value of an increasing concave function ofg/p, which is a ratio that measures

the concentration of nutrients per density of organisms. Thus, what is being maximized here is

not the probability of a bacterium being at the point of maximum concentration of nutrients,

but the average amount of nutrients a bacterium has access towhen interacting with many

others of its kind, which is a biologically meaningful cost for the population of bacteria as a

whole. Interestingly, this effect is achieved as a result ofan individualistic behavior (without

direct interaction among the bacteria), which suggests that it could arise as an evolutionary

equilibrium.

Since our conclusions are based on a simplistic model for chemotaxis, further investigation is

necessary. Nevertheless, our analysis suggests an optimalcooperative aspect of chemotaxis that is

original to the best of our knowledge. The idea of cooperation among bacteria is corroborated by

the phenomenon of chemotactic signaling, according to which bacteria may cooperate by emitting

attractants or repellents to indicate to others the presence or scarcity of nutrients respectively

[32]. Similar conclusions regarding an adaptation to the spatial density of preys may be drawn

for predators following the work in [33]. The optimality of chemotaxis in the sense of tracking

chemical gradients was investigated in [34].

B. Example 2

We now consider optimotaxis when vehicles are subject to turning constraints but are still able

to immediately change between forward and backward motion.More precisely, the dynamics of

the vehicle is given by

f(x, v) =











v1 cos θ

v1 sin θ

ω











, (37)

wherex = [x1 x2 θ]
′, v = [v1 ω]

′ ∈ M = {−v0, 0, v0} × {−ω0, 0, ω0} and ν is the uniform

probability density overM. This kind of vehicle is referred to in the literature as the Reeds-Shepp

car [28].

The vector field in (37) satisfies condition (i) of Theorem 3 and, even though{f(x, v); v ∈ M}

does not contain a positive basis forR
3 as in the previous example, it is still an easy exercise to

verify condition (ii ) in the Theorem 3 by constructing trajectories between any two points inR3.
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This controllability condition would hold true even if zerolinear velocity was not allowed. Indeed,

we know that it is always possible to steer a Dubins’ vehicle between any two configurations

[35]. Since a Dubins’ vehicle is a special case of the Reeds-Shepp car in which only positive

linear velocity is allowed, we have that it is also possible to steer a Reeds-Shepp car between any

two configurations (states). Hence, we can useλ andTx from Theorem 3 to make the process

pdf converge to the invariant densityg. More precisely,λ = η − f · ∇x ln g andTx ≡ 1.

Figure 5 illustrates how the empirical distribution indeedconverges to the desired density. To

evaluate the effect of turning constraints, we also plot theunconstrained case discussed in the

previous example. The figure shows that convergence is only slightly slower compared to the

unconstrained case whenω0 = 0.3, but there is a strong dependence in the turning speed as

shown when this speed is decreased by a factor of 2. It is worthto mention that in the case for

which 0 linear velocity is not allowed convergence is only slightlyslower than in the present

case.
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Fig. 5. Evolution of the coefficient of correlation for the unconstrained turning case (solid), for the constrained turning case

with v0 = 1 and ω0 = 0.3 (dots) and for the constrained turning case withv0 = 1 and ω0 = 0.15 (cross). The simulation

setting is the same as of Figs. 2 and 3.

C. Example 3

In this example, vehicles make use of three beacons in order to navigate. In particular, vehicles

always move along straight lines towards or away from one of the beacons located at positions

a, b, c ∈ R
2. Let d = 2, M = {a, b, c} × {−1, 1}, wherea, b, c are not in the same line, and

ν is the uniform probability distribution overM. We takef(x,m) to be f = m2(x − m1),
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x ∈ R
2, m1 ∈ {a, b, c}, m2 ∈ {−1, 1}. Thus,a, b and c are three points in the plane that may

be either stable or unstable nodes (depending on the sign ofm2). This is an example for which

the divergence is not zero. According to Theorem 3, we choose

λ =M − f · ∇ ln g − 2m2 , (38)

for someM sufficiently large. Note thatf satisfies the hypotheses of Theorem 3: sincea, b and

c are not aligned,{f(x,m);m ∈ M} is a positive basis (see Remark 4). The class of reachable

densities includes those for whichx‖∇ ln g‖ is uniformly bounded, which includes all densities

with polynomial decay. We note that a uniformTx is not the only one that achieves the desired

density for such aλ. For example, as noted in Remark 2, it is possible to chooseTx such that

Tx(m,m
′) =

1

4
1M−{m′

1×{−1,1}}(m) . (39)

This jump pdf is such that jumps to the flows with the same fixed point are not allowed. Yet,

sinceλTx still defines a mode-irreducible Markov chain, we can apply Proposition 4 to conclude

convergence to the invariant densityg.

VI. CONCLUSION

A solution to the problem of controlling the probability densities of a process was provided.

Our solution, which involves a randomized controller that switches among different deterministic

modes, is applicable when the observation process is a fixed but unknown function of the state.

Necessary and sufficient conditions were derived to determine when such a controller can enforce

a given stationary density for the process. We also provide conditions under which the probability

density of the process converges to the observation function. We discussed potential applications

of this theory to the area of mobile robotics, where it can be used to solve problems including

search, deployment and monitoring.

One challenge to be addressed in the future is the development design tools for systems with

relative degree higher than or equal to one, as discussed in Remark 3. A second important

problem is to define convergence rates in a manner that is useful for both analysis and design.

Possible frameworks include the use of Lyapunov techniquesor the theory of Large Deviations

as in [29]. In addition, the authors believe it would be beneficial to explore new applications

for their method in the existing large domain of applications for Markov Chain Monte Carlo

methods.
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