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Abstract

We investigate the problem of controlling the probabiligndity of the state of a process that is
observed by the controller via a fixed but unknown scalar megative function of the state. The goal
is to control the process so that its probability density pobmt in the state space becomes proportional
to the value of the function observed at that point. Our smiytinspired by bacterial chemotaxis,
involves a randomized controller that switches among wfie deterministic modes. We show that
under appropriate existence conditions, this controlieErgntees convergence of the probability density
to the desired function. The results can be applied to théleno of in loco optimization of a mea-
surable signal using a team of autonomous vehicles thaturee#ise signal but do not have access to
position measurements. Alternative applications in treaaf mobile robotics include deployment and

environmental monitoring.

Index Terms

Piecewise-deterministic Markov processes, mobile rakptiybrid systems

. INTRODUCTION

This paper addresses the control of a Piecewise-DeteltioiMarkov Process (PDP) through
the design of a stochastic supervisor that decides whegtsegitshould occur and to which mode

to switch. In general, the system’s statecannot be measured directly and is instead observed
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through a scalar non-negative output= g(x), whereg(-) is unknown to the controller. The
control objective is to achieve a steady-state probahiléysity for the state that matches the

unknown functiong(-) up to a normalization factor.

We were motivated to consider this control objective by prois in the area of mobile
robotics. In this type of applications typically includes the position of a mobile robot that
can take point measuremenis= g(x) at its current location. Irdeployment applicationsa
group of such robots is required to distribute themselvesnirenvironment based on the value
of these measurements, e.g., the measurements may be ttentation of a chemical agent
and one wants the robots to distribute themselves so tha mbots will be located in areas of
higher concentration of the chemical agentstarch applicationsa group of robots is asked to
find the point at which the measurement has a global maximunm{pimum), in which case
one wants the probability density function »fto have a sharp maximum at the pointvhere
g(z) is maximum (or minimum). These applications are often reférto as “source seeking”
motivated by scenarios in which the robots attempt to find gberce of a chemical plume,
where the concentration of the chemical exhibits a globakimam. Finally, in monitoring
applications one attempts to estimate the value of a spatially-definadtion by keeping track
of the positions of a group of robots whose spatial distidoutreflects the spatially-defined
function of interest (much like in deployment applicatihnBotential applications for this work
thus include chemical plant safety, hydrothermal vent peoting, pollution and environmental

monitoring, fire or radiation monitoring, etc.

The control algorithms proposed here are motivated by themchactical motion of the
bacteriumE. coli. Due to its reduced siz&,. coliis unable to perceive chemical spatial gradients
by comparing measurements taken by different receptorh@mcell surface. Nevertheless, this
organism is still able to follow the gradient of a chemicalradtant, despite the rotational
diffusion that constantly changes the bacterium orieomathis is accomplished by switching
between two alternate behaviors knowrr@s andtumble[1], [2]. In the run phase, the bacterium
swims with constant velocity by rotating its flagella in theuater-clockwise direction. In the
tumble phase, by rotating its flagella in the clockwise dimt the bacterium spins around
without changing its position and in such a way that it entBesnext run phase with arbitrary

orientation. Berg and Brown [1] observed that the only motparameter that is affected by
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the concentration of a chemical attractant is the duratioruons. Roughly speaking, the less
improvement the bacterium senses in the concentrationeofttiactant during the run phase,
the more probable a direction change (tumble) becomes. &unbtion leads to a distribution
whose peak usually coincides with the optimum of the sensethtity, much like the search

applications in mobile robotics mentioned above.

The parallel betweelk. coli's chemotaxis and some search problems involving autonemou
vehicles is remarkable: In mobile robotics, gradient infation is often not directly available,
either because of noisy and turbulent environments or Isecthe vehicle size is too small to
provide accurate gradient measurements, challengesadsd byE. coli. This bacterium also
does not have access to global position information, whscanalogous to the lack of position
measurements that arise in applications for which ineng&igation systems are expensive, GPS
is not available or not sufficiently accurate (as in undeewatvigation or cave exploration), or
where the vehicles are too small or weight-constrained toydhis type of equipment. These
observations led us to design a biologically-inspired madrdlgorithm for autonomous vehicles,
namedoptimotaxis[3]. While mimicking chemotaxis is not a new solution to opization
problems, see e.qg. [4], [5], [6], [7], [8], optimotaxis isstinct in that we are able to provide

formal statements about the stationary density and theetgawce to it.

In this paper, we show that the principles behind optimataedn be used in the much more
general setting of controlling the probability density étion of a PDP through the design of
a stochastic supervisor that decides when switches shawlar @and to which mode to switch.
We establish necessary and sufficient conditions underhaéuch a controller may exist and,
when these conditions hold, we provide a controller tharauiges the ergodicity of the desired
invariant density. As a consequence, the probability dgrgithe PDP converges to the desired
invariant density in the Cesaro sense and results like #he bf Large Numbers apply. In
addition, we provide general results that have wide apiptinain the study of ergodicity in

PDPs, beyond the specific control design problem addresstusi paper.

A substantial body of work related to the objective of colting probability densities can
be found in the literature of Markov Chain Monte Carlo (MCM@gthods [9]. These methods
involve the design of a Markov chain whose stationary distion is given by a known (but

usually hard to compute) function. Samples from the Markbaic are then used to estimate
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integrals associated with that function. MCMC is largelyedisn statistical physics and in
bayesian inference. According to the classification in [I@jr approach can be regarded as
a dynamical/hybrid MCMC type method. In particular, thi-and-run method [11] resembles
optimotaxis in that it also executes a piecewise linearoandalk. The main difference between
our approach and traditional MCMC is that the latter is a nucaé method whereas the former
is intended to be used in physical systems with dynamic caings. In MCMC, for example,
a trajectory may have samples discarded in order to genarag trajectory with the desired
distribution. However, this is not possible in trajectsrigriginating from a physical system.
Our work may be related also with the field of reinforcemerarméng, specially with TD

or Q-learning where unknown value functions are identifisthg only local observations of
the cost function [12], and with the fields of Hidden Markov di&ds and patrticle filters, where
one seeks the convergence of conditional distributiong itlea of looking at the aggregate
distribution of multiple agents modeled as stochastic itlybystems has also appeared in [13]

and subsequent works.

This paper is organized as follows: the description of thebj@m is given in Section II; the
existence and the design of controllers is discussed inddetit; Section IV presents results
concerning the convergence of the probability densitiethefcontrolled process; examples are

given in Section V; conclusions and final comments are give8action VI.

[I. PROBLEM DESCRIPTION

We start by briefly describing the concept of Piecewise-Deit@stic Markov Processes (PDP)
that is used in the paper. The reader is referred to [14] faraél (and slightly more general)
definition. In a PDP, state trajectories are right contirsusith only finitely many disconti-
nuities fumpg on a finite interval. The continuous evolution of the pracés described by
a deterministic flow whereas the jumps occur at randomlyribiged times and have random

amplitudes.

We consider state variables € RY and m € M, whereM is a compact set. During the
deterministic flowsx(#)* evolves according to the vector field — f(x,m), whereasm(t)

remains constant and only changes with jumps. For a fixed M, we denote byy]"x the

We use boldface symbols to indicate random variables.
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continuous flow at time defined by the vector field — f(z,m) and starting at: at time
0. The conditional probability that at least one jump occuesneen the time instantsandt,

0 < s <t, givenx(s) andm(s), is

- (= [ AEROx(s)misar) )

where \(z,m) is called thejump rateat (x,m) € R? x M. At each jump,m assumes a new

value governed by thpimp pdf 7,.(-, -). Namely, if a jump occurs at timey, then
Pr {m(Tk) € B ‘ X_<Tk> = x7m_(7-k> = m} = / Tm<m/7m) V<dm/> 9 (2)
B

where the superscript minus indicates the left limits of tegpective processes,is a Borel
probability measure ol and B is a Borel set. We further assume that the spgdcs a compact
subset of a locally compact separable metric space andiithatr = M. Note that, as opposed
to [14], we do not requiréVl to be countable. Under this more general setting, [15] shitat

the above characterization defines a strong Markov proeess m(t)).

This PDP model is captured by several stochastic hybriceayshodels that appeared in the
literature, including the stochastic hybrid models diseasin [16], or the general stochastic

hybrid models introduced in [17]. Fig. 1 depicts a schemedjresentation of our PDP.

A(x, m)

mNTx*(Vm )

Fig. 1. Hybrid automaton for the PDP

We definep(z, m,t) as the joint probability density of the state, m) at timet¢ with respect
to the measuré x v, where/ denotes the Lebesgue measuréRin We denote byl.!(R¢ x M)
the space of real functions integrable with respect tov. It is then true thap € L'(R? x M)
and [, o, p(x, m,t) ((dx)v(dm) =1, Yt > 0.

In our setting, the vector field is given andm(¢) should be viewed as a control variable. The

controller cannot measure the statalirectly; instead, an observation variabtét) = g(x(¢))
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is available. In general, the functignis not known to the controller, which only has access to
y(t).

Assuming thatg is nonnegative and integrable, our objective is to designjtmp rate\
and the jump pdff, such that a randomized controller will selagi(t) as a function of the
observationgy(7);0 < 7 < t} collected up to time so that the margina,, p(x, m,t) v(dm)
converges tag(r) ast — oo, wherec is a normalizing constant such that integrates to one.
We shall see later that the knowledge of the normalizing t@mts is not necessary to implement

the proposed control law.

In practice,g is a chosen function of some physical measureméntsor example, we can
selectg(z) = Q(F(x)), where the functior)(-) is a design parameter used to guarantee that
Q(F) is nonnegative and integrable. The functi@t-) may also be used to accentuate the
maxima of F'. For example, if the physical measurement corresponds(tg = 1 — ||z||?, a

reasonable choice fap(-) that leads to a nonnegative integrable function is

Q(F)—{ F it F>) 3)
gef=6 [if F<g§
for somed > 0. Alternatively, if one is mainly interested in the positiohthe maxima off’(x),

a possible choice fof)(-) is given by
Q) =F", 4)

for somen > 1, provided thatF™ is already nonnegative and integrable [if not one could
also use to achieve this, as it was done in (3) above]. The well-knopwtineization method
of simulated annealing arises from a similar objective whers increased to infinity along

consecutive iterations [18].

[1I. CONTROL DESIGN

In this section we provide a family of control laws that acfeieur first objective: to make a
given probability density a stationary probability depddr the PDP. Only in the next section we
will show convergence to this stationary density. In desigrsuch controllers, a key auxiliary
result is the generalized Fokker-Planck-Kolmogorov eigunathat governs the evolution of

probability densities. A derivation of this equation may foeind in [19, Sec. 3.4]. A more
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general treatment for stochastic hybrid systems is givd@®h In the following, we use V,”
to denote differentiation with respect toonly. In this way,V, - fp denotes the divergence of

fp with respect tar.

Assumption 1. It is assumed throughout the paper that

i. fandV,f are continuous functions oR? x M
ii. there is no finite escape time for the differential eqoati: = f(x, m) and only a finite

number of jumps occur in finite time intervals for the PDR¢), m(t)).

0

Theorem 1. A continuously differentiable pdf(z, m,t) is a pdf for (x(¢), m(¢)) if and only if
it satisfies the following generalized Fokker-Planck-Kogorov equation:

o)
a—f +V.-fp=-Xp+ /MT:B(m, m )Nz, m" )p(z, m' t)v(dm') . (5)

0

Proof: Necessity follows from [20, Cor. 6]. Sufficiency follows fro(4) in [20] and
the fact that continuously differentiable functions separthe space of Radon measures, i.e.,
for two Radon measureg; # u, there exists a continuously differentiable functipnsuch
that [ ¢ duy # [ ¢ dus. Since PDPs do not have a diffusion componengnly needs to be

continuously differentiable instead of twice continugudifferentiable as in [20]. [ |

When f(z,m) = m € R¢, equation (5) is known as the linear Boltzmann equation adam
important role in transport theory, where it models pagscinoving with constant velocity and
colliding elastically [21]. In this case, regardingas the density of particles, (5) has a simple
intuitive interpretation: on the left-hand side we find aftdierm V,, - mp corresponding to the
particles straight runs, on the right-hand side we find amm@ih®n term—\p that corresponds
to particles leaving the state, m), and an integral term corresponding to the particles jugpin
to the statgx, m). Equation (5) also appears in mathematical biology wheneoitlels bacterial
motion [22].

Equation (5) will be used in our control design to determin@rap rate\ and a jump pdf
T, such that the joint invariant density of the process [whigllbtained by settingp/ot = 0

in (5)] corresponds to an invariant marginal distributigpp(z, m, t) v(dm) that is proportional
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to g(x). In fact, it will even be possible to obtain jaint invariant distributionp(z, m,t) that
is independent ofn. For simplicity of presentation, in the sequel we assume ghlaas been
scaled so that it is a probability densitfig(z) ¢(dz) = 1. However, none of our results require

this particular scaling.

A. Controller Existence and Construction

We start with an analysis that gives necessary and sufficemditions on the vector fielgd
for the existence of a jump control strategy that achievessteady-state solutiop(z, m,t) =
h(z,m), ¥(z,m) € RY x M, t > 0, for a probability densityh(x,m) that integrates tal:
Jgap (@, m) €(dz)v(dm) = 1. We say that is anadmissible invariant densitif there exists

a jump rateX and a jump pdff}, such thath is an invariant density for the PDP.

Theorem 2. Given a continuously differentiable probability densityz, m) > 0, V(z,m) €
R? x M, with V, - fh € L*(RY x M), a necessary and sufficient condition farto be an

admissible invariant density is given by
/ V.- fh(z,m) v(dm) =0, Yo € R? . (6)
M

Moreover, when this condition is satisfied, the PDP has theree invariant density: for the
uniform jump pdf7,(-,-) = 1, and the jump rate

a(z) = V- fh(x,m)
h(x,m) ’

wherea(x) can be any function for whichh is nonnegative and integrable. O

)\([L’, m) = (7)

Proof: To prove necessity, assume thais an invariant density and substityiér, m, t) =
h(z,m) in (5):

Vo fh=—M\h+ /MTx(m,m'))\(x,m')h(x,m')u(dm') : (8)

Recall that, sincd,(-,m’) is a pdf, [, T,,(m,m')v(dm) = 1. Using this fact, condition (6) is
obtained by integrating both sides of (8) am and changing the order of integration on the
right-hand side.

To prove sufficiency, we seledt,(-,-) = 1 and A as in (7), which leads to

M= a(z) =V, - fh 9)
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Provided that\h is integrable and thak is a valid jump rate (i.e.A > 0), we can replace (9)
andT, in (8) to conclude from Theorem 1 thatis indeed an invariant density for our choice
of the pair ¢,7,). One choice for the function(z) that would satisfy these two conditions is
a(r) = max,ey |Ve - fh]. Indeed, sincéM is compact,fh is continuously differentiable and
V.- fh € L*(RY x M), we have thatv is bounded)\ > 0 and \h € L}(R? x M). |

Remarkl. It may happen that a jump ratesatisfying (9) is not uniformly bounded, which is an
issue in proving convergence to the invariant density. With max,,,c\ |V - fh|, @ sufficient
condition (and also necessary when (6) holds) to hevem) < 2M, V(x, m), for some finite
constantM, is |V, - fh(z,m)| < Mh(z,m), V(z,m). O

Remark2. The control law provided by (7) in Theorem 2 also results ie tlesired invariant
density for a more general jump pdf: one can verify that thectgsions in the theorem hold
for any jump pdf satisfying’, > 0, [,, To(m,m")v(dm’) = 1, [, T(m,m’) f(x, m')v(dm’) =0
and [, T,(m,m')V, - f(z,m")v(dm’) = 0.

Condition (6) may be restrictive on the vector fiefd Sinceg is not known in advance, we
need (6) to hold independently ¢f If, however, we allow:(x, m) to be arbitrary, the only vector
field f that satisfies (6) for all possible densities:, m) is f = 0. A less restrictive condition is
obtained when the desired density can be factoretl(asm) = 5(m)g(x), V(z, m), for some
density 5. In this case, the compactnessMfand the continuity off and of V. f allow us to

interchange integration and differentiation in (6) to abtdne following corollary.

Corollary 1. Consider continuously differentiable probability deresth that can be factored
as h(z,m) = B(m)g(z) > 0,V(x,m) € R x M, where3 > 0 and g > 0 satisfy3V, - fg €
L*(RY x M). Then, a necessary and sufficient condition for7albf this form to be admissible

invariant densities is given by

/Mf(x,m) B(m)v(dm) =0, z € R . (10)

0

Remark3. The existence condition (10) may be restrictive for someadyical systems since it
essentially requires the ability to “reverse” the vectoldfie.e., changing the control signal from

my to my in such a way thaf (x, m;) = — f(z, ms). This is a problem for systems with relative
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degree larger than zero. For example, consider the caseighwh= 2, M = [—1,1], v is the
uniform probability measure ot and f(xy,z2,m) = [z m|T. This PDP cannot satisfy the
existence condition (6) with(x,m) = g(m)g(z), V(z, m). In this case, one would be interested
in achieving [, h(z,m)v(dm) = g(x) with a more general invariant density However, it is

not clear whether that can be done using output feedback. O

B. Output Feedback Controller

Next we discuss whether it is possible to implement the obfdaw (7) proposed in Theorem 2
using only information from the output. To this purpose, @lary 1 is especially useful because
the condition in (10) does not depend on the functigrwhich is not known in advance. We
will therefore chooséi(x,m) = 5(m)g(z). Without loss of generality, we sét = 1, which is

equivalent to redefining the reference measure(tbn) = g(m)v(dm).

The uniform jump pdf7,(-,-) = 1 is trivial to implement since it does not depend .orand
the controller has the freedom to seleat Now, consider the jump rate given by (7), which we
can rewrite as

A=n—f-Vylng—V,-f, (11)

wheren(z) := a(z)/g(x). To computer(z, m), the controller needs to evaluate three terms:

. To evaluate the ternf - V., In g, we observe that

- Vatng(x(t)) = T x(r) (12

where ‘+’ denotes the derivative from the right. Therefates sufficient for the controller

to have access to the time derivative of the observed output= ¢g(x(t)) in order to
evaluate this term.

« To evaluate the ternV, - f, the controller must know the vector fielfl and the current
statex of the process. However, whévi, - f is independent ofr, state feedback is not
necessary to evaluate this term.

. Regarding the termy(z) = a(z)/g(z), we have the freedom to selea{x) under the

constraint that we keep nonnegative and bounded, which can be achieved if we keep
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In particular, when there exists some function: M — R such thatV, - f(z,m) =
®(m),¥(x,m), and a functionM that satisfiesM (¢g) > max,em |V. - fg|/g, we can use the
following output feedback realization of the jump rate:

diny

Y o(m) (13)

A slight generalization of this is used in Example A, in whah output feedback law is achieved

Alx,m) = M(y) —

whenV, - f(z,m) = f(z,m) - V,Inv(g(z)) +v(g9(x))p(m) for some known functiony.

Implementation of the Output Feedback Controll&ssume, for simplicity, thaf/ is constant
and that¢ = 0 in (13). According to (1), the probability of the process ntaining the same
modem in the interval[0, ] is given by

exp (-/0 Ax(7), m(r ))dr) —exp< / M—— (In g(x(r )))dT) :e—Mtjg((é)))) C(14)

This provides a simple and useful expression for the pralctrmplementation of the control:

Suppose that a jump happens at timg At that time pick a random variable uniformly

distributed in the interval0, 1] and jump when the following condition holds
y(t) <t MRy (1), t> T (15)

As opposed to what (13) seems to impbye does not need to take derivativesio§ (¢) to
implement the jump rateAlso, the control law is not changed if a constant scalingdais
applied tog, which is important because we cannot apply a normalizimgtmnt to the unknown

function g.

Often physical quantities propagate with spatial decayfaster than exponential, and this
allows for the uniform boundedness ¢V, Ing|| and the existence of a constahf in (13).
If, however, the measured quantity has a faster decay tateay still be possible to achieve
boundedness dfV, In g|| by preprocessing the measurements (as explained at the Sedtwmn
I). In addition, the constand/ may be identified on-line. This can be done, for example, with

the following update rule:

—d(1 dt*|] +e€, if M~ (t) < |d(1 dtt| +

My = €€ Ay /dE ]+ o (1) < ld(ny) /di*] + ¢ 16
M~ (1), else

for t > 0, M(0) = 0 and some > 0. A more elaborate adaptation could obtained by allowing

M to depend ory. This would have the advantage of reducing the number ofagssary jumps

in some parts of the space.
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IV. ERGODICITY OF THE CONTROLLED PROCESS

In this section we investigate whether the above contrategrly makes the probability density
of the PDP converge tg as time goes to infinity. We summarize the results in thisiseatith

Theorem 3, which gives necessary and sufficient conditiongdnvergence.

Let B,(z) denote the open ball with radiuscentered at: € R?. We say that the system
i = f(z,u), u € M, is approximately controllabléf, for every z,,z; € R? and¢; > 0, there
exists a timef; > 0 and a measurable contro(t) € M that steers the state from(0) = z, to
x(t1) € B, (x1).

Theorem 3. Suppose that

1. g > 0 is a continuously differentiable density;

2. there exists a uniformly bounded continuous funcfiérand a constant > 0 satisfying

Ve fgl/g+e < M(g);

3. V.- f(z,m) = ¢(m),¥(z,m).
Consider the PDRx(¢), m(t)) with the output feedback control:

_dlny

T.(-,-) =1, Ax,m)= M(y) gy

— ¢(m) . 17)
Then,p(xz,m,t) — g(x) in total variation ast — oo for all initial densities if and only if the
vector field satisfies

i. [ f(z,m)v(dm)=0,Vz €RY

ii. the systemi = f(z,u), u € M, is approximately controllable.

Moreover, the above convergence implies the following em®nce of empirical averages:

for everyr > 0 and everyy such thatyg € L'(R? x M),

n—1
n! Zw(x(rk), m(7k)) — g M¢(z,m)g(m) ((dz)v(dm) a.s. (18)
k=0 x
for all initial conditions. O

The proof of this theorem (with slightly stronger convergenwill appear later in this section.

Before that, we discuss the assumptions and conclusiorfseahtorem.
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Remark4. We say that a seéF C R? is a positive basidf 0 is in the (algebraic or topological)
interior of the convex hull off. A typical case in which conditiorii) is satisfied is when
{f(x,m);m € M} contains a positive basis fd@< for all x € R? (see the Filippov-Wazewski
argument in Proposition 2). If, for example, this basis #ependent of, we can always define

a reference measuteto satisfy condition(i). O

In monitoring applications, the convergence of empiriograges in (18) provides the basis
for a procedure to estimatg by observing the positions,, of S identical vehicles perform-
ing the jump control strategy above. To achieve this, wet digrpartitioning the region of
interest into a family of setf A, c R}, then we sample the vehicles’ positions at times
kr € {0,7,27,..., (N — 1)1}, for somer > 0, and count the frequency with which vehicles
are observed in each sdt. It turns out that this frequency provides an asymptotycatirrect

estimate of the average value @¢fon the setd;. To see why this is the case, we define

N—-15-1

Gan(A) = 57 32 D2 1a,Gxs(kr)) (19)

k=0 s=0
wherel, denotes the indicator function of the sét Assuming that the vehicles have mutually
independent motion, we have by (18) that
Gsn(4;) — G(A;) ::/ g(x) {(dx) a.s. (20)
A;
as N — oo. This shows thay can be estimated by averaging the observations of the eshicl
position as in (19). The use of multiple independent agefits-(1) improves the estimates

according to the relation
V&I‘(GLN)

S
The following result proven in the end of the section showat tonvergence is preserved if

var(Ggn) = (22)

M is identified on the run using (16).

Corollary 2. Suppose thatupga, |V:- f9]/g9 < oo and thatV, - f = 0. Then, the conclusions
in Theorem 3 hold when the jump rate (17) is replaced by

diny

A m) = M(1) - Y

(22)

where M(t) is identified on-line using (16).
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Remarks. In [3] it is shown that convergence of the probability deysit g can also be achieved
with a diffusion controller, i.e., a controller that makesewof brownian motion rather than Poisson
jumps. However, the diffusion technique cannot be extermke@asily to more general vector
fields. Indeed, one can verify that a result similar to Theofwould only be valid for vector
fields that have an (complex) exponential dependence onaheotled parameters, which may

be very restrictive. O

A. Elements of the Ergodic Theory for Markov Chains

Next, we present some concepts from ergodic theory that eeelad to characterize the
convergence of our PDP and prove Theorem 3. We consider anam®geneous Markov process
®(¢) taking values in a locally compact separable metric spaequipped with a Borer-algebra

B. We define the transition kernel
P'(y,A) :=Pr{®(t) € A| ®(0) =y}, yeY,AeB . (23)

We say that ar-finite measure: is aninvariant measurdor P! if

p= [ Pyt w0 (24)
Y
We define theoccupancy timef the setA € B as
mai= [ i) de (25)
0

For a nontrivialo-finite measure), we say thatpb is -irreducibleif, for A € B,

P(A) > 0= E[ny, | tI)(O):y]:/OOOPt(y,A) dt >0, VYyeY. (26)

We say that® is positiveif it is ¢-irreducible and if it has an invariant measyresatisfying
w(Y) < oco. We say thatd® is aperiodicif some sampled chai®(nr) is ¢-irreducible, i.e., if
there exists some > 0 such that
YA)>0=) P (y,A) >0, VyeY . (27)
n=0
A -irreducible process is calleHlarris recurrentif ¢(A) > 0 implies that{n, = oo}
almost surely. It is well known [23, Thm. 6.1] that aperiogiasitive Harris recurrent processes

are ergodic in the sense that
1P (y,) — pl| = 0ast — o0, Yy €Y, (28)

June 21, 2011 DRAFT



15

wherep denotes the invariant measure and the norm is the totaltiarinorm. A setH is said

maximal absorbingf
yeH < Pr{nyp =00 | ®0)=y}=1.

A set H is calledmaximal Harris seif H is maximal absorbing and restricted toH is Harris

recurrent.

Next, we define an important continuity property used in tha@pof our results. We say that
® is a T-processf, for some sampling distributiod on R™,

Ro(y, A) = / Pl(y, A) 8(dt) > K(y, A), y€ Y, A€ B |
0

whereK (-, A) is a lower semicontinuous function for all € 5 and K (y,Y) > 0 for all y € Y.

For av-irreducible T-process, we have a disjoint decompositibthe space [23, Thm. 3.4]
Y=HUE , (29)

where H is a maximal Harris set anfl is transient in the sense théy,; = co} U {® — oo}

almost surely. We prove next that must be open.
Lemma 1. The setE in the decomposition (29) is an open set.

Proof: Suppose thaf’ is not open. Then, there ig € F such thatO N H # () for every
neighborhood) of y . Sincey € FE and H is maximal absorbingP!(y, E) > 0 for all ¢ > 0.
Then, by Theorem [24, Thm. 9.3.2], there exists a neighbmli® of y and a distributiord such
that Ry(yo, £) > 0 for all yo € O N H. This contradicts the fact thdf is maximal absorbing.

Therefore,E must be open. [ |

B. Ergodicity for the PDP

In this section we derive some new results regarding thededy of invariant measures of
PDPs and prove Theorem 3. While some ergodicity resultsifspéar PDPs may be found in
the literature (see e.g. [25]), those rely mostly on Fokyapunov criteria and do not appear
to be suited for the purposes of this paper, since we try teepeygodicity for general vector
fields f. On the other hand, our task of proving ergodicity is made esehat easier since we

know, by design, that an invariant measure exists.
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Let us calljump Markov chaina new PDP obtained from the original one by replacing the
vector fieldf by f(x,m) =0, ¥(x, m). We say that the jump Markov chain isode-irreducible
if, for each initial (z,m) € R x M and any set3 with v(B) >0, there is a positive probability
that {z} x B will eventually be reached frortw, m). The following assumption will be needed

in the results of this section.

Assumption 2. i. the jump Markov chain is mode-irreducible.
ii. A(x,m) is a bounded continuous function & x M and, for any bounded and continuous
1, the map
(z,m) = / T, m)p(, m') v(dnd') (30)
M
is continuous.
ii. [ f(z,m) v(dm)=0;

iv. the systemt = f(x,u), u € M, is approximately controllable.

We denote byP* the transition kernel of the PDE(¢), m(t)).

Proposition 1. Suppose that Assumption 2 (i)-(ii) holds. Let: R™ — M be a piecewise
constant function with finitely many jumps and idt) be the solution tac(t) = f(z(t), m(t))
with initial condition zy. Then, given the initial conditiolizy,m(0)) and anye;,t; > 0, the
PDP (x(t), m(t)) visits the ball of radius; centered atz(t,), m(t1)) with positive probability

at timet = ¢4, i.e.,
P ((2(0),m(0)), Be, (Z(t1), m(t1))) > 0, Vi, e > 0. (31)

0

Proof: By Assumption 2(i), given a timet; > 0 and e, > 0, there existsn(t) satisfying
m(t) € supp T (-, m~(t)) andm(t) = m(t) on[0,t,]\S, whereS has Lebesgue measuig
Thus, if &(t) = f(z(t),m(t)) andz(0) = ,, the assumption of continuity o, f and of no
finite scape time implies have tht(t;) — z(t1)|| < ke for some constant > 0. On the other
hand, the smoothness ¢fand the irreducibility and continuity assumptions in Asgtion 2
(i)-(ii) imply that (x(t1), m(¢;)) is found in any neighborhood dfx(t;), m(t1)) with positive
probability. Combining the two facts, we have the resultha proposition. [ |
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Let co(A) denote the closure of the convex hull of the get

Proposition 2. Suppose that Assumption (i)-(ii) holds and4ét) be a solution to the differential
inclusion & € @0 {f(&,m),m € M} with initial condition z,. Then, givene;,¢; > 0 and
mo,my € M, the PDP (x(t), m(t)) with initial condition (zo,m) visits the ball of radius

e; centered at(z(¢1), my) with positive probability at time = ¢4, i.e.,
P! ((x0,m0), Be, (2(t),m1)) >0, Vt, e >0 (32)

and for allmg, m; € M. As a consequence, under Assumption (i)-(ii), approxiroaterollability

is equivalent to/ x v-irreducibility. O

Proof: Let z,(t) denote the solution ta,(t) = f(x,(t),u(t)) for the initial conditionz,
and some control(t). By the continuity ofV, f and the assumption of no finite scape time
(Assumption 1), we can apply the Filippov-Wazewski theof26) Thm 10.4.3] to conclude that,
giventy, ey > 0, there exists a measurable contrdt) € M such that||x,(t1) — z(t1)]| < €o-
Under Assumption Xi), we can apply Theorems 2.20 and 2.24 of [27] to conclude theet
exists a piecewise-constant contralt) € M with finitely many jumps that approximates the
measurable controk(t) in the sense thalz,(t;) — x,,(t1)|| < €. Thus, by Proposition 1,
we conclude thatP" ((xg, m(0)), B, (Z(t1), m(t1))) > 0 for any ¢; > 0. As in the proof of
Proposition 1, this holds for arbitrary initial and final nesdn(0) andm(t¢,) since the PDP is
jump-irreducible andn may take arbitrarily small time on those states. [ ]

Similarly to [24, Chap. 7], we establish a link between coltbility and irreducible T-

processes in the next proposition.

Proposition 3. Under Assumption 2 (i)-(iv), the PDRx(t), m(t)) is an aperiodic/ x v-

irreducible T-process. O

Proof: By Proposition 2,/ x v-irreducibility is equivalent to the controllability coittbn
(iii) . From condition(iv), we have tha) € co{f(x,m);m € M} and Proposition 2 implies
that P*((xq, mo), Be, (20, mo)) > 0 for all t > 0 and e, > 0. This implies aperiodicity of the
¢ x v-irreducible process since trajectories starting on argnaoget return to the set at any time
with positive probability. By [14, Thm. 27.6], Assumption(R) implies that the PDP has the
(weak) Feller property, i.e., the functign— [.. ., ¢(y)P'(§, dy) is continuous for all bounded
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continuous functiong) and allt > 0. Given the Feller property, théx v-irreducibility and the
fact thatsupp(¢ x v) = R? x M has non-empty interior, we can use [24, Thm. 6.0.1] to catelu
that the PDP is &-process. [ ]

Proposition 4. Suppose that Assumption 2 (i)-(iv) holds and that the RRR), m(¢)) admits

an invariant probability densitya(x, m) > 0. Then, the PDP is an aperiodic positive Harris

recurrent process and convergence to the invariant measutetal variation holds as in (28).
]

Proof: Let 1 denote the invariant measure corresponding.t®y Proposition 3, the PDP
is an aperiodid x v-irreducible T-process. Therefore, the sp&te< M admits a decomposition
into a maximal Harris sef/ with invariant measurg: and a transient set’ as in [23, Thm.
3.4]. Sinceu(H) = 1 and h(z,m) > 0, we must have x v(E) = 0. However, FE is an open
set by Lemma 1. This implies thd = () and therefore the PDP is an aperiodic positive Harris

recurrent process. By [23, Thm. 6.1], we have convergende €é23). [ |

Proof of Theorem 3: (Necessityhe necessity of conditiofy) follows from Corollary 1. To
see the necessity of conditidii) , note that the convergence gz, m, t) to g(z) implies that the
process isu-irreducible, whereu(dz, dm) = g(z)¢(dz)v(dm), which implies the controllability
condition sinceg > 0.

(Sufficiency)lt follows from Theorem 2 and Corollary 1 thatis an invariant density for
the pair(\, 7,) presented. To prove convergence, we show that Assumptianida land apply
Proposition 4. The inequalityV, - fg|/g + ¢ < M implies that\ = M — (V, - fg)/g > €
and that\ is uniformly bounded. Therefore, Assumption(i2 holds since\ > ¢ and a uniform
jump distribution imply mode-irreducibility. Sincg¢g is continuously differentiable in:, we
have that\ is continuous and, therefore, Assumptiofii2 holds. Assumption Ziii)-(iv) follows
from conditions(i) and (ii). Therefore, we have that the process is aperiodic positi&ei$i
recurrent and convergence in total variation holds. Cyedhle same convergence result as in
(28) must hold for the kerneP*”. This implies that(x(k7), m(k7)) is positive Harris for all
7 > 0. Then, the convergence of the empirical averages for aialntonditions follows from
[24, Thm. 17.0.1]. [

Proof of Corollary 2: We consider the Markov process formed ((t), m(¢), M(¢)). Let
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M = e[e t supgayy | Ve - fgl/g] + €. From (16),M(t) increases by at leastat every update.
Thus, M(¢) must achieve a limitM, < M in finite time almost surely. Suppodd, < M — ¢
and letCy = {(z,m) € R¥ x M : |f - V,Ing| + ¢ < My}. This definition implies that
(x(t),m(t)) € C, for all time. Let g, be a probability density such thgt = ¢ on Cy and
|f - VaeIngg| + € < M. Sincex > 0 on Cy, we can apply Theorem 3 to conclude thét, v, t)
converges tgy,. But, sinceM, < M — e,

s {If Ve lng|l+e>M—e}

where the last inequality follows from the continuity 6f V, In g. This contradicts the conver-
gence ofp(x, m,t) to go(x) sincefcO go(x)l(dz)v(dm) < 1. Therefore M(¢) achieves the limit
M, = M in finite time almost surely. From the proof of Theorem 3, tilsishe same to say that
(x(t), m(t), M(t)) reaches the Harris recurrent &t x M x {M} in finite time almost surely
from any initial condition. Using the strong Markov propeds in [24, Prop. 9.1.1], this implies

that the process is Harris recurrent and the proof procegds the proof of Theorem 3. ®

V. EXAMPLES

In this section we present applications of our main resulthtee systems characterized by
different dynamics. The first dynamics are heavily inspibgdthe tumble and run motion of
E. coli and correspond to a vehicle that either moves in a straigbtadr rotates in place. The
second is a Reeds-Shepp car [28], which has turning contstydiut can reverse its direction of
motion instantaneously. The third dynamics corresponds ¥ehicle that is controlled through

attraction/repulsion by one of three beacons in the plane.

A. Optimotaxis

Optimotaxis was introduced in [3] as a solution to an in loptimization problem with point
measurements only. We consider vehicles moving with mositi € R? and velocityvp(x),
where v belongs to the unit spheifél = S? and the uniformly bounded functiop(x) is the
space-dependent velocity amplitude. The reference meagarthe normalized surface measure
on the sphere. In this case, the mode is represented dyd we havef(z,v) = vp(x). Our

objective is to make the probability density of the vehictessition converge to an observed
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function g and then have an external observer that can measure thdegepasition to collect

information abouty.

In [3], we were forced to consider a constant velocity aroglitp, but now we can allow the
velocity amplitudep to depend one through the outpuy(x). This modification is important
since it is generally advantageous to move fast throughonsgiwhereg is small and slowly

through regions where is large. This idea is pursued further in [29].

Here we apply Theorem 3 with a small modification. The assionph the theorem that
V. - f be independent of is only needed to make sure thatin (11) can be implemented
with output feedback. Although this assumption is not §atisin our example, we can still

manipulate (11) to obtain the following output feedback liempentation:
AMz,v) =np—vp-V;Inpg (34)

wheren > ||V, In pg||. Because the divergence pfis nonzero, we must alter the implementation
rule (15) to

p(x(t)y(t) < re” ™ p(x(m))y (), t =7 . (35)

Since{f(z,v);v € M} is a positive basis for all: provided thatp(x) > 0,Vx (see Remark

4), we conclude convergence of our controlled process as@oem 3.

Next, we present numerical experiments to illustrate tloppsed optimization procedure. The
desired stationary density is taken todge) = ¢/ (x), whereF" are the physical measurements,

¢ is a normalizing constant andis an integer.

The ability of optimotaxis to localize the global maximumsisessed in Fig. 2. We observe
a swarm of agents that starts from the upper left corner dijially clusters around a local
maximum (II) and then progressively migrates to the globakimum (l11,IVV). We notice that
the center of mass of the swarm goes straight through thértmamum to the global one. When
the equilibrium is reached, most agents concentrate in ghberhood of the global maximum,
while a few remain near the local maximum as one should exfgée proportion of agents at

each maximum reflects the values phs expressed by (20).

To quantify the convergence of the positions of the agentsh&o desired distributiory,

we compute the correlation coefficient between the vediGr(s;)]; and [Gsn(A;)]; in (20).
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() (I

(i T (V)

Fig. 2. Different stages of optimotaxis in the presence ab twaxima. Black dots represent agents position whereas the
background intensity represents the signal intendityw) = 0.4~ 1# 4 0.6e == (15 —151Il | (2) = F™(2) with n = 10,
p(z) =1 andn chosen as in (16).

This coefficient was calculated using a space grid with rggni 0.068 and its time evolution
appears Fig. 3. Also included in Fig. 3 is the evolution of doerelation coefficient when the
measurements are quantized and when exogenous noise @. &tdethe quantized case, we
used a quantized version of the desired dengitp calculate the coefficient. Interestingly, the
addition of noise does not seem to affect considerably tleed@f convergence. Nevertheless,
the residual error is greater due to the fact that the obdestegtionary density is not exactly

equal tog. On the other hand, quantization has a negative impact ovecgence time.

Many factors may affect the convergence speed. In optimizapplications withg = F™",
we have studied in [3] the influence of the parametem the convergence. The results suggest
that there exists an optimal choice ofthat maximizes the speed of convergence. The velocity
amplitude p(z) is another design parameter that influences convergenea spe Fig. 4, we
observe that the transient response dat 25 is initially faster when compared to the transient
response fop = 10, but it becomes ultimately slower after a level ™% of correlation is
reached. In the same figure we see that one can speed up cametgy adjusting(z) to be
large wheng(z) is small and to be small wheaq(x) is large. The use of a space dependent
velocity amplitudep(z) is further studied in [29].
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Fig. 3. Evolution of the coefficient of correlation for: theiseless case (solid), the quantized measurements cass)(cand
the exogenous noise case (dashed). The number of quastizatels is 64. The noise added:tds white Gaussian with standard

deviation10~2 along each axisN = 100 agents were uniformly deployed in the rectangle.5, —1.5] x [1.5,2.5] x M and

simulated with sampling timé. Refer to Fig. 2 for more details.
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Fig. 4. Correlation coefficient for the casps= 25 (dashed),, = 10 (dash-dotted) ang = 25 tanh(g~2/25) (solid) with

n = 1 and other simulation details as in Figs. 2 and 3.

Chemotaxis and OptimotaxisChemotaxis in the bacteriurk. coli can be seen as an
example of how the jump control of probability densities sed for the optimal distribution
of individuals. The run and tumble behavior discussed initii@duction can be cast into our
optimotaxis framework for some specific expressions Xoand 7. It is remarkable that the
expression for\ in (34) obtained in the optimotaxis example is an affine fiomcof d(Iny)/dt,

which coincides with simple biochemical models for the tlimdp [jump] rate of theE. coli,
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see, for instance, [30, Sections 6.1 and 8.3] or Alt [2, Eiguad.8]. The latter author proposed
the existence of a chemical activator for the locomotion maecsm such that a tumble would
take place each time the concentration of this activatooimes smaller than a certain value.
The concentration of this activator would jump to a high eaht tumbles and decrease at a
rate corresponding t9 in (34). A receptor-sensor mechanism would then regulaettditional
generation of the activator [this corresponds to the ternV Ing(z) in (34)], which would

modulate the run length.

Though the use of tumble and run in optimotaxis was inspigedhHemotaxis, one would not
necessarily expect that our choice of the jump rate would keacontrol laws that resemble
the biochemical models in bacteria. More precisely, we Haweowed the PDP structure from
chemotaxis, but the parametersand 7, were designed independently of it. It turns out that, if
we make the natural assumption that the jump pdf is unifordmyributed, the jump rate given
by (34) is the unique jump rate that achieves a stationargiten (this can be seen from the
Fokker-Planck-Kolmogorov equation). This suggests tlsd dacterial chemotaxis is aimed at
achieving a stationary density that is a function of the meas profile of chemical attractant.
As a consequence of this fact, our control law can be useddtyzsthe bacterial motion and

to predict what stationary distribution is aimed by the baet

Let us imagine that bacteria are performing optimotaxis tas idescribed in this paper,
let p(x,v,t) be the spatial density of bacteria and lgtr) be some function related to the
concentration of nutrients at point Suppose also that the bacteria are in a static environment
like a chemostat, which would maintain the level of nutrgegbnstant in time, or that the
consumption of nutrients happens in a timescale that is nslmher than chemotaxis. Under
these conditions, we will show that we can translate theativge of p(x, v, ) converging in total
variation tog as the minimization of a biologically relevant quantityoRr [31], convergence of
p to g implies that

Ht) = — /X /M p(@,v,1)In (% + %%) (dz)v(dv) = 0 (36)

where H (t) is the Kullback-Leibler divergence betweef, v,¢) and the convex combination
1/2 g(x)+1/2 p(x,v,t). SinceH (t) > 0, V¢, and is equal to zero if and only if(x) = p(z, v, t)
a.e., one can regarH (t) as a cost functional that is being minimized by bacterialnobiaxis

(and, in fact, also by optimotaxis). More specifically, wetio® that what is being maximized
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is the expected value of an increasing concave functiog/pf which is a ratio that measures
the concentration of nutrients per density of organismaisThvhat is being maximized here is
not the probability of a bacterium being at the point of masmconcentration of nutrients,
but the average amount of nutrients a bacterium has accesdén interacting with many
others of its kind, which is a biologically meaningful cosir fthe population of bacteria as a
whole. Interestingly, this effect is achieved as a resulbofindividualistic behavior (without
direct interaction among the bacteria), which suggests itheould arise as an evolutionary

equilibrium.

Since our conclusions are based on a simplistic model fomolexis, further investigation is
necessary. Nevertheless, our analysis suggests an opboatrative aspect of chemotaxis that is
original to the best of our knowledge. The idea of cooperaimong bacteria is corroborated by
the phenomenon of chemotactic signaling, according to lwbacteria may cooperate by emitting
attractants or repellents to indicate to others the presencscarcity of nutrients respectively
[32]. Similar conclusions regarding an adaptation to thatiap density of preys may be drawn
for predators following the work in [33]. The optimality ohemotaxis in the sense of tracking

chemical gradients was investigated in [34].

B. Example 2

We now consider optimotaxis when vehicles are subject tarigrconstraints but are still able
to immediately change between forward and backward moktmre precisely, the dynamics of

the vehicle is given by

v cos 0
flz,v) =] vysinf | | (37)
w
wherex = [z1 22 0], v = [y w|' € M = {—v,0,v9} X {—wp,0,wp} and v is the uniform
probability density oveM. This kind of vehicle is referred to in the literature as theeRs-Shepp
car [28].

The vector field in (37) satisfies conditioi) 6f Theorem 3 and, even thoudlf(z,v); v € M}
does not contain a positive basis f&t as in the previous example, it is still an easy exercise to

verify condition (i) in the Theorem 3 by constructing trajectories between aygoints inR3.
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This controllability condition would hold true even if zelinear velocity was not allowed. Indeed,
we know that it is always possible to steer a Dubins’ vehiadénsgen any two configurations
[35]. Since a Dubins’ vehicle is a special case of the Redwp car in which only positive
linear velocity is allowed, we have that it is also possiblsteer a Reeds-Shepp car between any
two configurations (states). Hence, we can nsend 7, from Theorem 3 to make the process

pdf converge to the invariant densigy More preciselyA =n — f-V,Ilng andT, = 1.

Figure 5 illustrates how the empirical distribution indeshverges to the desired density. To
evaluate the effect of turning constraints, we also plotuheonstrained case discussed in the
previous example. The figure shows that convergence is digligtly slower compared to the
unconstrained case whewy, = 0.3, but there is a strong dependence in the turning speed as
shown when this speed is decreased by a factor of 2. It is worthention that in the case for
which 0 linear velocity is not allowed convergence is only slighthpwer than in the present

case.

xxxxxxxxxxxx
x
X’(K’(
X
x
x

Correlation Coefficient

L L L L L
0 200 400 600 800 1000 1200

time

Fig. 5. Evolution of the coefficient of correlation for theasmstrained turning case (solid), for the constrainedingricase
with vo = 1 andwo = 0.3 (dots) and for the constrained turning case with= 1 andwo = 0.15 (cross). The simulation

setting is the same as of Figs. 2 and 3.

C. Example 3

In this example, vehicles make use of three beacons in codeavigate. In particular, vehicles
always move along straight lines towards or away from onéheflieacons located at positions
a,b,c € R% Letd = 2, M = {a,b,c} x {—1,1}, wherea,b,c are not in the same line, and

v is the uniform probability distribution ovell. We take f(z,m) to be f = ma(z — my),
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r € R?, my € {a,b,c}, my € {—1,1}. Thus,a,b and c are three points in the plane that may
be either stable or unstable nodes (depending on the sign)ofThis is an example for which

the divergence is not zero. According to Theorem 3, we choose
A=M-—f-Ving—2ms, , (38)

for someM sufficiently large. Note thaf satisfies the hypotheses of Theorem 3: siack and

c are not aligned{ f(x,m); m € M} is a positive basis (see Remark 4). The class of reachable
densities includes those for whiet|V 1n ¢|| is uniformly bounded, which includes all densities
with polynomial decay. We note that a uniforf is not the only one that achieves the desired

density for such a\. For example, as noted in Remark 2, it is possible to chdgssuch that

, 1
Tx(mv m) = ZlM—{m’lx{—l,l}}(m) : (39)

This jump pdf is such that jumps to the flows with the same fixethfpare not allowed. Yet,
since\T,, still defines a mode-irreducible Markov chain, we can applypBsition 4 to conclude

convergence to the invariant density

VI. CONCLUSION

A solution to the problem of controlling the probability deties of a process was provided.
Our solution, which involves a randomized controller thaitshes among different deterministic
modes, is applicable when the observation process is a fxedriknown function of the state.
Necessary and sufficient conditions were derived to detexmwhen such a controller can enforce
a given stationary density for the process. We also provedlitions under which the probability
density of the process converges to the observation fundiie discussed potential applications
of this theory to the area of mobile robotics, where it can beduto solve problems including

search, deployment and monitoring.

One challenge to be addressed in the future is the develdphesign tools for systems with
relative degree higher than or equal to one, as discusseceimafk 3. A second important
problem is to define convergence rates in a manner that islusefboth analysis and design.
Possible frameworks include the use of Lyapunov technigueke theory of Large Deviations
as in [29]. In addition, the authors believe it would be bemafito explore new applications
for their method in the existing large domain of applicaidor Markov Chain Monte Carlo

methods.
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