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Abstract. We consider the problem of seeking the maximum of a scalar
signal using a swarm of autonomous vehicles equipped with sensors that
can take point measurements of the signal. Vehicles are not able to mea-
sure their current position or to communicate with each other. Our ap-
proach induces the vehicles to perform a biased random walk inspired
by bacterial chemotaxis and controlled by a stochastic hybrid automa-
ton. With such a controller, it is shown that the positions of the vehicles
evolve towards a probability density that is a specified function of the
spatial profile of the measured signal, granting higher vehicle densities
near the signal maxima.

1 Introduction

This paper addresses the problem of controlling a team of autonomous vehicles so
as to find the maximum of a scalar function defined over a region of interest, with-
out position and gradient measurements. In the stochastic framework adopted,
our goal is to enforce a probability density for the vehicles’ positions whose
maximum coincides with the maximum of the scalar function. This is achieved
by inducing the vehicles into a random motion that mimicks the chemotactic
behavior observed in the bacterium Escherichia coli. Being unable to directly
sense chemical gradients because of its reduced dimensions, this organism is still
able to follow the gradient of a chemical attractant, despite the rotational dif-
fusion that constantly changes the bacterium orientation. This is accomplished
by switching between two alternate behaviors known as run and tumble [1, 2].

The problem of finding the maximum of a spatially defined function by mov-
ing agents (that we also call vehicles) is often called source-seeking. This termi-
nology refers to a specific application of this problem, which consists of finding
the source of a chemical substance that is being produced at one particular loca-
tion, but spreads over a region through a diffusion process. Potential applications
for source-seeking include chemical plant safety, hydrothermal vent prospecting
and pollution and environmental monitoring.
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We are interested in source-seeking under very limited sensing by the vehi-
cles. Gradient information is often not directly available, either because of noisy
and turbulent environments or because the vehicle size is too small to provide
accurate gradient measurements, challenges also faced by E. coli. In addition,
dispensing position measurements is necessary in applications for which inertial
navigation systems are expensive, GPS is not available or not sufficiently accu-
rate (as in underwater navigation or cave exploration), or the vehicles are too
small or weight-constrained to carry this type of equipment.

Classical techniques from numerical optimization have been adapted for single-
and multi-vehicle search strategies when gradients are not explicitly available
[3–5]. In [3], the local gradient is estimated by means of a circular movement.
The simplex method is implemented with a network of autonomous vehicles in
[4]. However, this approach requires the ability to measure the vehicles relative
position. Mayhew et al. [5] proposed a hybrid control algorithm to perform a con-
jugate directions method without position measurements. Control algorithms for
networks of vehicles inspired by collective behavior such as fish schooling and
chemotaxis are designed in [6, 7]. An extremum seeking strategy is adopted in
[8]. Statistical approaches have also been proposed for the case of turbulent en-
vironments, but assuming the availability of vehicle position measurements [9,
10]. In general, when convergence is proven in the above mentioned references,
this is done exclusively under the assumption that the signal spatial profile is
quadratic-like. Bio-inspired techniques have a strong appeal in optimization. Ex-
amples are the well-known genetic algorithms and the solutions for the traveling
salesman problem inspired by ant colonies [11]. Mimicking chemotaxis is not a
new approach to the source-seeking problem, see e.g. [6, 10, 12, 13].

In the E. coli, chemotaxis consists of an alternation of two modes of motion
called the run and tumble phases. In the run phase the bacterium swims with
constant velocity by rotating its flagella in the counter-clockwise direction. In the
tumble phase, by rotating its flagella in the clockwise direction, the bacterium
spins around without change in its position and in such a way that it enters
the next run phase with arbitrary orientation. Berg and Brown [1] observed
that the only parameter that is affected by the concentration of a chemical
attractant is the duration of runs. Roughly speaking, the less improvement the
bacterium senses in the concentration of the attractant during the run phase,
the more probable a direction change (tumble) becomes. Such a motion leads
to a distribution whose peak usually coincides with the optimum of the sensed
quantity. Whereas the previous works on chemotaxis-based source-seeking rely
on a heuristic approach, we present a technique that allows one to control the
probability density of the vehicle’s position to permit the estimation of not only
the peak of the sensed signal, but also the whole spatial profile of that signal.
In fact, with the algorithm proposed, the probability density of the vehicle’s
position converges to a pre-specified function of the signal spatial profile. We
adopt the suggestive name of optimotaxis to designate this search procedure.
An important feature of optimotaxis is that it can be used with a broad class of
signal profiles, including the ones with multiple maxima, a feature that is shared



with a few other stochastic optimization algorithms which are not constrained
by vehicle kinematics [14, 15].

Optimotaxis is motivated by scenarios in which source-seeking is to be solved
by a team of autonomous agents. Since the probability density of the agents’ po-
sition is guaranteed to converge to a pre-specified function of the sensed signal,
a supervisor that can sense the positions of the individual agents will be able to
monitor the profile of the sensed signal and discern the location of its optimum.
Our convergence results (cf. Theorems 1–2) show that by averaging the obser-
vations of the position of a single agent over time one recovers the signal profile.
In fact, optimotaxis can be performed effectively by a single vehicle. However,
given that optimotaxis was specially designed for use with small and cheap ve-
hicles, one should take advantage of the more accurate estimates obtained with
multiple vehicles, as we explain in Section 4.

2 Problem Description and Controllers

We consider vehicles with position x ∈ Ω := R
d and velocity v ∈ V := ρS

d−1,
where ρ > 0, d ∈ {2, 3}, and S is the unity sphere equipped with the Lebesgue
measure dµ. We denote by F (x) the scalar function describing the intensity of
the sensed signal at position x ∈ Ω. We define p(x, v, t) as the probability density
of finding a vehicle at position x with velocity v at time t. For each fixed time
t, p(x, v, t) ∈ L1(Ω × V ), where Ω × V is equipped with the product measure
dx ² dµ.

The objective of optimotaxis is to design a control law to select the velocity
v(t) as a function of the measurements {F (x(τ)); 0 ≤ τ ≤ t} collected up to time
t such that the marginal

∫

V
p(x, v, t)dµ(v) converges to some density Q(F (x)).

The function Q(·) is a design parameter called the shaping function which is
used to guarantee that Q(F ) is a valid probability density function and perhaps
to accentuate the maxima of the sensed signal. For example, if F (x) = 1−‖x‖2,
a valid nonnegative shape would be attained with

Q(F ) =

{

cF , if F > δ
cδeF−δ , if F ≤ δ

, (1)

where δ > 0 and c is a normalizing constant. Alternatively, if one is mainly
interested in the position of the maxima of F (x), a possible choice would be
Q(F ) equal to some power of F , which would make maxima more distinct.

Two different controllers inspired by bacterial chemotaxis are presented be-
low.

2.1 Run and Tumble Controller

The jump-diffusion framework that we adopt for optimotaxis was introduced for
bacterial chemotaxis in [16, 17]. We consider here a vehicle moving with constant
velocity between tumbles. The conditional probability that a tumble does not



occur between the time instants t and s, given that the vehicle was at position
x with velocity v at time s is given by

exp

(

−

∫ t

s

λ(x + τv, v)dτ

)

, (2)

where the positive function λ(·, ·) ∈ L∞(Ω × V ) is the tumbling rate. At each
tumble, the velocity jumps to a random value v ∈ V with probability density
T
v
− that may depend on the velocity v− just before the tumble. In the bacterial

case, the quantities λ and Tv were characterized by Alt [2]. In our work, these
should be viewed as control parameters which we will select and that may depend
on x and v through the measurements {F (x(τ)); 0 ≤ τ ≤ t}.

This controller for optimotaxis is captured by several stochastic hybrid sys-
tem models that appeared in the literature, including Piecewise-Deterministic
Markov Processes (PDPs) [18], our stochastic hybrid models discussed in [19],
or the hybrid models initially proposed in [20] by Hu, Lygeros, and co-workers
and further expanded in a series of subsequent papers. Fig. 1 depicts a schematic
representation of our hybrid model for optimotaxis.

ẋ = v
v̇ = 0

λ(x,v)

v ∼ T
v
−(·)

Fig. 1. Hybrid automaton for optimotaxis

The probability density p(x, v, t) was shown to satisfy the following integro-
differential equation [16, 17]:

∂p

∂t
(x, v, t) + v·∇xp(x, v, t) = −λp(x, v, t) +

∫

V

Tv′(v)λ(x, v′)p(x, v′, t)dµ(v′) .

(3)
We note that (3) has been indifferently used in the literature for p as a probability
density or simply the density of individuals. When p is regarded as the density
of individuals, (3) has a simple intuitive interpretation. On the left-hand side
we find a drift term v · ∇xp corresponding to the vehicles straight runs, on the
right-hand side we find an absorption term −λ(x, v)p(x, v), that corresponds
to vehicles leaving the state (x, v), and an integral term corresponding to the
vehicles jumping to the state (x, v). Equation (3) is also known in linear transport
theory, where it models the particular case of pure scattering [21, 22]. In that
framework, the absorption and the integral terms account for elastic collisions
between particles.

2.2 Diffusion Controller

In the limit as the tumbling rate and the velocity approach infinity the jump-
diffusion process may approach a pure diffusion process [17]. Inspired by this



observation, we present in this section an alternative controller for optimotaxis
that requires the vehicle to turn constantly. This could be applied when the
vehicles are capable of relatively high tumbling rates. We do not claim that the
model in this section is the diffusion approximation for the model in the run and
tumble controller, though it seems to have the same desirable properties of the
diffusion approximation. For simplicity we adopt d = 2. Let x = [x1 x2]

′ ∈ Ω
be the position vector in the plane and θ be such that v = [ρ cos θ ρ sin θ]′ ∈ V .
We propose a controller given by the following stochastic differential equation:

dx1 = ρ cos θdt

dx2 = ρ sin θdt (4)

dθ = σ(x, θ)dw ,

where w(t) is a continuous Wiener process with Edw2 = 1 and σ(x, θ) is the
turning intensity, which we select to attain the desired behavior. The rationale
for this controller involves the same original idea of having a turning intensity
proportional to the improvement in the measurements. This model with contin-
uous turning allows us to write the Fokker-Planck equation for the probability
density of agents p(x, v, t) [23]:

∂p

∂t
(x, v, t) + v · ∇xp(x, v, t) =

1

2

∂2

∂θ2
(σ2p(x, v, t)) . (5)

3 Control law

To obtain the control law we substitute the desired stationary density in equa-
tions (3) or (5) for the evolution of the density and then solve for λ and Tv

or σ. We will subsequently verify convergence to the desired density. For sim-
plicity, we set the desired stationary density to be independent of v such that
p(x, v, t) = Q(F (x)). In the following we write Q(F (x)) simply as Q(x).

3.1 Run and Tumble Controller

As we substitute p(x, v, t) = Q(x) in the steady state version of (3), we obtain

v·∇xQ(x) = −λ(x, v)Q(x) + Q(x)

∫

V

Tv′(v)λ(x, v′)dµ(v′) . (6)

At this point we need to make the assumption that Q(x) > 0 for all x ∈ Ω.
This important assumption will be made throughout this paper. Dividing (6) by
Q(x) and rearranging the terms we conclude that we must have

λ(x, v) =

∫

V

Tv′(v)λ(x, v′)dµ(v′) − v·∇x lnQ(x) . (7)

In the case of a uniformly distributed velocity jump, namely,

Tv′(v) =
1

µ(V )
, (8)



it is straightforward to solve for λ(x, v):

λ(x, v) = η(x) − v·∇x lnQ(x) , (9)

where η(x) =
∫

V
Tv′(v)λ(x, v′)dµ(v′) is some function chosen by the designer to

depend on x only through F (x).
This control law is implementable using the past measurements {F (x(τ)); 0 ≤

τ ≤ t} since the tumbling rate depends only on the projection of the gradient in
the direction of motion. In fact,

v(t) · ∇xQ(x(t)) =
dQ(x(t))

dt
. (10)

Notice that η(x) is the average tumbling rate at the position x and it must
be chosen larger than or equal to ρ sup ‖∇x lnQ(x)‖ to make sure that the tum-
bling rate λ is positive. In this paper we only consider finite tumbling rates.
Thus, here comes a second important restriction on Q(x): ‖∇x lnQ(x)‖ must be
uniformly bounded. When this happens, we can take η to be independent of x
and, according to (2), the probability of an agent maintaining a run with the
same direction during the interval [0, t] is given by

exp

(

−

∫ t

0

λ(x(τ),v(τ))dτ

)

= exp

(

−

∫ t

0

η −
d

dτ
(lnQ(x(τ)))dτ

)

= e−ηt Q(x(t))

Q(x(0))
. (11)

This provides a simple and useful expression for the practical implementation
of the search procedure: Suppose that an agent tumbled at time tk, at that time
pick a random variable P uniformly distributed in the interval [0, 1] and tumble
when the following condition holds

Q(x(t)) ≤ Peη(t−tk)Q(x(tk)), t ≥ tk . (12)

As opposed to what (10) seems to imply, one does not need to take derivatives
to implement (9). Also, the control law is not changed if a constant scaling factor
is applied to Q(x). It is important to remark that η may be adjusted online. An
agent may begin a search with η = ǫ > 0 and if at some time t it observes that
η < η̄ = t−1 lnQ(x(t))/Q(x(0)), then it updates η to η̄ + ǫ. The use of a small
residue ǫ grants a positive λ. In this case, one can prove that the probability
to have the vehicle visiting any neighborhood in space is positive. Hence, η will
eventually converge to ρ sup ‖∇x lnQ(x)‖+ ǫ. A more elaborate adaptation can
be obtained by having η(x) as a function of the measurements F (x), which would
reduce the number of unnecessary tumbles.

We note that most physical quantities propagate with spatial decay not faster
than exponential, which allows for the uniform boundedness of ‖∇ ln Q(x)‖.
If, however, F (x) has a faster decay rate, it may still be possible to achieve
boundedness of ‖∇x lnQ(x)‖ via reshaping (i.e. selecting an appropriate Q) as
long as F (x) > 0 for all x ∈ Ω and one knows its maximum decay rate.



3.2 Diffusion Controller

Substituting p(x, v, t) = Q(x) in (5) and integrating twice in θ one obtains:

v · ∇xQ(x) +
1

2
σ2(x, θ)Q(x) = θc1(x) + c2(x) . (13)

Solving for σ2(x, θ) we have

σ2(x, θ) = θd1(x) + d2(x) − 2v · ∇x lnQ(x) . (14)

We set d1(x) = 0 since there is no advantage in having σ2(x, θ) growing linearly
with θ. Thus, we can rewrite (14) as

σ2(x, v) = η(x) − 2v · ∇x lnQ(x) . (15)

Again, the only information needed to implement σ2(x, v) is the measure-
ments F (x(t)) collected along the vehicle’s trajectory. As before, boundedness
of ‖∇x lnQ(x)‖ is an important condition and η(x) may be adjusted online. A
simple implementation of (4) with σ(x, v) given by (15) can be done using Euler’s
approximation.

The addition of exogenous white Gaussian noise to θ̇ in (4) leads to the addi-
tion of a positive constant to σ2(x, v) in (5), which is equivalent to an increased
η. Thus, this kind of disturbance does not change the stationary density. The
same conclusion is true if we consider white Gaussian noise added to ρ̇ in (5).
Therefore, an important property of this controller is that the stationary density
is robust to additive white Gaussian noise applied in the vehicle’s bodyframe.

4 Convergence to the steady-state

In this section we analyze the convergence of solutions to the desired stationary
density Q(x). We consider mild solutions [24] to the initial value problem defined
by (3) and an initial density p(x, v, 0) ∈ D :=

{

f ∈ L1(Ω × V ); f ≥ 0, ‖f‖ = 1
}

.
The main result is stated in Theorem 1, which implies that Q(x) can be estimated
through the time average of the observed vehicles’ position. In particular, with a
proper choice of Q(x), the maximum of F (x) will be located in the neighborhood
that is most often visited by the vehicle.

Theorem 1. Assume that Q(x) > 0 and ‖∇x lnQ(x)‖ ∈ L∞(Ω). If Tv and
λ are chosen according to (8) and (9), respectively, such that λ is uniformly
bounded and strictly positive, then

1. A mild solution p(x, v, t) to (3) exists and is unique for all t ≥ 0 and all
initial densities p(x, v, 0) ∈ D.

2. Q(x) is the unique stationary density for (3).
3. For any initial density p(x, v, 0) ∈ D,

lim
N→∞

∥

∥

∥

∥

∥

1

N

N−1
∑

k=0

p(x, v, kτ) − Q(x)

∥

∥

∥

∥

∥

= 0 (16)

for all τ > 0.



We note that the continuous time average

1

t

∫ t

0

p(x, v, t)dt (17)

also converges in norm to Q(x) as t → ∞, see e.g. [25, Cor. VIII.7.4].
Theorem 1 provides the basis for a procedure to estimate Q(x) by observing

the position of N agents: We start by partitioning the region of interest into
a family of sets {Ai ⊂ Ω} and then we sample the vehicles’ positions at times
k ∈ {0, τ, 2τ, . . . , (K − 1)τ} and count the number of times that a vehicle is
observed in each set Ai. It turns out that the fraction of samples corresponding
to vehicles observed over the set Ai provides an asymptotically correct estimate
of the average value of Q(x) on the set Ai. To see why this is the case, we define

fN,K =
1

NK

N−1
∑

n=0

K−1
∑

k=0

f(xn(kτ)) , (18)

for some f ∈ L∞(Ω) and τ > 0. Assuming that the agents have mutually
independent motion, by the law of large numbers we have that fN,K converges
almost surely as N → ∞. Moreover, by the specific version of the law of large
numbers in [26], we also have that fN,K converges almost surely as K → ∞. In
particular, if f is the characteristic function of a measurable set Ai, then

fN,K →

∫

Ai

Q(x)dx a.s. (19)

as K → ∞. This shows that Q(x) can be estimated by averaging the observations
of the agents position as in (18). The use of multiple agents (N > 1) improves
the estimates according to the relation

var(fN,K) =
var(f1,K)

N
. (20)

Proof of Theorem 1 (outline). A complete proof is given in [27]. The existence and
uniqueness results rely on previous results on linear transport theory [21] using
semigroups of linear operators. To prove the uniqueness of the stationary density
we take q(x, v, t) and r(x, v, t) to be two convex combinations of a stationary
density p(x, v, t) and Q(x). We consider the Kullback-Leibler divergence between
q(x, v, t) and r(x, v, t)

H(t) =

∫

Ω

∫

V

q(x, v, t) ln
q(x, v, t)

r(x, v, t)
dxdµ(v) , (21)

and show that Ḣ(t) = 0 for all t > 0 implies p = Q. The convergence of the
Cesàro averages in part 3 of the theorem is a direct consequence of the mean
ergodic theorem provided that Q(x) > 0 is the unique invariant density. See e.g.
Theorem 5.2.2 of [28] or [29, Chap. 2]. ⊓⊔



It is worthwhile to remark that p(x, v, t) actually converges to Q(x) in norm
if λ is bounded away from zero. The proof of this result is based on a result from
[30] that states that, if V (t) is a Harris operator for every t > 0 and Q(x) > 0
is its unique invariant density, then V (t)f converges to Q(x) in norm for all
f ∈ D. It turns out that one can prove that the semigroup generated by (3)
consists of Harris operators [27]. In addition, we conjecture that convergence is
exponential. The proof of this result would be possible with a generalization of
some results in the spectral theory of linear transport operators in unbounded
domains presented in [31]. However, such a generalization is not yet available.

Next, we state the corresponding result for the diffusion controller.

Theorem 2. Assume that Q(x) > 0 and ‖∇x lnQ(x)‖ ∈ L∞(Ω). If σ2 is chosen
according to (15) such that σ2 is uniformly bounded and strictly positive, then

1. A mild solution p(x, v, t) to (5) exists and is unique for all t ≥ 0 and all
initial densities p(x, v, 0) ∈ D.

2. Q(x) is the unique stationary density for (5).
3. For any initial density p(x, v, 0) ∈ D,

lim
N→∞

∥

∥

∥

∥

∥

1

N

N−1
∑

k=0

p(x, v, kτ) − Q(x)

∥

∥

∥

∥

∥

= 0 (22)

for all τ > 0.

The proof of this result is also presented in [27].

5 Numerical Results and Discussion

In this section we present numerical experiments to illustrate the proposed op-
timization procedure. We adopt preferentially the run and tumble controller
with a constant function η(x). The results for the diffusion case are similar but
with slightly faster convergence. The desired stationary density is taken to be
Q(F (x)) = cFn(x), where c is a normalizing constant and n is an integer.

The main capability of optimotaxis, the localization of the global maximum,
is stressed in Fig. 2. We observe a swarm of agents that starts from the upper left
corner (1), initially clusters around a local maximum (2) and then progressively
migrates to the global maximum (3,4). When the equilibrium is reached, most
agents concentrate in a neighborhood of the global maximum. Yet, a portion of
the agents clearly indicates the existence of the local maximum. We notice that
the center of mass of the swarm goes straight through the local maximum to
the global one. This feature is not shared with most deterministic optimization
procedures and even with some stochastic ones. As a bonus, the information on
secondary sources (local maxima) is not lost.

We use the Kullback-Leibler divergence H(t) (defined in Section 4) between
p(x, v, t) and the convex combination 10Q(x)/11 + p(x, v, t)/11 to analyze the
speed of convergence to the desired stationary density. One useful property of



Fig. 2. Different stages of optimotaxis in the presence of two maxima. Black dots rep-
resent agents position whereas the background intensity represents the signal intensity.
F (x) = 0.4e−‖x‖ + 0.6e−‖x−[1.5 −1.5]′‖, Q(x) = F n(x) with n = 10, and ρ = 1.

this Kullback-Leibler divergence is that H = 0 iff p = Q. Moreover, α(‖p−Q‖) ≤
H(t) ≤ β(‖p − Q‖), where α, β are class K functions [32]. Using a space grid
with resolution 0.068, we calculate H(t), which is shown to converge to zero in
Fig. 3.

Also included in Fig. 3 is the evolution of H(t) when the measurements are
quantized and when exogenous noise is added. In the quantization case, we used
the quantized version of the desired density Q(x) to calculate H(t). Interestingly,
the addition of noise does not seem to affect considerably the transient response.
Nevertheless, the residual error is greater due to the fact that the stationary
density is not the one expected. On the other hand, quantization has a much more
negative impact on optimotaxis performance. Yet, we believe that convergence
to a quantized Q(x) does happen but at a low speed.

The sensitivity of the procedure with respect to the parameter n of the
shaping function is studied with Fig. 4. The mean-square error of the vehicles
position with respect to the maximum is used as a performance index. One
notices that the performance degrades for n too low or too high. In particular,
the sensitivity to noise and quantization increases with n. This suggests that
an interesting strategy to reduce the effect of uncertainties and quantization is
to assign agents with different values of n. In this case, the observed density
would converge to an arithmetic average of the powers Fn(x). Thus, the mean-
square error would be smaller than the error corresponding to the maximum or
minimum value of the chosen n.
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Fig. 3. Evolution of the Kullback-Leibler divergence for: the noiseless case (solid), the
quantized measurements case (dashed), and the exogenous noise case (dash-dotted).
The number of quantization levels is 128. The noise added to v̇ is white Gaussian with
standard deviation 10−2 along each axis. 100 agents were uniformly deployed in the
rectangle [−2.5, 2.5] × [−2.5, 2.5] × V . Refer to Fig. 2 for more details.

5.1 Chemotaxis and Optimotaxis

It is remarkable that the expression for λ in (9) has the same structure of some
biochemical models for the tumbling rate of the E. coli ; see, for instance, Alt
[2, Equation 4.8]. This author essentially proposed the existence of a chemical
activator for the locomotion mechanism such that a tumble would occur each
time the concentration of this activator would become less than a certain value.
The concentration of this activator would jump to a high value at tumbles and
decrease at a rate corresponding to η in (9). A receptor-sensor-mechanism would
then regulate the additional generation of the activator (this corresponds to
v · ∇xQ(x) in (9)), which would modulate the run length. We find surprising
that our reverse engineering design resulted in an expression for λ similar to
the one in bacterial chemotaxis. In fact, though the use of tumble and run in
optimotaxis is inspired by chemotaxis, one would not necessarily expect that our
choice of the tumbling rate would lead to control laws similar to the biochemical
models in bacteria. This fact suggests that the bacteria evolutionary process
might have selected a taxis mechanism with the same desirable properties of our
model.

To understand what these desired properties might be, let us suppose that
bacteria are performing optimotaxis as it is described in this paper. Let p(x, v, t)
be the spatial density of bacteria and let Q(x) be some function related to the
concentration of nutrients. From Section 4, we know that p(x, v, t) converges in
norm, which implies that

H(t) = −

∫

Ω

∫

V

p(x, v, t) ln

(

1

2
+

1

2

Q(x)

p(x, v, t)

)

dxdµ(v) → 0 . (23)



5 10 15 20 25 30 35

0.4

0.8

1

n

M
ea

n−
S

qu
ar

e 
E

rr
or

Fig. 4. Mean-square error with respect to the maximum of F (x) = e−‖x‖ as a func-
tion of n. Noiseless case (solid), quantized F (x) (dashed), and exogenous noise (dash-
dotted). The number of quantization levels is 128. The noise added to v̇ is white
Gaussian with standard deviation 10−3 in each axis. ρ = 1.

Thus, H(t) can be regarded as a cost functional that is being minimized by opti-
motaxis/chemotaxis. More specifically, we notice that what is being maximized
is the expected value of a concave function of Q/p, which is the ratio of the
concentration of nutrients per the density of organisms. This is a meaningful
cost for the population of bacteria as a whole.

It is important to remark that the jump velocity probability density function
Tv is not uniform in bacteria. This supports our belief that better results for
optimotaxis might be obtained with more sophisticated choices for Tv.

6 Conclusion

A random optimization algorithm based on bacterial chemotaxis was presented.
This algorithm is mainly intended for application in a swarm of agents whose
mission is to find the maximum of a measured quantity. The most attractive fea-
tures of the procedure are its simplicity and low cost of implementation as well
as the identification of both global and local maxima. The only measurement
needed by the agents is the signal of interest and the only information that must
be known a priori is a bound on the spatial decay of the measured quantity. The
convergence of the agents probability density to a specified function was demon-
strated. Some robustness to exogenous disturbance was also demonstrated. In
addition, insight was gained on what bacterial chemotaxis might try to optimize.

We note that the proposed choice of control parameters may not be optimal.
Hence, alternative choices for the tumbling rate and for the probability density of
velocity jumps are important themes for further investigation. Future research
directions also include the study of optimotaxis in compact spatial domains



and signal spatial profiles with discontinuities. Alternatively, it may be worth to
explore the application of these ideas to solve problems in numerical optimization
by arrays of independent processors.
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