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Abstract On-off thrusters are frequently used as ac-

tuators for attitude control and are typically subject to

switching constraints. In systems with switching ac-

tuators, different types of persistent motions may be

found, and in the presence of model uncertainties, the

occurrence of bifurcations in such systems can seri-

ously affect performance. In this paper the nature of

persistent motions in an attitude control system with

actuators subject to switching-time restrictions is ex-

amined to provide useful information for control de-

sign in the presence of uncertainty. The main tools

used are bifurcation diagrams, Poincaré maps and Lya-

punov spectrum. Border-collision type bifurcations are

characterized in this piecewise affine system, as well

as unusual patterns of persistent motion. Multistability

and complex-switching sequences are also observed,

revealing the existence of motions with sensitive de-

pendence on initial conditions.
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1 Introduction

Launch and space vehicles may use on-off thrusters as

actuators for attitude control. Examples of such sys-

tems are found in references [1–3]. Several types of

on-off thrusters are available such as hydrazine, cold-

gas and pulsed-plasma thrusters [4]. These thrusters

produce discontinuous control actions and are affected

by switching constraints. Common approaches for

thruster activation logic are pulse modulation and di-

rect control. The discussion of important aspects of

pulse modulation usage in attitude control systems is

found in [5, 6]. The present paper is concerned with

direct control activation scenarios in which thruster

switching constraints effectively impose limitations on

dynamic actuator usage. In the literature such sce-

narios have not received much attention so far. As

shown by Oliveira and Kienitz [3], non-conventional

analysis/design problems may arise, because per-

sistent system motions may not be of limit cycle

type.

During recent research on the issue of limit cycle

control for systems with minimally spaced switching-

times, it was observed [7] that the optimal control

parameter set, which guarantees minimum amplitude

and minimum fuel consumption, lies on the frontier

where the system bifurcates into nonperiodic persis-

tent motions. Here the concern with the robustness of

an optimal controller arises. In order to evaluate the

system’s robust performance, this paper is devoted to

understanding these nonperiodic persistent motions.
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In particular, its aim is to clarify how performance

is affected by the emergence of these motions, and

whether their amplitude or their appearance can be pre-

dicted. Hence, this paper presents the use of dynamical

systems tools, such as bifurcation diagrams, Poincaré

maps and Lyapunov spectrum, to characterize these

motions.

In nonlinear systems, typical bifurcation phenomena

include period-doubling cascades, saddle-node bifur-

cations and crises [8, 9]. Since this paper deals with

a piecewise affine system subject to complex tran-

sition conditions, some unusual motions can be ob-

served arising from periodic attractors by means of

border-collision type bifurcations [10–12]. The stabil-

ity of these motions is verified and their amplitudes

are predicted. Moreover, the coexistence of multiple

attractors for a given value of the control parameter

(multistability) is observed, and chaotic attractors are

found.

In Section 2, the roll control system being consid-

ered is described. Section 3 provides a global view of

possible dynamics by means of Lyapunov spectrum

analysis. Section 4 is devoted to the understanding of

an attractor peculiar to systems with minimally spaced

switching-times. In Section 5, the emergence of multi-

stability is discussed. The final comments are given in

Section 6.

2 Problem description

The problem description given here is akin to that in [3].

Consider a simple rigid body (e.g. satellite or rocket in

the upper atmosphere) whose attitude angle φ is to be

controlled using sets of small thrusters, which are on-

off actuators with switching-time restrictions. A sim-

plified representation of the system is shown in Fig. 1,

where thrust F may assume final values Fmax, 0 or

−Fmax.

Fig. 1 Rigid body with set
of thrusters

A body inertia Ixx = 1500 [kg m2] is given. The

small thruster actuators have delays and switching-time

restrictions. Their characteristics are:� Maximum absolute torque: M = Fmaxx = 308 [Nm]� Thrust build up dynamics given by the second or-

der transfer function: H (s) = 86.82

(s+86.8)2 , where s is a

complex variable.� Switching-time restrictions:

– Minimum duration of pulses: ton = 100 [ms]

– Minimum rest between successive pulses of the

same sign: ts = 50 [ms]

– Minimum rest between pulses of different sign:

toff = 500 [ms]

The typical requirement for the controlled system is

that initial conditions and attitude perturbations shall

asymptotically die away into a “well behaved” limit

cycle. For the purpose of achieving appropriate perfor-

mance, a tachometric feedback law and a first order

compensator C(s), having a zero at z and a pole at p,

are added to the loop, resulting in the controlled system

represented in Fig. 2.

The transfer function of the first order compensator

is C(s) = s−z
s−p .

The “actuators” block of Fig. 2 can be decomposed

into two parts: the first one containing switching actua-

tors and the second one containing linear second order

dynamics which models thrust build up. In practice,

actuator delays may vary during the operation of the

system. Their value may depend on several parame-

ters. Thus the model is affected by uncertainty. Such

uncertainty will not be considered here. All the gains in

the system are rearranged to the output of the switch-

ing actuators block. Since the controller is linear, these

gains affect only the amplitude of the response.

In summary, this system can be completely

described by means of the discrete state vari-

able m = {1; 2; 3; 4} = {F >0; F = 0 afterF > 0;

F < 0; F = 0 after F < 0} and the continuous state

variable y(t) = [φ(t) dφ(t)/dt I −1
xx e(t) I −1

xx de(t)/dt
u(t) tx (t)]T where t is the independent time variable,

e(t) is the torque provided by actuators, u(t) is the

controller output, tx (t) is the time since the last

transition, and superscript T stands for transpose.

The following is a state-space representation of the

dynamics captured with the continuous state variable y:

ẏ = Ay + B sgn(F)
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Fig. 2 Block diagram of
the controlled system

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 −a2 −2a 0

z z − 1 −1 0 p

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

a2 M/Ixx

0

⎤⎥⎥⎥⎥⎥⎥⎦ (1)

For simplicity, the sixth state is suppressed because

it is not directly dependent on other states and only

affects switching conditions.

According to relay systems theory, for appropriate

values of p and z, symmetric single-switching limit cy-

cle behavior should be expected. Necessary conditions

to the existence of such behavior can be provided either

by approximate or exact methods (see [13]). The above

switching-time restrictions impose another condition,

which states the existence of a maximum switching

frequency:

fmax = 1

2(ton + toff)
(2)

The goal of this contribution is to analyze the sus-

ceptible kinds of behavior when one of these conditions

is reached and, then, clarify the possibilities of robust

performance for controllers operating near the bifurca-

tion frontier.

3 Lyapunov spectrum

The Lyapunov spectrum is one of the standard tools to

investigate the behavior of dynamical systems [14]. The

Lyapunov exponents measure the average rate of diver-

gence between nearby solutions of a dynamical system,

and are calculated herein with the procedure suggested

by Müller in [15]. This method is well suited for the

calculation of Lyapunov exponents in nonsmooth sys-

tems because it takes into account the divergence be-

tween neighboring trajectories before and after cross-

ing the switching surface. In the present case, since

a piecewise affine system is used, the exact solution

of the variational equation, used to compute the Lya-

punov exponents, is known between transitions. Thus,

it is possible to establish transition matrices relating

the evolution of variations along successive switching

surfaces. These matrices depend only on the state at

the time of transition, which can be obtained with very

high precision using the exact solution calculated from

the last transition point. In order to efficiently calculate

the exponents, the renormalization procedure based on

QR-decomposition proposed in reference [16] is em-

ployed.

Results are illustrated in Fig. 3, where the four

largest exponents are plotted as a function of control

parameters p and z. The initial conditions are y(0) =
[ −0.02 0.02 0 0 0 0 ]T and m(0) = 1. Five

large regions can be distinguished: two regions of pe-

riodic motion where λ1 = 0 and λi < 0 for i > 1; two

regions where λ1 ≈ λ2 ≈ 0 and λ3 is slightly negative;

and one region where the largest exponent is positive.

An improved understanding of these regions can

be achieved with aid of Fig. 4, where a section of the

diagrams in Fig. 3 is compared with other diagrams.

The bifurcation diagram in Fig. 4(a) presents the

dynamics of φ discretized using a Poincaré section

which corresponds to the entry of the system into

the discrete state m = 2, namely, this is the value of

φ when the actuator switches from positive to null

output. Note that this value is very close to the local

minima of φ(t). The diagram in Fig. 4(b) exhibits the

power spectral density of φ(t) for a sample rate of 20

[Hz] (see spectral bifurcation diagrams in [17]). In

Fig. 4(c), the diagram for Lyapunov exponents shows

the existence of a limit cycle for −10.0 < z < −7.4.
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Fig. 3 Biparametric diagrams for the first four Lyapunov exponents

Moreover, as z is increased, diminishing the phase

delay provided by the controller, diagrams 5(a) and

5(b) indicate an amplitude decrease and a frequency in-

crease. However, as z enters the interval (−7.4, −3.5),

frequency attains the upper limit allowed by actuators

restriction, fmax = 0.83 [Hz], and a bifurcation occurs:

very low frequencies gain considerable intensity and

amplitude increases. Amplitude here is the maximum

attained by a state variable in the attractor. This is

an atypical motion that will be discussed in the next

section. Further increase in z will cause a phase lead

that brings the system “back” to periodic motion,

which occurs for −3.5 < z < −2.1. In this region

limit cycles with complex switching are observed.

Instead of the simple sequence {1, 2, 3, 4} of m state

transitions, complex sequences with time-asymmetric

pulses occur, such as {1, 2, 1, 2, 3, 4, 3, 4}
and {1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 3, 4}. Beyond

z = −2.1, switching becomes excessively com-

plex, yielding very long periods and situations in

which nearby trajectories diverge exponentially with

time (chaotic trajectories with positive Lyapunov

exponents).

4 Quasi-periodic-like behavior

This section is concerned with the nature of the non-

periodic behavior that appears when actuators are re-

quested to work on the limit defined by the switching

restrictions. It is shown that the discretized map for the

system presents an attractor given by a line segment of

neutral fixed points and that outer orbits spiral towards

this line segment without ever touching it. Addition-

ally, the spiraling becomes slower at each turn, which

suggests that the motion is the superposition of a peri-

odic motion with frequency fmax and a second biased

motion with constant amplitude and time-decreasing

frequency. However, numerical results show that this

second motion maintains a constant frequency band,

which may be due to finite numerical precision. Actu-

ally, since a certain amount of sensor noise is always

present in real systems, such numerical noise is not a

concern in this case, and in simulations small random

perturbations can even be added to the system, causing

the attractor to be rapidly visited.

In this work, the composed motion is called quasi-
periodic-like due to its similarities with quasiperiodic
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Fig. 4 A comparison of the
bifurcation diagram for
discretized φ (a), the
spectral bifurcation diagram
of φ (b), and the three
largest Lyapunov exponents
(c) for p = −5.5

motions [18]. Although one of the composing motions

is not periodic, the maximum Lyapunov exponent is

null and trajectories visit every neighborhood of an

attractor that resembles a cylindrical hyper-surface in

phase space.

Figure 5 illustrates how the bifurcation from peri-

odic to quasi-periodic-like motion takes place in the

vertex formed by the two switching surfaces. Ini-

tial conditions y(0) = [ 0 0.02 0 0 0 0 ]T and

m(0) = 1 are used. While in periodic motion (triangles)

there are transitions to states 2 and 4 due to the cross-

ing of u = 0, in quasi-periodic-like motion (black dots)

these transitions occur because of the crossing of tx =
0.1, which, unlike the periodic case, does not occur in

only one point. Notice that in both cases symmetry is

maintained.

In order to study this motion, let us define Q =
e2A(ton+toff) and T = (I − eA(ton+toff))

∫ ton

0
eAτ Bdτ . Then,

considering the case of the fastest allowed single

switchings and using m as a subscript index to indi-

cate the state of entry into mode m, it is possible to

define the following discrete-time system:

y2(k + 1) = Q · y2(k) + T (3)

Fixed points for this map will satisfy

(I − Q)ȳ2 = T (4)

0.1 0.2 0.3 0.4 0.5
-0.02

-0.01

0

0.01

0.02

t
x
(k)  [s]

1 

2,4 

3 

I 

II 

III

IV
u(k)

Fig. 5 Switching surfaces (dashed lines) and transition
points for periodic (triangles; p = −5.5, z = −7.6) and quasi-
periodic-like motions (black dots; p = −5.5, z = −7.1). Num-
bers indicate the sequence of discrete states

The matrix Q has the following structure

Q

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2(ton + toff) q1,3 q1,4 0

0 1 q2,3 q2,4 0

0 0 q3,3 q3,4 0

0 0 q4,3 q4,4 0

z(e2p(ton+toff)−1)
p q5,2 q5,3 q5,4 e2p(ton+toff)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5)
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Fig. 6 Phase plot for quasi-periodic-like motion with p =
−5.5, z = −4.9. Transition points are in black, while part of
the associated continuous trajectory is plotted in gray

Due to the double integrator, A has two null eigen-

values and, consequently, Q has a double eigen-

value at 1. The corresponding eigenvector is v =
[ 1 0 0 0 −z/p ]T. Thus, the set Y2 of fixed points

lies on the line ȳ2 + αv, where α is real and ȳ2 is any

given fixed point. Figure 6 presents a projection of sets

Ym and part of the associated continuous trajectory.

The complete continuous attractor is the hypercylinder

whose ‘edges’ lie on the line segments Ym and whose

base projection has the shape of the gray closed curve. A

careful examination of the trajectory in the phase space

reveals that the transition point y2(k) is indeed close to

the local roll amplitude value. Switching conditions im-

pose a limitation to the sets Ym that can be noticed in

Fig. 6: entry into mode m = 2 demands that y2(k) be

such that u2(k) ≤ 0. Similarly, entry into mode m = 4

demands that y4(k) be such that u4(k) ≥ 0. In this way,

one of the limits of Y2 will be given by y2 = ȳ2 + αv

such that u2 = 0, the other limit will be given by the

corresponding limit of Y4. By rewriting Equation (7),

one of the fixed points can be found:

(
I − e2A(ton+toff)

)
ȳ2 = (

I − eA(ton+toff)
) ∫ ton

0

eAτ Bdτ (6)

It is easily seen that one possible solution is

ȳ2 = (
I + eA(ton+toff)

)−1
∫ ton

0

eAτ Bdτ (7)

Then, considering the switching surface given by

N y = u = 0, where N = [ 0 0 0 0 1 ], the first

limit is the point

ȳ1
2 = ȳ2 − N ȳ2

Nv
v. (8)

The second limit is ȳ2
2 = eA(ton+toff) ȳ1

4 + ∫ ton

0
eAτ

Bdτ , but, because of symmetry, ȳ1
4 = −ȳ1

2 = −ȳ2 +
N ȳ2

Nv
v. Thus, substituting ȳ1

4 and using Equation (7),

ȳ2
2 = ȳ2 + eA(ton+toff)

N ȳ2

Nv
v = ȳ2 + N ȳ2

Nv
v, (9)

for v is an eigenvector of A. Predictions are compared

to simulation in Fig. 7. Notice that, though a small

amount of Gaussian white noise is added in the direc-

tion w = [ 0 1 0 0 0 ]T right after each switching,

there remained a few attractors not completely visited

for the chosen integration time. The amplitude of the

low frequency component is yb = − N ȳ2

Nv
and the ampli-

tude of the component with frequency fmax is ya = ȳ2.

A similar analysis can be employed to find the bi-

furcation frontiers in the control parameters space for

which this kind of motion disappears. These situations

are such that ȳ1
2 = ȳ2

2 or NeAtoff ȳ1
2 = 0, the latter case

is that for which an intermediary switching becomes

inevitable, for the states of entry in modes m = 1 or 3

have touched the other switching surface. In Fig. 6,

it implies that line segments labeled Y1 and Y3 touch

u(k) = 0.

With a little more algebra considering the matrix

Q, it is possible to verify that ȳ1
2 and ȳ2

2 are hyper-

bolic functions of z. Thus, as long as the system is

-10 -8 -6 -4 -2 0 

z 

-0.04

-0.02

0.02

0

0.04

φ 2
(k

) 
[r

ad
]

Fig. 7 Comparison of the predicted (black lines) and simulated
(gray dots) limits of the quasi-periodic-like attractor
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in quasi-periodic-like motion, phase leads cause an in-

crease in roll amplitude, for this quantity is closely

related to ȳ1
2 .

In view of the structure of matrix Q, disturbances

of the fixed points in directions v or w must remain

unmodified along iterations. Disturbances in direction

w, however, cause directly proportional disturbances in

direction v. Thus, disturbed orbits will follow lines par-

allel to v until they violate the fastest switching hypoth-

esis. To understand what occurs when this hypothesis

is about to be violated, suppose there is a negative dis-

turbance of a fixed point in direction w. Then, the orbit

will consist of negative fixed increments in direction v,

which will make u2(k) increase. A moment will come

when u2(k) > 0. Thus, the minimum time for switch-

ing is reached but u is still positive; consequently, there

will be a delay in switching. Since actuators will be set

on longer than usual, switching will occur with an in-

creased value of dφ/dt . Thus, at each entry into state

2, dφ/dt will increase until it crosses the equilibrium

value: dφ̄2/dt . Then, the disturbance in w direction will

be positive and the orbit will now follow the positive

direction of v.

Figure 8 illustrates the sequence above. The arrows

indicate the direction followed by the trajectory, start-

ing with the long arrow at the bottom of the figure. In a

first moment, dφ/dt is far below the equilibrium value

(dashed line). That is why u suffers large increments.

As previously mentioned, a delay causes the line u = 0

to be attained with an increased value of dφ/dt , but still

below the equilibrium value. The next point will be be-

yond, but closer to this same value. Now, u is being

incremented by small amounts. Afterwards, the same

routine is repeated for y4(k). The moment at which

u4(k) crosses the axis is seen in Fig. 8 when the orbit

becomes even closer to the equilibrium value.

The answer for how fast and whether disturbances

disappear is given by the Lyapunov spectrum. Figures 4

and 5 show that there are two null Lyapunov exponents

and a third exponent is very close to zero, but negative.

One of the null exponents is related to disturbances

along a periodic orbit. The second one is related to dis-

turbances along v direction. The third exponent results

from the fact that disturbances in w direction remain

constant until the orbit crosses the switching surface,

which happens more and more seldom as time goes by.

In this way, disturbances in w direction have a very slow

decay. The next section presents evidences of a similar

spiraling motion for which disturbances in w direction

4.6 4.8 5 5.2 5.4 5.6

x 10
-3

-8

-6

-4

-2

0

x 10
-3

θ2 (k) [rad/s]

u2(k)

Fig. 8 Phase plot for transition points in quasi-periodic-like mo-
tion (p = −5.5, z = −4.9) in the neighborhood of the set of
fixed points (dashed line)

do not decay. Trajectories performing quasi-periodic-

like motion just reach the cylinder base and turn back

immediately, which represents nonsmoothness in the

low frequency component.

5 Multistability

The previous two sections presented results obtained

from a single initial condition. Other choices of initial

condition show the coexistence of multiple attractors

for some parameters. In the range of parameter val-

ues considered in this work, the single-switching pe-

riodic motion seems to be a global attractor. Hence,

for apparently any combination of control parameters

where a single-switching periodic motion is found, it

is the only attractor present in the phase space. On

the other hand, quasi-periodic-like motion is not nec-

essarily a global attractor. For p = −5.5, it is glob-

ally attractive only for z in the range (−7.4, −3.5).

For z in the range (−3.5, −2.5), a quasi-periodic-like

motion and a double-switching periodic motion with

{m} = {1, 2, 1, 2, 3, 4, 3, 4} coexist. A projection of

the attractors for these two motions is plotted in Fig. 9.

From this figure it can be seen that the double-switching

periodic motion presents larger rate amplitude than the

quasi-periodic-like motion. On the other hand, unlike

the quasi-periodic-like motion, it does not present any

bias. The transverse section of the basins of attraction

depicted in Fig. 10 illustrates the complex way in which

they are connected. The basin of the periodic attractor
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◊10
-3

d
φ 2

(k
)/

d
t 

φ2(k)

2 -10 

0 

-2-6-14 

-0.01

0.01

-0.03 

-0.02 

Fig. 9 Phase plot projection for transition points of the quasi-
periodic-like attractor (solid line) and the double-switching pe-
riodic attractor (crosses) for p = −5.5, z = −3.3

0 0.02-0.02 

-0.02

0.02

-0.04

-0.04

0 

φ (0)

d
φ(

0
)/

d
t

Fig. 10 Transverse section of the basins of attraction of the
quasi-periodic-like attractor (white) and the double-switching pe-
riodic attractor (black). Other initial conditions are zero, m(0) =
1 and p = −5.5, z = −3.3

(black regions) grows larger as z approaches −2.5, a

value at which the quasi-periodic-like attractor and its

basin of attraction disappear due to collision of Y1 and

Y3 with u = 0.

The abrupt change of the Lyapunov exponents at

z = −3.5 is a signature of the grazing of the double-

switching periodic attractor with a switching surface,

which can be verified from Fig. 11, where the periodic

attractor is tangent to the switching surface at point

C for z = −3.5. A small decrement in z causes the

destruction of the periodic attractor and the tangency

point C. On the other hand, by increasing z this peri-

odic attractor bifurcates into a quasi-periodic-like mo-

tion when another collision with a switching surface

Fig. 11 Projection of the double-switching periodic attractor
(solid lines) near the bifurcation at p = −5.5, z = −3.5. The
dashed lines indicate the switching surfaces and the letters enu-
merate switching points

takes place at z = −2.4. In this new bifurcation, points

B and F of Fig. 11 cross the vertex of the switching

surface (tx = 0.1, u = 0), which implies a delay in the

switching of a non-restrained periodic motion. There

is a crucial difference between the above-mentioned

bifurcations. While in the first one the switching point

suddenly disappears, in the second one the switching

is only delayed, distorting the attractor and increasing

its dimension. Therefore, we conclude that this system

is subject to two distinct types of border collision bi-

furcations: one causing the appearance/disappearance

of switching points, and a second one causing the scat-

tering of switching points over tx = 0.1.

There are procedures based on Tsypkin’s method [3]

that allow the prediction of the complex switching peri-

odic motions. However, those methods become compu-

tationally too complex as switching possibilities grow.

Hence, this work is limited to the detection of these

motions, which are listed in Table 1. The notation 2

(λ1, d f , k) indicates that there is a pair of symmetric at-

tractors with largest Lyapunov exponent λ1, Lyapunov

dimension d f and k entries into the same mode by cy-

cle. It is important to stress that periodic attractors (0, 1,

k) are not always turned into quasi-periodic-like ones

(0, 3, k) as z is increased. Take, for instance, the bi-

furcation of 2 (0, 1, 3), for z = −2.4, into a pair of

chaotic attractors 2 (0.016, 3, 3), for z = −2.2. Finally,

we stress that all these complex motions are disadvanta-

geous from the control point of view, since they possess

amplitudes far away from the minimum one, as shown
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Table 1 Summary of
observed attractors z(p = −5.5) Coexisting attractors (λ1, d f , k)a

−7.5 (0,1,1)

−7.4 (0,2,1)

−3.3 (0,1,2), (0,2,1)

−2.5 (0,1,2), 2 (0,1,3)

−2.4 (0,3,2), 2 (0,1,3)

−2.2 (0,3,1), (0,3,2), 2 (0.016,3,3), 2 (0.06,2.75,4), 2 (0,1,5)

−2.1 (0,3,2), 2 (0.02,3,3), 2 (0.05,2.8,5), 2 (0.03,2.11,7)

−2.0 2 (0,1,12), 2 (0,1,4), 2 (0.055,2.8,5)

−1.9 2 (0.02,3,?)b, (0,3,4), 2 (0,3,12), (0,3,18)

−1.7 (0,3,16), (0,3,?), (0.05,3,?), (0,3,?)

ad f is the Lyapunov
dimension of the attractor
and k is the number of
transitions to a given mode
at each cycle
bThere is not a periodic
sequence of mode
transitions

in Fig. 7. Therefore, only single-switching periodic and

quasi-periodic-like motions are interesting for control

and other motions should be suppressed.

6 Concluding remarks

This paper presented and characterized the different

possibilities of dynamic behavior in an attitude con-

trol system with time-constrained actuators. The goal

of this study was to provide useful information for

control design in the presence of uncertainties, since

they seriously affect performance. A quasi-periodic-

like behavior, the most relevant behavior other than

the limit cycle, was explained and its amplitude was

predicted. It was verified that the amplitude of this mo-

tion is more sensitive to control parameters than the

limit cycle with simple switching. The consequences

of complex-switching sequences in the actuators were

also studied, revealing the existence of chaotic motions,

with sensitive dependence on initial conditions. It was

also concluded that such motions are disadvantageous

from the control point of view, since they possess am-

plitudes far away from the minimum one. Therefore,

only single-switching periodic and quasi-periodic-like

motions are interesting for control and other motions

should be suppressed.

Additional work is being carried out by the authors

pursuing the analysis and synthesis of non-conservative

robust performance controllers for the system consid-

ered. The results presented herein point to the design

of a robust controller that allows operation both in pe-

riodic and quasi-periodic-like regions and avoids other

motions.

Acknowledgements A. Mesquita and E. L. Rempel acknowl-
edge financial support from Fundação de Amparo à Pesquisa do
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des Systèmes Asservis Non Linéaires. Dunod, Paris, France
(1967)

14. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Intro-
duction to Dynamical Systems. Springer-Verlag, New York
(1996)

15. Müller, P.: Calculation of Lyapunov exponents for dynamic
systems with discontinuities. Chaos Solitons Fractals 5(9),
1671–1681 (1995)

16. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos
and strange attractors. Rev. Mod. Phys. 57(3), 617–656
(1985)

17. Orrell, D., Smith, L.: Visualising bifurcations in
high dimensional systems: the spectral bifurca-
tion diagram. Int. J. Bif. Chaos 13(10), 3015–3027
(2003)

18. Moser, J.: On the theory of quasi-periodic motions. SIAM
Rev. 8(2), 145–172 (1966)

Springer


