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Abstract— In this paper the robust behavior in some piece-
wise affine systems with minimally spaced transition times is
studied. Such systems are found e.g. in satellites and satellite
launchers. On-off thrusters are frequently used as actuators
for attitude control and are typically subject to switching
constraints. In these systems, persistent motions of different
nature may occur, such as limit cycles, quasi-periodic-like
and chaotic motions. In the presence of model uncertainties,
the emergence of bifurcations in these systems can seriously
affect performance. In this contribution, model uncertainties
in the actuation device are evaluated in both a structured
and an unstructured fashion. Then, Tsypkin’s method is used
to investigate the robustness of the condition for of limit
cycles. Robustness frontiers in the space of control parameter
are identified. These frontiers are verified via simulation and
compared to that given by the describing function method,
revealing the difficulties of this latter method to address the
robustness analysis in this system. Moreover, we present a
design method for robust controllers based on the Hamel
locus. An evaluation of performance requirements such as fuel
consumption, limit cycle amplitude and transient response is
carried out in the identified regions of robust behavior. Thus,
we are able to design robust controllers that efficiently exploit
the switching-constrained actuators.

I. INTRODUCTION

Throughout the last decades, attitude control systems with
switching actuators have been used in satellite and launching
systems [1], [2], [3], [4], [5]. In the attitude stabiliza-
tion phase, such systems typically have been operated in
limit cycle conditions. As actuators, several types of on-
off thrusters are employed, such as hydrazine, cold-gas and
pulsed plasma thrusters [2]. These thrusters are typically
affected by switching constraints, which have been a cause of
concern about the degradation of the system’s performance.
As shown by Oliveira and Kienitz [4], non-conventional
analysis/design problems arise when actuators are subject
to switching-time restrictions. Certain conditions ensure that
limit cycles exist. When these conditions do not hold, system
motion may not be of limit cycle type.

During recent research on the issue of limit cycle control
for a system with minimally spaced switching-times, we
observed [6] that the optimal control parameter set, which
guarantees minimum amplitude and minimum fuel consump-
tion, lies on the frontier where the system bifurcates into
nonperiodic persistent motions. Here arises the concern with
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the robustness of an optimal controller. In this paper, we are
interested in the design of robust controllers that preserve a
good performance while guaranteeing operation in the limit
cycle mode, i.e., controllers that mitigate the possibility of
bifurcations.

Computing the limit cycle points of uncertain nonlinear
systems has attracted the attention of researchers in the
last decade. Most of them were simply concerned with
the inhibition of limit cycles in order to prove stability. In
the main papers available on this issue [7], [8], [9], [10],
[11], [12], [13], [14], first harmonic approximation has been
adopted. The deficiency of this approximated analysis for the
studied system was shown in [6].

In [7] Tierno applies a rational approximation to the de-
scribing function of the nonlinear element, and incorporates
describing function analysis into a generalized structured
singular value (µ) framework of robustness analysis. Fadali
and Chachavalvoong [8] and Huang et al. [9] employed
Kharitonov’s theorem to the limit cycle existence condition
given by the describing function method. The same condition
is analyzed by Nataraj and Barve [10], who propose an algo-
rithm based on interval analysis to construct the limit cycle
locus of nonlinear systems with separable nonlinearities in
the presence of parametric uncertainties in the linear and
nonlinear elements. Tan and Atherton [11] present a method
to compute magnitude and phase envelopes of uncertain
transfer functions and apply describing function analysis to
predict the existence of limit cycles. This approach is the
closest to the one we present in this paper. Alternatively,
washout filters were proposed to ensure preservation of limit
cycle amplitude and shape [12].

The most consistent approach is due to Katebi and Zhang
[14]. They apply a µ-based analysis method to systems
with norm-bounded perturbations in the linear part and
incorporate the dynamics neglected by the describing func-
tion approximation as an unstructured uncertainty into the
problem description. Leephakpreeda [13] proposes a similar
H∞-based control approach to predict limit cycles for fuzzy
control systems. Nevertheless, these approaches are not use-
ful when dealing with some relay-type nonlinearities, for the
uncertainty due to the approximation may be conservative
to the point that a robust controller result may not exist. A
natural conclusion is that the intended robustness analysis is
hardly possible without considering higher-order harmonics.
Hence, in this contribution we consider exact methods for
limit cycle prediction. Using Tsypkin’s method, we are able
to address both parametric uncertainties and magnitude-
phase envelopes of uncertain transfer functions. By analyzing



each point in a grid of the space of control parameters, we
can find a frontier that determines robust limit cycle behavior
and, as a consequence, we are able to avoid nonperiodic
regimes as we are looking for an amplitude minimization. On
this frontier, we calculate an interval of amplitude variation
and study the vanishing of transients. In addition, we propose
a design using a Hamel-type locus, which allows a decrease
in the dimension of the space of control parameters.

II. PROBLEM DESCRIPTION

The problem description given here is akin to that in
[4]. Consider a simple rigid body (e.g. satellite or rocket in
the upper atmosphere) whose attitude φ is to be controlled
using sets of small thrusters, which are on-off actuators with
switching-time restrictions. A simplified representation of the
system is shown in Fig. 1, where the thrust F may assume
final values −Fmax, 0 or Fmax .

Fig. 1. Rigid body with a set of thrusters

A body inertia J = 1500 [kgm2] is given. The small
thruster actuators do have delays and switching-time restric-
tions:
• Maximum absolute torque: ρFmax = 308 [Nm].
• Thrust build up dynamics (On):

– 10% of maximum thrust: 10-30 [ms]
– 90% of maximum thrust: 20-50 [ms]

• Thrust build up dynamics (Off):
– 90% of maximum thrust: 9-16 [ms]
– 10% of maximum thrust: 15-50 [ms]

• Switching-time restrictions:
– minimum duration of pulses: ton = 100 [ms].
– minimum rest between successive pulses of the

same sign: ts = 50 [ms].
– minimum rest between pulses of different sign:

toff = 500 [ms].
The typical requirement for the controlled system is that

initial conditions and attitude perturbations shall asymptot-
ically die away into a well behaved limit cycle. For the
purpose of achieving an appropriate performance, a tacho-
metric feedback law (feedback of position and velocity) and
a single-pole controller C(s) = 1

s−p are added to the loop,
resulting in the controlled system represented in Fig. 2.

The Actuators block of Fig. 2 is decomposed into a series
structure with two sub blocks. The first one contains a
relay with the above switching restrictions and with output

Fig. 2. Block diagram of the controlled system

in {kr,−kr, 0}, where kr = Fmaxρ/J . The second one
contains a linear dynamics which models thrust build up.
In practice, actuator delays may vary during the operation of
the system. Their value may depend on several parameters.
Thus, the model is affected by uncertainty. All the gains
in the system are rearranged to the output M of the Time-
Constrained Switch block. Since the controller is linear, these
gains affect only the amplitude of the response.

According to relay systems theory, for appropriate values
of p and z, we should expect symmetric unimodal limit
cycle behavior. Necessary conditions to the existence of this
limit cycle can be provided either by approximate or exact
methods (see [15]). The above switching-time restrictions
impose another condition, which states the existence of a
maximum value for the switching frequency f :

f ≤ fmax =
1

2(ton + toff)
(1)

Since the controller is linear, the period for which the
actuator is off at each half-cycle is always toff. Thus, the
fuel consumption will be minimum if the period for which
the actuator is on is also minimum, that is, if the limit
cycle frequency is maximum. Additionally, if we calculate
φ(t) approximately by double-integrating the periodic train
of pulses M(t), one can intuitively see that the amplitude
decreases monotonically with f as well. However, if the
controller demands a switching frequency higher than fmax,
nonperiodic persistent motions arise [6] and the amplitude
may vary significantly in the presence of uncertainties. In
[16], we characterize a quasi-periodic-like motion that arises
as a bifurcation from periodic motion.

Hence, the robust performance aimed in this paper consists
of the occurrence of single-switching (unimodal) limit cycles
that possess a set of possible frequencies with upper bound
fmax and maximum lower bound.

III. AN EXACT METHOD FOR PREDICTING LIMIT
CYCLES

In this section we obtain necessary conditions to the
existence of limit cycles in the fashion followed by Tsypkin
[17]. Suppose the existence of a single-switching (unimodal)
periodic output M(t) with period T as depicted in Fig. 3.

As noted in [4], this wave is equivalent to the sum of a
square wave with amplitude kr/2 and another square wave
with the same amplitude but delayed by toff. If we call ω0 =



Fig. 3. Unimodal periodic actuators’ output

2πT−1, the following Fourier series decomposition can be
verified:

M(t) =
∑

k odd

4kr

πk
=

{(
1 + e−jkω0toff

2

)
ejkω0t

}
(2)

Thus, in the case of single-switching periodic motion, the
Time-Constrained Switch block can be replaced by a simple
relay with output M ′(t) in {kr,−kr} and followed by the
transfer function

(
1 + e−stoff

)
/2.

Two necessary conditions to the existence of such output
will be considered, see [17, Eq. 5.47]:

u(T/2) = 0
du

dt
(T/2) < 0 (3)

These conditions are not sufficient because we do not take
into account the possibility of intermediary crossings u(t) =
0 for t < T/2. The Tsypkin locus is defined in [17, Eq. 6.1]
by

Λ(ω) =
1
ω

du

dt
(T/2) + ju(T/2) (4)

According to the conditions in Eq. (3), the existence of a
limit cycle of angular frequency ω0 requires that ∠Λ(ω0) =
π. Defining the transfer function L(s) = −U(s)/M ′(s) and
recurring to Eqs. (2) and (4), we can verify the following
expression for the Tsypkin locus

Λ(ω) =
∑

k odd

4kr

π

[
<{L(jωk)}+ j

1
k
={L(jωk)}

]
(5)

Thus, the Tsypkin locus is a useful tool for the de-
termination of limit cycle properties such as frequency
and amplitude. Though other exact methods exist, such as
the state-space based method [18], Tsypkin’s is a more
convenient method when dealing with uncertain systems,
since it is more convenient to express uncertainties in the
frequency domain. A useful criterion to address the limit
cycle stability graphically from the Tsypkin locus is provided
by the following necessary condition from [17, Eq. 10.69]:

=
{

dΛ(ω)
dω

}
> 0 (6)

Another useful result from [17, Eq. 6.54] is the exact
expression of the Tsypkin locus in the case the transfer
function from the relay output to the relay input has the
form:

L(s) =
P (s)

s2Q(s)
e−sτ (7)

where P (s) and Q(s) are polynomials with non-zero simple
roots.

This expression is applied in the parametric robustness
analysis and is also interesting since it provides qualitative
knowledge on the Tsypkin’s locus, such as the maximum
number of possible limit cycles.

Notice that, there was not a minimal pulse duration, a
limit cycle with frequency ω0 = π/toff would exist, since
Λ(π/toff) = L(π/toff) = 0. At this frequency, however,
the output M(t) is always zero, that is, this limit cycle is
an equilibrium point at the origin. If this limit cycle was
proved to be stable, the system could be stabilized by the
application of infinitesimal duration pulses. As these pulses
are not allowed, an undesirable quasi-periodic-like motion
would arise.

A second remarkable limit cycle is that occurring when
ω approaches zero. Indeed, the double integrator in L(s)
implies that limω→0+ ∠Λ(ω) = limω→0+ ∠L(ω) = π. If
this limit cycle is stable, there will be trajectories with no
switching at all, that is, there will be instability.

IV. MODEL UNCERTAINTIES

This section discusses two representations of the family
of possible systems that correspond to the real system. We
consider both structured and unstructured representations. A
parametric representation is useful because truncation errors
can be suppressed through the use of the exact expression for
the Tsypkin locus and, chiefly, because it allows validating
results via simulation. On the other hand, an unstructured
formulation is more inclusive and demands a lower compu-
tational effort.

Two of the main uncertainties in the adopted model reside
in the values of J and F , which may vary with time
because of propellant consumption and atmospheric pressure
decrease. Since the controller is linear, it is clear that these
parameters do not affect the kind of motion performed by
the system but for its amplitude, which is proportional to
them. Another source of uncertainty is the coupling of the
roll angle with other modes.

In this paper we consider only the uncertainty present
in the thrust build up dynamics, since the first uncertainty
mentioned is too simple to analyze and the second one is
too difficult and of little relevance. Moreover, we assume
that the time variation of J and F is low enough so that we
can consider a limit cycle type motion.

Though build up dynamics are different when actuators
switch on or off, they are dynamically alike and their



Fig. 4. Thrust build up envelope (dashed) and extreme curves for D(s) =
D(α, τ, s) (solid)

settling times are much less than toff. Under these conditions,
one can verify that assuming symmetric build up dynamics
will just make our robustness analysis more conservative.
Therefore, we model these dynamics by the transfer function
D(s), whose step response must be contained in a time
envelope given by the fastest and the slowest responses that
we describe in section II.

Next, we derive a parametric representation of the possible
D(s). Let us denote by DF (s) and DG(s) the transfer func-
tions related, respectively, to the fastest and to the slowest
curves in this envelope. Figure 4 depicts this envelope and
the extreme curves that fit in it and whose related transfer
functions have the form

D(α, τ, s) =
e−sτ

αs + 1
(8)

These curves are designed to graze the vertices of the
envelope and are unique in what concerns this feature. For
the approximation Da

F (s) of the fastest response, we found
αF = 2.73 [ms] and τF = 8.71 [ms]. For the approximation
Da

G of the slowest response, αG = 9.10 [ms] and τG =
τmax = 29.04 [ms]. For the minimum band transfer function
Da

FG(s), we found αmax = 18.66 [ms] and τmin = 7.03
[ms]. We must note that, among the most simple classes of
transfer functions, D(α, τ, s) is that which best approximates
the content of the envelope. In fact, no response from a
rational second order transfer function fits in it.

For the minimum value of α, we assume αmin = αF =
2.73 [ms]. Then, it is possible to establish an interesting
parameter domain observing the condition that at least 90%
of total thrust is attained for t = 50 [ms]. This domain is
given by τ ∈ [τmin, τmax] and α ∈

[
αmin, τ−0.05

ln 0.1

]
.

In the following lines we derive an unstructured formu-
lation of uncertainties leading to magnitude and phase en-
velopes in frequency domain. Figure 5 exhibits the frequency
response of the above transfer functions for the frequency
band of interest. Given that in the largest extent of this

band we have |D(jω)| very close to 1, we conclude that the
magnitude envelope will play a role of minor importance in
the determination of limit cycles. Hence, we simply adopt the
bounds given by the parametric characterization: |Da

F (jω)|
and |Da

FG(jω)|.

Fig. 5. Bode plots for DF (s) and DG(s) (dashed), for the approximations
Da

F (s) and Da
G(s) (solid), and for Da

FG(s) (black dots)

In order to determine a phase envelope, we assume that
thrust build up curves increase monotonically and have a
settling time τa. Then, we must have a impulse response
d(t) ≥ 0 for 0 ≤ t < τa and d(t) = 0 for t ≥ τa. Thus,

D(jω) =
∫ τa

0

d(t)e−jωtdt

⇒ ∠D(jω) ∈ [−ωτa, 0] (9)

Moreover, denoting by r(t) the step responses and recall-
ing that r(t) ≤ rF (t) for 0 ≤ t ≤ τa and r(t) = rF (t) for
t ≥ τa , we obtain

D(jω)−DF (jω) = jω

∫ ∞

−∞
[r(t)− rF (t)]e−jωtdt

= jω

∫ τa

0

[r(t)− rF (t)]e−jωtdt

⇒ ∠(D(jω)−DF (jω)) ∈
[
−π

2
− ωτa,−π

2

]
(10)

Similarly,

∠(D(jω)−DG(jω)) ∈
[π
2
− ωτa,

π

2

]
(11)

Now we use the fact: if ∠a ∈ [ϕ, ϕ̄], ∠b ∈ [χ, χ̄] and χ̄ <
ϕ + π, then ∠(a + b) ∈

[
min{ϕ, χ},max{ϕ̄, χ̄}

]
. Applying

this result to the sum of D(jω) − DF (jω) and DF (jω)
we may conclude that, as long as −π/2 < ∠DF (jω) <
π/2− ωτa,

∠D(jω) ≤ ∠DF (jω) (12)

By an analogous reasoning, for −π/2 < ∠DG(jω) <
π/2− ωτa , we assert that



∠DG(jω) ≤ ∠D(jω) (13)

Therefore, there is an interval for which we can use
∠DF (jω) and ∠DG(jω) as bounds of the phase envelope.
Outside this interval, we adopt the boundaries given by Eq.
(9). Taking τa = 65 [ms], we have the limit transfer functions
of the frequency domain envelopes:

D̄(jω) =


∣∣∣ 1
αminjω+1

∣∣∣ DF (jω)
|DF (jω)| , if ω < 28∣∣∣ 1

αminjω+1

∣∣∣ , , if ω ≥ 28
(14)

D̄(jω) =


∣∣∣ 1
αmaxjω+1

∣∣∣ DG(jω)
|DG(jω)| , if ω < 30.5∣∣∣ 1

αmaxjω+1

∣∣∣ e−jωτa , , if ω ≥ 30.5
(15)

V. LIMIT CYCLE ROBUSTNESS ANALYSIS

In this section we test the necessary conditions for the
existence of limit cycles with respect to their robustness.
Since these conditions are necessary only, we validate them
via simulation. The robust controller to be designed is that
for which the supremum of the set of predicted possible
frequencies is not larger than ωmax = 2πfmax, in such a way
that Eq. (1) is respected. Therefore, a bifurcation frontier in
the space of control parameters can be calculated by checking
for values of z and p such that this supremum is ωmax. Let
B be the family of possible Tsypkin loci for the uncertain
system and assume that <{Λξ(ωmax)} < 0 for all Λξ ∈ B .
Then, the periodic to quasi-periodic-like bifurcation frontier
must lie on the curve

(z, p) : min
Λξ∈B

{={Λξ(ωmax)}} = 0 (16)

As shown in Fig. 6, a point of the bifurcation frontier
occurs whenever the lower bound of the interval of possible
={Λ(ωmax)} crosses zero. However, the bifurcation frontier
may not coincide with the above curve, given that we do not
verify sufficient conditions for the existence of stable limit
cycles.

Fig. 6. Uncertain Tsypkin locus for p and z on the bifurcation frontier

In the case of parametric uncertainties, the bifurcation
frontier is calculated by the evaluation of the exact Tsypkin
locus expression in a grid of the parameter space. We have
adopted ∆α = 0.8 [ms] and ∆τ = 1.1 [ms]. For each

combination of z and p, if we find ={Λξ(ωmax)} < 0, we
may interrupt the search and conclude that the limit cycle
is not robust at this point. In fact, as Λξ(π/toff) = 0 and
π/toff > ωmax, we should expect the Tsypkin locus to cross
positively the real axis for ω > ωmax , which violates the
condition in Eq. (1).

In the case of unstructured uncertainty, we can establish
a lower bound for minΛξ∈B {={Λξ(ωmax)}} by choosing
D(jω) = Dξ∗(jω) inside the phase and magnitude en-
velopes in such a way that each harmonic contribution to
={Λ(ωmax)} in Eq. (5) is minimized. Figure 7 illustrates
the determination of Lξ∗(jω). At each frequency, the set
of possible D(jω) has rectangular shape and the worst
case L(jω) is given by the point on its boundary with the
largest magnitude and with phase as close as possible to
-90◦. Calculating Dξ∗(jω) as proposed, for some typical
values of p and z, we can observe that it coincides with
D̄(jω) for frequencies below ωmax and for other frequency
intervals whose total length surpasses a half of the focused
frequency band. Additionally, we observe that Dξ∗(jω) is
subject to very strong variations, which suggests that Dξ∗(s)
is not a rational transfer function and that its step response
may even not be contained in the time envelope. However,
since the worst case Λ(ω) depends only on Dξ∗ at the odd
harmonics kωmax, a simpler Dξ∗(jω) becomes possible and
fast dynamics seem to predominate in it. In the case of p =
−5 and z = −9, for instance, the transfer function D̄(jω)
is practically equal to Dξ∗(jω) until the ninth harmonic.

Fig. 7. Example of the determination of the worst case L(jω) =
O(jω)D(jω)

A. HAMEL’S METHOD ANALYSIS

In this section we present an alternative analysis method
that can be useful in synthesis. It employs the Hamel locus,
which allows for a more intuitive zero allocation. If we define
ε = u(T/2) and ε̇ = du

dt (T/2), the Hamel locus is given by
the curve in the phase plane:

H = (ε, ε̇) = (ω<{Λ},={Λ}) (17)



The oscillation frequency is also determined by the cross-
ing of the abscissa. On the other hand, we can interpret the
placing of a block (s − z) in the open loop as a change in
the switching condition from ε = 0 to −zε + ε̇. Therefore,
the oscillation frequency can be found in the crossing of
the line ε = ε̇/z by the Hamel of the system without the
zero. This suggests that a robust controller synthesis can be
done by the proper allocation of a line passing through the
origin and tangent to the set of possible Hamel locus points
at ω = ωmax. If we consider this set to be rectangular and
that H(ωmax) belongs to the second quadrant, we conclude

z =
min ε(ωmax)
min ε̇(ωmax)

= ωmax
min {<{Λξ(ωmax)}
min {={Λξ(ωmax)}

(18)

The above procedure is illustrated in Fig. 8. Since one
considers a rectangular set of possible H(ωmax), this pro-
cedure is expected to be somewhat more conservative than
that we present using the Tsypkin’s method.

Fig. 8. Robust design by allocation of the switching line (dashed) on the
Hamel locus (solid)

B. INSTABILITY FRONTIER

Besides the periodic to quasi-periodic-like bifurcation
frontier, we can identify another important frontier given by
the arising of instability. Based on Eq. (6), the instability
frontier is expressed as follows:

(z, p) : max
Λξ∈B

(
lim

ω→0+
=
{

dΛξ

dω
(ω)
})

= 0 (19)

For each combination of z and p on the frontier, we must
have limω→0+ =

{
dΛξ

dω (ω)
}

= 0 in the worst case, which

occurs if and only if limω→0+ =
{

dLξ

dω (ω)
}

. As Lξ∗(jω) →
π in the limit, the above condition is equivalent to

lim
ω→0+

d∠Lξ∗

dω
(jω) = 0 (20)

Replacing Lξ∗(jω), we obtain

d∠Lξ∗

dω
(jω) =

d

dω
∠

(
− jω − z

ω2(jω − p)
1 + e−jωtoff

2
Dξ∗(jω)

)

=
d

dω

(
π − arctan

ω

z
+ arctan

ω

p
− ωtoff

2

)
+

d

dω
∠Dξ∗(jω)

(21)

Taking the derivative and the limit, we obtain for Eq. (20)

1
p
− 1

z
− toff

2
+ lim

ω→0+

d

dω
∠Dξ∗(jω) = 0 (22)

According to the phase envelope, the limit above must
be in the interval [-53,-8.7] [ms]. In the case of parametric
uncertainties, the limit is given by −(α + τ) , where −(α +
τ) ∈ [−38.1,−9.8] [ms], that is contained by the interval
for unstructured uncertainty. As the derivative of the phase
and of the imaginary part of Lξ∗(jω) have opposite signs in
the limit ω → 0+, we conclude that the instability frontier
is determined by Eq. (22) with Dξ∗(jω) being such that
limω→0+

d
dω ∠D(jω) is minimum.

VI. NUMERICAL RESULTS

The numerical assessment considers the space z × p =
[−3, 0] × [−60,−10] with grid resolution ∆z × ∆p =
0.2 × 0.1. The choice of the number N of harmonics in
the truncation of the Tsypkin locus expression is empirical.
In Fig. 9 we exhibit the bifurcation frontier given by Hamel
locus approach for different N . From this we decided to
adopt N = 27. The figure also indicates that a first order
approximation would seriously affect a robust design.

Fig. 9. Convergence of the bifurcation frontier as the truncation term N
is increased

Figure 10 exhibits the regions where the limit-cycle fre-
quency is robustly bounded. The region for proper control
is that where 0 < ω0 < ωmax. Especially, the amplitude is
minimized on the bifurcation frontier and increases indefi-
nitely as we move towards the instability frontier. We should
remark that for z > 0 limit cycles become unstable. In fact,
when z changes sign the residue of the term 1/s2 in L(s) also
changes sign, which makes unstable the related closed-loop
sampled-data system we use to assess limit cycle stability,
as done in [17, Chapter 10].

In order to evaluate the conservativeness of this frontier
we compare it with frontiers given by other approaches in
Fig. 11. The parametric analysis is carried on the domain of
z and p with grid resolution ∆α = 0.8 [ms] and ∆τ = 1.1



Fig. 10. Regions of robust limit cycle behavior (unstructured uncertainty)

[ms]. We compare the frontier obtained for the unstructured
uncertainty to the one for the structured uncertainty. On the
p axis the second curve may be at most 12 [s−1] below the
first one; in the z axis, at most 0.4 [s−1] to the right. It is
remarkable that the worst case Λξ(ωmax) is always verified
for the case of fastest thrust build up, that is, for α = αmin

and τ = τmin. The frontier provided by the Hamel locus
design was slightly more conservative than that given by
unstructured uncertainties. On the p axis they differ at most
by 1 [s−1]; on the z axis, by 0.04 [s−1]. At length, we trace
the frontier obtained when we consider D(jω) = DF (jω).
This frontier suggests that the envelope technique is an
important cause of conservativeness, otherwise we would
have the curve for DF (jω) closer to the frontier given by
the unstructured uncertainty than to that given by parametric
uncertainties.

Fig. 11. Comparison of the bifurcation frontiers based on unstructured
uncertainty (solid), on parametric uncertainties (cross), on the function
DF (s) (dashed) and on Hamel locus approach (dot-dashed)

The large area of the region in Fig. 10 where 0 < ω0 <
ωmax, suggests that the desired robust controller will be

subject to great intervals of frequency and amplitude varia-
tion. Figure 12 shows the variation of the minimum possible
frequency along the bifurcation frontiers given by parametric
and nonparametric approaches. In order to obtain this curve,
we have employed the exact Tsypkin locus expression and
executed a parametric search over α and τ for each point on
the frontiers. Note that minimum frequencies have always
been verified for the case of slowest thrust build up, that is,
for α = αG and τ = τG.

Fig. 12. Minimum oscillation frequency varying along the bifurcation
frontiers given by parametric (dashed) and nonparametric (solid) approaches

As one could expect, the largest intervals of amplitude
variation occur nearby the instability frontier and the smallest
intervals occur in the limit cycle stability boundary at z = 0.
Notice that the parametric approach, being less conservative,
provides a little smaller interval. Choosing z in order to have
a minimum amplitude variation has obviously a drawback,
since in this case the limit cycle would be marginally stable.
This drawback is the duration of transient responses, which
increases unboundedly as z approaches 0. The maximum
value of the roll angle amplitude settling time for 1% was
obtained via simulation and plotted in Fig. 13. Thus, the
designer can establish a tradeoff between length of the
amplitude intervals and duration of transients.

A. VALIDATION
As stated in the previous sections there is a series of

hypotheses that must be verified in order that all points on
the calculated bifurcation frontier be correct. Though the
designer need to validate only the chosen control parameter
combination, it would be interesting to know whether the
entire frontier is correct. Since the analytic verification of the
hypotheses demands a prohibitive effort, we opt to validate
our analysis using numerical simulations. Among the cited
hypotheses are: the unimodal limit cycle is a global behavior;
the sufficiency of limit cycle stability condition; the absence
of intermediary switches; the uniqueness of the stable limit
cycle.

In order to check the validity of the limit cycle ω0 <
ωmax region we calculate via simulation the average time T



Fig. 13. Maximum roll angle settling time along the bifurcation frontier

between actuators positive switches. In the unimodal periodic
case, this average corresponds to the period, that must satisfy
T ≥ Tmax. For complex periodic or non-periodic motions,
we must have T ≤ Tmax. The analysis of these conditions in
the space α × τ has confirmed the validity of the region of
robust limit cycle with ω0 < ωmax. Notice, however, that this
analysis is well-suited to the open region but may not identify
the bifurcation frontier precisely, since nothing can be said
when T = Tmax. The variance of the times between positive
switches would not suffice to identify the bifurcation frontier
either, given that this variance may be very small for quasi-
periodic-like motions in the neighbourhood of bifurcation.

Therefore, the strategy for validation of the frontier consid-
ers the Lyapunov dimension, given that Lyapunov exponents
are important indicators of the occurrence of bifurcations
[19]. Indeed, as they have unbounded variations in bifurca-
tion points, these points can be accurately identified. For each
point (z, p) in the bifurcation frontier neighborhood and for
each point in a grid of α and τ , the validation procedure
consists of the random choice of an initial condition and
subsequent simulation of the system. Then, Lyapunov expo-
nents are calculated using the method proposed by Müller
[16], [20] to deal with discontinuous flow systems. Once
dimensions greater than 1.05 are found, the search in the
space α× τ may be interrupted and the motion is classified
as non-periodic. The resulting dimensions are exhibited in
Fig. 14 and confirm that the bifurcation frontier based on a
parametric approach is very close to the actual frontier. This
validation is carried just in a small neighborhood of the bifur-
cation frontier, for the calculation of the Lyapunov spectrum
takes an excessively long time. Hence, both validations are
complementary.

VII. CONCLUSION

In this paper we presented a study of the robust limit
cycle control in an attitude control system with relay-type
actuators subject to minimally spaced transition times. As
the emergence of bifurcations in this system can seriously

Fig. 14. Lyapunov dimension (grayscale) in the neighborhood of the
bifurcation frontier (white line with stars)

affect performance, we developed analysis/synthesis tech-
niques for robust prevention of bifurcations and efficient
employment of actuators. First-order linear controllers that
robustly reduce both amplitude and fuel consumption can be
obtained. However, the designer should establish a tradeoff
between amplitude interval and transient duration. Tsypkin’s
method is used to investigate the robustness of the existence
condition for time-constrained limit cycles. This allows the
identification of a robustness frontier in the space of control
parameters. Thus, reduced amplitude and fuel consumption
can be obtained through the solution of a maximin problem
for the oscillation frequency on this frontier. In addition,
since most relay control systems are subject to similar
time restrictions, the presented techniques may be useful to
efficiently exploit actuators in other systems that alternate
among unstable dynamics.

The proposed techniques introduce a robust limit cycle
control that relies in exact limit cycle prediction. The dis-
cussed attitude control problem is an important instance for
which an exact prediction would be noticeably advantageous
in obtaining an improved performance. The main advantages
in the use of exact methods are their accuracy and smaller
conservativeness when compared to strategies that use the de-
scribing function and that take into account the contribution
due to higher harmonics as an uncertainty. A disadvantage of
exact methods in relation to the describing function methods
is the low availability of control synthesis procedures. Other
problems may arise in the case of systems of greater order,
for a large number of stable limit cycles may occur. We
believe that both of these deficiencies can be corrected
through a joint analysis that uses describing function and
exact methods. Moreover, we remark that similar techniques
can also be applied in the design of frequency and amplitude
bounded limit cycles.

An interesting improvement of the controller structure may
be obtained by varying the minimum required rest between
operations of different thrusters. This additional degree of



freedom can lead to a reduction in fuel consumption. We
believe that a more elaborated version of the procedures in
this paper would be able to address the problem.
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