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1 Introduction

A major challenge in the state estimation of hybrid dynamical systems from a

Bayesian approach lies in the exponential growth of possible continuous state

trajectories. This is of particular relevance for Markov Jump Systems (MJSs)

since, in the linear case, the Bayes posterior may be computed in closed form.

Solving this problem exactly, however, would require a bank of continous filters

with exponentially growing size. To cope with this problem, the multiple model

multiple hypothesis filter (M3H) was proposed in [1, 2]. Given that the Bayes

posterior is given by a probability mixture, the M3H truncates and merges the

components of this mixture taking into account the history of the discrete states

associated to each component.

In order to also incorporate continuous state information in the merging

process, the multiple model multiple hypothesis filter with Gaussian mixture

reduction (M3HR) was proposed in [3]. This approach merges the mixture

components using clustering techniques discussed in [4]. By choosing different

cluster sizes, one could obtain suitable combinations of estimation error and

processing time.

If one considers the possibility of varying the cluster sizes with time, we see

that, encrusted in the problem of Bayesian filtering of hybrid systems, there is

a problem of precision control. More precisely, we have an optimal control

problem in which one wants to minimize the time-averaged estimation error

subject to a bounded computational time in each time-step.

In this work we formulate and solve such a control problem employing dif-

ferent probability measure divergences to allow us to quantify the estimation

error. Essential to this formulation is the possibility of aggregating approxima-

tion errors made at different times. To this purpose, we use an equivalent of the

law of cosines in Euclidean space, to aggregate errors in probability space in a

fashion that is less conservative than simply applying the triangle inequality.
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This precision control is then applied to the M3HR filter in the fashion of

the Runnalls’ algorithm [5], which was the most time-efficient clustering algo-

rithm tested in [3]. Numerical results demonstrate reasonable improvement

in comparison to the open-loop approach.

As for probability divergences, we study both f -divergences, which take

into account only the information content of each distribution regardless of

the state space metric, and the Wasserstein distance, which takes into account

the state space metric.

Although the idea of filter precision control is not completely new (see, for

example, [6]), it is is new in the context of Bayesian filtering of hybrid sys-

tems where computational time is the control input. Our main contribution is

in Section 3. By applying the framework in that section to information diver-

gences in Section 4 and to the Wasserstein distance in Section 5, some new

facts are also uncovered.

In the next section, we motivate our problem with an example from net-

worked control.

2 A Problem in Networked Control

A common challenge in networked control systems lies in the loss of data pack-

ets due to channel noise or channel interference (see [7] for a review of this

issue). Packet drop events may be modeled as Markov chains whose transitions

are independent on the actual information content of packets. Thus, a control

system whose sensors, controllers or actuators are connected by a packet drop-

ping network is a standard example of a Markov Jump System.

In this work we consider the problem of drops in the controller-actuator
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channel. Let xk ∈ Rd be the state of a linear system with dynamics given by

xk+1 = Axk + εkBuk +wk (1)

yk = C xk + vk , (2)

where yk ∈ Rno are the observations corrupted by white Gaussian noise vk with

covariance Rv, uk ∈ Rni is the controller input and the disturbance wk is white

Gaussian noise, which is independent of vk and has covariance Rw. The process

εk ∈ {0, 1} accounts for packet drops in the controller-actuator channel and it

is modeled by the discrete Hidden Markov Model

Pr{mk+1 = j|mk = i}= π j|i (3)

Pr{εk = j|mk = i}= % j|i (4)

where [π j|i] and [% j|i] define the transition and emission matrices respectively

and where the discrete state mk lies in the set {1, . . . , M}.
It is assumed that the controller only has knowledge of the sequence y1:k,

not observing εk or mk directly. Had the controller knowledge of εk, the optimal

state estimator would be a simple Kalman filter.

The Bayes approach to this problem would be to consider all possible se-

quences ε1:k, obtain the posteriors p(xk|ε1:k, y1:k) given by the respective Kalman

filters and then weight each posterior according to its likelihood. Unfortu-

nately, the number of possible sequences ε1:k (and of Kalman filters) grows

exponentially as M k. That is why any Bayesian approach to filtering MJSs

needs truncation.

To make it more precise, let xk|k denote the posterior estimates of xk when

(m0, x0) is distributed with priors πm0
φm0
(x0), where φm0

=N (µm0
,Σm0

). De-

fine the likelihood function for the output sequence y1:k and the n-th possible
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mode sequence ε(n)1:k, n= 1, . . . , 2M k, as

`i,k,n :=

∫

p
�

y1:k,ε(n)1:k|m0, x0

�

φm0
(x0)d x0 .

Denote by µi,k,n the posterior means at time k given by the Kalman filter cor-

responding to the n-th emission sequence and to prior m0 = i.

Then, by the hidden Markov structure of the process, the posterior means

are given by the sum of the means for the continuous filters weighted by the

posterior probability for each component:

xk|k =
∑

i,n

πi`i,k,n

`k
µi,k,n ,

where `k =
∑

i,n `i,k,n.

In our experiments, we focus on the particular case of memoryless erasure

channels, where

[πi j] =

�

1− p0 p0

1− p0 p0

�

and [%i j] =

�

0 1

1 0

�

,

such that m = 1 always correspond to a successful transmission and m = 2

corresponds to a drop and the drop probability is given by the number p0. In

this case there is no real distinction between the mode variable mk and the

emission variable εk.

3 A Framework for Precision Control

In this section we compute bounds for the approximation error due to succes-

sive truncations of the probability densities in a Bayesian filter. These bounds

are then used to propose suboptimal control strategies that trade off computa-
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tional time and filter precision.

For a given space P of probability distributions, consider a generic diver-

gence function D :P ×P 7→ R≥0 ∪{∞} and assume that D is jointly convex.

Theorem 1. Suppose that, for t ∈ [0, 1], ν1 and ν2 ∈ P , there exists a merging

function γt :P ×P 7→ P and a function D̄t :P ×P 7→ R≥0 ∪ {∞} such that

(1− t)D(ν1,ν) + tD(ν2,ν)≤ D(γt(ν1,ν2),ν) + D̄t(ν1,ν2) , (5)

for all ν ∈ P . Now, consider a mixture probability distribution in P with com-

ponents (wi,νi), i = 1, . . . , N and define ν̄n as the measure obtained from the

consecutive pairwise merging of ν1,ν2, . . . ,νn as follows

ν̄n = γ( wn
w̄n )(ν̄n−1,νn), n≥ 2, ν̄1 = ν1 ,

where w̄n =
∑n

i=1 wi. Then, the total divergence resulting from such a merging is

bounded as

D

�

N
∑

i=1

wiνi,ν

�

≤ D(ν̄N ,ν) +
N
∑

n=2

w̄nD̄ wn
w̄n
(ν̄n−1,νn), ∀ν ∈ P . (6)

Consequently, if we denote by∆n the bound associated to the approximation error

D
�∑n

i=1 wiνi, ν̄n

�

, we have the recurrence

∆n =∆n−1 + w̄nD̄ wn
w̄n
(ν̄n−1,νn) . (7)

Proof. From the convexity of D we have that

D

�

N
∑

i=1

wiνi,ν

�

≤ w1D(ν1,ν) + (1−w1)D

�

N
∑

i=2

wi

1−w1
νi,ν

�

. (8)
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Next, we note that

w̄n−1D(ν̄n−1,ν) + (1− w̄n−1)D

�

N
∑

i=n

wi

1− w̄n−1
νi,ν

�

≤

w̄n−1D(ν̄n−1,ν) +wnD(νn,ν) + (1− w̄n)D

�

N
∑

i=n+1

wi

1− w̄n
νi,ν

�

≤

w̄nD̄ wn
w̄n
(ν̄n−1,νn) + w̄nD(ν̄n,ν) + (1− w̄n)D

�

N
∑

i=n+1

wi

1− w̄n
νi,ν

�

,

(9)

where the first inequality follows from the convexity of D and the second is

a consequence of (5). Applying inequality (9) successively starting from (8)

gives (6). Replacing ν by ν̄n in (6) gives the second part of the theorem as

stated in (7).

Remark 1. Note that, if we replaced D in (5) by the Euclidean distance squared,

γt(x , y) = (1− t)x + t y and D̄t by t(1− t)‖x − y‖2, we would have that (5)

is satisfied with equality. This identity is equivalent to the law of cosines and it

gives much tighter error bounds than the triangle inequality.

Let ν(k) and ν̄(k) be the posterior distributions for the Bayes filter at time

k having different priors ν(0) and ν̄(0). Assume the divergence D admits a

contraction rate α, i.e.,

D(ν(k+1), ν̄(k+1))≤ αD(ν(k), ν̄(k)), ∀k ≥ 0, ν(0), ν̄(0) ∈ P .

Then, if we denote by Ek the bound on the truncation error accumulated from

all times previous to k, we have that

Ek = αEk−1 +α∆
(k−1) , (10)

where ∆(k) is the bound on the total truncation error at time k obtained from
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(7) combining all clusters:

∆(k) =
∑

all j clusters

ŵ j∆
(k)
j ,

where ŵ j is the total probability mass of the j-th cluster and ∆(k)j is the trun-

cation error for that same cluster.

This evolution of the truncation error suggests the formulation of the con-

trol problem as a Markov Decision Process with state Ek, actions Nk,m as the

number of components of the reduced measure for mode m at time k and in-

stantaneous cost c(Ek, Nk) = Ek + βτ(Nk), for some weight β > 0 and some

function τ(·) that describes the impact of the action vector Nk = [Nk,m] on the

computational time.

For a control policy with Nk and ∆(k) constant in time, and for a discount

factor γ ∈ (0, 1) for the overall cost, we would have a value function V (Ek) =

Ek/(1−γα)+ρ0 for some constant ρ0. This value function leads to the subop-

timal policy

Nk = arg min
Nk

γα

1− γα
∆(k) + βτ(Nk) . (11)

Computing the minimum in (11) would by itself affect the computational time

τ(NK) if this is to be done online. Instead, we can check for a local minimum

by looking at the first difference with respect to Nk:

γα

1− γα
w̄nD̄ wn

w̄n
(ν̄n−1,νn) + β(τ(Nk −δm)−τ(Nk)) ,

where n is such that the merge of ν̄n−1 and νn would lead to Nk,m − 1 com-

ponents. This leads to a threshold condition according to which we should

truncate one component at a time and stop when the error introduced by the
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next truncation satisfies

w̄nD̄ wn
w̄n
(ν̄n−1,νn)>

1− γα
γα

β(τ(Nk)−τ(Nk −δm)) . (12)

The above condition does not guarantee that the number of components

will remain bounded for all time. For this reason it is desirable to add to the

stopping criterion the condition that
∑

m Nk,m ≤ Nmax, for some constant Nmax

large enough. Taking into account all these considerations, the proposed strat-

egy is summarized in Algorithm 1.

Algorithm 1 is run within the M3HR algorithm to replace the Runnalls’ al-

gorithm in the step of merging the posterior distributions at each time-step.

Algorithm 1 Suboptimal Gaussian Mixture Model Reduction for MJSs

1: Given the mixture
∑M

m=1

∑Nm

i=1 wi,mνi,m, a constant κ0 and an integer Nmax,
2: Compute ci, j,m = (wi,m+w j,m)D̄w j,m/(wi,m+w j,m)(νi,m,ν j,m) for all i < j and all

m.
3: Set StopFlag=FALSE.
4: while

∑

m Nm > M do
5: Find the indices i∗ < j∗ and m∗ that minimize ci, j,m.
6: if ci∗, j∗,m∗ > κ0[τ([Nm])−τ([Nm]−δm∗)] then
7: Set StopFlag=TRUE.
8: if

∑

m Nm ≤ Nmax then
9: break

10: end if
11: end if
12: Set νi∗,m∗ = γw j∗ ,m∗/(wi∗ ,m∗+w j∗ ,m∗ )(νi∗,m∗ ,ν j∗,m∗).
13: Set wi∗,m∗ = wi∗,m∗ +w j∗,m∗ .
14: Remove component j∗ from the mixture of index m∗.
15: Set Nm∗ = Nm∗ − 1.
16: if

∑

m Nm ≤ Nmax & StopFlag then
17: break
18: end if
19: Update ci∗, j,m∗ for j > i∗.
20: end while
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Note that the knowledge of the contraction rate α is actually not needed.

Given that a rate α exists, we can experimentally try different constants κ0 > 0

in Algorithm 1 and pick one that is suitable. This is the equivalent of the

user choosing the weight β since, for every κ0 > 0, there exists β such that

κ0 = β((γα)−1 − 1) as in (12).

Note, in addition that, even when α ≥ 1 and there is no contraction ef-

fectively, the above framework still works for small enough discount factors

(γ < α−1).

The computational time due to the filtering step is linear in Nm since at

most M
∑

m Nm Kalman filters are run after we reduce each mixture to a size of

Nm. Thus, the reduction step, which is quadratic in Nm as seen in Algorithm 1,

dominates the computational time. From this we have that the function τ(·)
can be obtained empirically by fitting a second order polynomial in Nm to the

computational times.

A more precise structure on τ(·) can be obtained as follows. Suppose each

mixture is reduced to size Nk−1,m at time k− 1. After propagation, each mode

will have at most
∑

m Nk−1,m =: N̄k components. From this, step 2 in Algorithm

1 takes time proportional to MN̄k(N̄k−1)/2. If we were to reduce each mixture

to the minimum size of 1, step 19 in Algorithm 1 would take time proportional

to M(N̄k−1)(N̄k−2)/2. However, reducing to Nk,m components instead of 1, we

save Nk,m(Nk,m−1)/2 updates in the array ci, j,m. This results in a computational

time at time k proportional to:

M
(N̄k − 1)2

2
−

M
∑

m=1

Nk,m(Nk,m − 1)

2
+Mτ0N̄k ,

where the constant τ0 corresponds to the computational time of the Kalman

filters. The expression above is a function of both Nk,m and Nk−1,m. Taking into

account the discount factor, we can rearrange the terms in the total computa-
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tional cost to obtain

τ([Nm,k])∝ γM





�

M
∑

m=1

Nk,m − 1

�2

+ 2τ0

M
∑

m=1

Nk,m



−
M
∑

m=1

Nk,m(Nk,m − 1) .

Remark 2. Finding an exact value function and such a simple control was possible

due to the linear dynamics in (10), which is a consequence of Theorem 1. The

same would not be possible if errors were aggregated using the triangle inequality.

Remark 3. The given controller is suboptimal in a number of ways. In the first

place, we are dealing with bounds on error sizes and not the real errors. Secondly,

Ek is not a real state since it does not fully describe the full probability densities.

Third, our model does not take into account how the mixture sizes Nk.m influence

the range of approximation errors at future times. Lastly, we have merely provided

a roll-off policy and, on top of that, we have no guarantee that (12) gives global

minimum.

In the next sections we discuss different types of divergences that can be

employed with the presented framework.

4 Precision Control Using f -Divergences

An important class of convex divergences is given by the so-called f -divergences.

For a convex function f such that f (1) = 0 , the f -divergence Df of the prob-

ability measures ν1 with respect to ν2 is defined as

Df (ν1‖ν2) =

∫

f
�

dν1

dν2

�

dν2

when ν1 is absolutely continuous with respect to ν2 (see [8] for a definition in

the general case and for further properties). Due to the convexity of the map

(x , y) 7→ x f (y/x), Df is jointly convex on (ν1,ν2).
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Further properties of f -divergences are Df (ν1‖ν2) ≥ 0 and, if f is strictly

convex at 1, Df (ν1‖ν2) ≥ 0 if and only if ν1 = ν2. If P is a Markov transition

operator, then Df (ν1‖ν2) ≥ Df (ν1‖ν2), which means that f -divergences are

non-expansive under the time evolution of dynamical systems. This implies

that f -divergences tend to contract (or at least not expand) during the propa-

gation step of a Bayes filter. However, they still may expand during the Bayes

step when additional information is added through observation.

Some notorious divergences in probability theory are f -divergences. For

f (t) = |t − 1|, we have the total variation distance TV(·, ·) := Df (·‖·). For

f (t) = t ln t we have the Kullback-Leibler divergence KL(·, ·) := Df (·‖·). For

f (t) = − ln t we have the reverse Kullback-Leibler divergence RKL(·, ·) :=

Df (·‖·). For f (t) = 1
2(
p

t−1)2 we have the squared Hellinger distanceH 2(·, ·) :=

Df (·‖·). And, for f (t) = (t−1)2, we have the chi-squared divergence χ2(·, ·) :=

Df (·‖·). From the above divergences, only TV andH 2 are symmetric. In addi-

tion, TV andH are true distances.

The optimal values for (γt ,ν) in (5) can be defined by means of a min-max

problem. When a Nash-equilibrium (γ∗t ,ν
∗) exists, it is always the case that

γ∗t = ν
∗. Indeed, given a choice ν = ν∗, the bound D̄ is minimized by setting

γt = ν∗. For this reason, γ∗t often coincides with the barycenter

argmin
ν

w1D(ν1,ν) +w2D(ν2,ν) .

When D = Df , [9] showed that the solutions to this problem, the so-called

entropic means, are given by: the arithmetic mean of the pdfs in the case of

the Kullback-Leibler divergence; the normalized geometric mean of the pdfs

in the case of the reverse Kullback-Leibler divergence; the normalized mean

square-roots of the pdfs in the case of the squared Hellinger divergence; and

the normalized harmonic mean of the pdfs in the case of χ2-divergence.

In our case we are interested in the approximation of Gaussian mixtures
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by a single Gaussian. From the means above, only the normalized geometric

mean of Gaussians is again a Gaussian.

In the following proposition we give merging functions and bounds D̄t that

satisfy condition (5) when P is the space of multivariate normal distributions

on Rd , denoted here by N d .

Proposition 2. Suppose ν1 = N (µ1,Σ1) and ν2 = N (µ2,Σ2) are merged by

γt(ν1,ν2) =N (µ̄t , Σ̄t). Then, the tuple (µ̄t , Σ̄t , D̄t) satisfies condition (5) when

P =N d and the following f -divergences are used as D = Df :

1. For the total variation distance:

µ̄t = µ1

Σ̄t = Σ1

D̄t = tTV(ν1,ν2) ,

when t < 0.5 and vice-versa when t > 0.5;

2. for the Kullback-Leibler divergence:

µ̄t = (1− t)µ1 + tµ2

Σ̄t = (1− t)Σ1 + tΣ2 + t(1− t)(µ1 −µ2)(µ1 −µ2)
′

D̄t =
1
2

�

ln |Σ̄t | − (1− t) ln |Σ1| − t ln |Σ2|
�

;

3. for the reverse Kullback-Leibler divergence:

µ̄t = Σ̄t

�

(1− t)Σ−1
1 µ1 + tΣ−1

2 µ2

�

Σ̄t =
�

(1− t)Σ−1
1 + tΣ−1

2

�−1

D̄t =
1
2

�

t(1− t)(µ1 −µ2)
′Σ̃−1

t (µ1 −µ2)− ln |Σ̃t | − (1− t) lnΣ2 − t lnΣ1

�

,

where Σ̃t = tΣ1 + (1− t)Σ2;
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4. for the squared Hellinger distance:

µ̄t = Σ̄t

�

(1− t)Σ−1
1 µ1 + tΣ−1

2 µ2

�

Σ̄t =
�

(1− t)Σ−1
1 + tΣ−1

2

�−1

ϕt =
1
4

�

t(1− t)(µ1 −µ2)
′Σ̃−1

t (µ1 −µ2)− ln |Σt |+ (1− t) lnΣ1 + t lnΣ2

�

D̄t = 1− e−ϕt ,

where Σ̃t = tΣ1 + (1− t)Σ2.

The expressions for merging for the Kullback-Leibler and the reverse Kullback-

Leibler divergences are optimal as demonstrated in [10, 11, 12]. In the case of

the squared Hellinger distance, there is no closed form for the optimal merge

(see the related problem of computing the Bhattacharyya centroid in [13]).

The expression given in the proposition can be checked by analyzing the Bhat-

tacharyya distance ln(1−H 2) in place ofH 2. By fixing the merging function as

in the proposition, one can easily show that D̄t is maximized by ν=N (µ̄t , 0).

All of the divergences in the proposition have a similar behavior when ap-

proaching zero. In particular, if we are at equilibrium with Σ̄= Σ1 = Σ2, then,

in the limit of small mean deviations, we have

D̄t ∝
1
2

t(1− t)(µ1 −µ2)
′Σ̄−1(µ1 −µ2) (13)

in the case of the last three divergences.

Notably, Runnals’ algorithm [5] employs the same merging function and the

same error bound as those of the Kullback-Leibler divergence in the proposition

without, however, controlling the reduced mixture size.

For future reference, we give the expressions for the Hellinger [13] and
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χ2-divergences [14] between multivariate normals:

ln(1−H 2(ν1,ν2)) =
1
4
(µ1−µ2)

′(Σ1 +Σ2)
−1(µ1−µ2)+

1
2

ln
|(Σ1 +Σ2)/2|
|Σ1||Σ2|

(14)

and

ln(χ2(ν1,ν2))) =
1
2
(2µ2 −µ1)

′(2Σ2 −Σ1)
−1(2µ2 −µ1)

+
1
2

ln |2Σ2 −Σ1| −µ′2Σ
−1
2 µ2 +

1
2
µ′1Σ

−1
1 µ1 − ln |Σ2|+

1
2

ln |Σ1| , (15)

for 2Σ2 > Σ1.

5 Precision Control using the Wasserstein Distance

The limit behavior in (13) shows that information divergences always weight

mean deviations according to the posterior covariance matrix. However, there

might be situations in which we want to weight mean components differently,

according to some metric of interest in Rd . This case is captured nicely by the

so-called Wasserstein distance. In the next sections we give te main facts about

this distance and derive suitable merging functions and bounds for it.

In Section 5.3, we show how this distance is connected with the mean ab-

solute error for matrix weighted norms ‖ · ‖Q in Rd . In particular, we find

that, in order to control the Q-norm of the error, one must replace the inverse

of the equilibrium posterior covariance in (13) by a combination of the form

Σ̄−1 + f (Q).

5.1 The Wasserstein Distance

We denote by P2(Rd) the space of probability measures on Rd with finite sec-

ond moment.
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Definition 1. For ν1,ν2 ∈ P2(Rd), we define the Wasserstein distanceW2(ν1,ν2)

between them as

W 2
2 (ν1,ν2) := inf

�∫

‖x − y‖2ν(d x , d y) :

∫

ν(x , d y) = ν1,

∫

ν(d x , y) = ν2

�

= inf
�

E
�

‖X − Y ‖2
�

: X ∼ ν1, Y ∼ ν2

	

.

Endowed with the distance W2(ν1,ν2), P2(Rd) is a metric space. Specif-

ically, W2(ν1,ν2) is a metrization of the weak topology in P2(Rd) [15, Thm.

6.9]. The space (P2(Rd),W2) is geodesic given that any two probability mea-

sures are connected by a minimizing geodesic and, moreover, if one the the

measures is absolutely continuous with respect to the Lebesgue measure, this

geodesic is unique [15, Cor. 7.22, Cor.7.23].

Proposition 3. The function W 2
2 (·, ·) is jointly convex:

W 2
2 (w1p1 +w2p2, w1q1 +w2q2)≤ w1W 2

2 (p1, q1) +w2W 2
2 (p2, q2) .

Proof. The bound on the right hand side is achieved by E[‖X − Y ‖2] when

random variables (i, X , Y ) are defined such that Pr{X |i} = pi, Pr{Y |i} = qi,

Pr{i}= wi, and X and Y are independent given i.

Proposition 4 (Sec. 6.2 in [16]; Sec. 2 in [17]). Let γν1,ν2
(t), t ∈ [0, 1] be a

constant-speed geodesic curve from ν1 ∈ P2(Rd) to ν2 ∈ P2(Rd). Then, γν1,ν2
(t)

is also a barycenter of ν1 and ν2:

γν1,ν2
(t) = arg min

ν∈P2(Rd )
{(1− t)W 2

2 (ν1,ν) + tW 2
2 (ν,ν2)} .

Moreover, the barycenter is unique when one of the measures is absolutely contin-

uous with respect to the Lebesgue measure.
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The next result takes advantage of the fact that space (P2(Rd),W2) is a

positively curved space to find an upper bound for the merging error that is

considerably tighter than the bound that would be obtained by a mere appli-

cation of the triangle inequality. Indeed, for the case of Dirac measures, the

bound below recovers the corresponding error in Euclidean space, which is a

direct consequence of the law of cosines.

Lemma 5 (Thm 7.3.2 in [18]). For w1, w2 ∈ [0,1], w2 = 1−w1, and probability

measures ν1,ν2,ν ∈ P2(Rd), the approximation error when the mixture w1ν1 +

w2ν2 is replaced by ν is upper bounded as follows

W 2
2 (w1ν1 +w2ν2,ν)≤ w1W 2

2 (ν1,ν) +w2W 2
2 (ν,ν2)

≤ w1w2W 2
2 (ν1,ν2) +W 2

2 (γν1,ν2
(w2),ν)

where γ is a geodesic curve as in Proposition 4. Moreover, the second inequality

reduces to equality when the local curvature of (P2(Rd),W2) is zero, which is the

case when ν1,ν2 and ν are Dirac measures.

From Lemma 5, we have that the Wasserstein distance satisfies condition

(5) with the geodesic γ as a merging function and with D̄t(ν1,ν2) = t(1 −
t)W 2(ν1,ν2).

Proposition 6 (Thm 2.2 [19],[20]). The Wasserstein distance between two Gaus-

sian distributions is given in closed-form by

W 2
2 (N (µ1,Σ1),N (µ2,Σ2)) = ‖µ1−µ2‖2+ trΣ1+ trΣ2−2 tr(Σ1/2

1 Σ2Σ
1/2
1 )

1/2 .

Consider now the subspaceN d
0 ⊂ P2(Rd) composed of d-dimensional zero-

mean Gaussian probability measures and denote by P(d) the set of positive

semidefinite matrices in Rd×d . The next proposition states that N d
0 is a totally
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geodesic submanifold of P2(Rd), i.e., any two points in N d
0 are connected by

a geodesic that lies in N d
0 .

Proposition 7 ([21], Example 1.7; [19]). For N (0, V ) ∈ N d
0 and N (0, U) ∈

N d
0 , with U , V positive definite, define

T := U1/2(U1/2V U1/2)−1/2U1/2

and

Γ (t) := [t I + (1− t)T]V [t I + (1− t)T] .

Then N (0, Γ (t)) is a geodesic from N (0, V ) to N (0, U) in (P2(Rd),W2). In

addition, Γ (t) is itself a geodesic on the space P(d) endowed with the metric

W2(U , V ) =W2(N (0, U),N (0, V )).

From Proposition 6, we see that the submanifold of Gaussian measures can

be parametrized by the direct sum ofRd , equipped with the Euclidean distance,

and Pd equipped with the Wasserstein metric. Therefore, the full geodesic from

N (µ1, U) to N (µ2, V ) is given by N ((1− t)µ1 + tµ2, Γ (t)).

5.2 Approximations of the Wasserstein Geodesics

The geodesics given by Proposition 7 require the computation of matrix square

roots, which is disadvantageous from the perspective of computational time.

We investigate faster alternatives from approximations of the Wasserstein ge-

odesic.

The next theorem shows that condition (5) is still satisfied when we replace

the matrix geodesic mean by the matrix harmonic mean.

Theorem 8. For positive definite matrices U and V , define their harmonic mean

as

HU ,V (t) := ((1− t)U−1 + tV−1)−1, t ∈ [0,1]
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and their arithmetic mean by

MU ,V (t) := (1− t)U + tV, t ∈ [0,1] .

Then,

(1− t)W 2
2 (U , X ) + tW 2

2 (V, X )≤W 2
2 (HU ,V (t), X ) + tr MU ,V (t)− tr HU ,V (t) .

Proof. Using the fact that the derivative of the functional X 7→ W 2
2 (U , X ) is

(I −U#X−1) (see Section 6 of [20]), where the operator # denotes the matrix

geometric mean, we have that the derivative of the functional

ϕ(X ) := (1− t)W 2
2 (U , X ) + tW 2

2 (V, X )

is given by

Dϕ(X ) = (1− t)(I − U#X−1) + t(I − V#X−1) .

From the properties of matrix means given in [22], we have

Dϕ(X ) = (1− t)(I − (U−1#X )−1) + t(I − (V−1#X )−1)

≤ I −
�

(1− t)(U−1#X ) + t(V−1#X )
�−1

≤ I −
�

((1− t)U−1 + tV−1)#X )
�−1

= I − ((1− t)U−1 + tV−1)−1#X , (16)

where the inequalities (equality) follow, respectively, from the properties of

self-duality of the geometric mean, minorization of the arithmetic mean by the

harmonic mean, joint concavity of the geometric mean and self-duality of the
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geometric mean. The right-hand side of (16) is the derivative of the functional

ϕ̄(X ) :=W 2
2 (HU ,V (t), X ) .

This implies that the functional derivative Dϕ−ϕ̄(X ) is negative semidefinite.

Therefore, the maximum of the functional ϕ(X )− ϕ̄(X ) is attained for X = 0.

It follows that

(1− t)W 2
2 (U , X ) + tW 2

2 (V, X )−W 2
2 (HU ,V (t), X )

≤ (1−t)W 2
2 (U , 0)+tW 2

2 (V, 0)−W 2
2 (HU ,V (t), 0) = (1−t) tr U+t tr V−tr HU ,V (t) .

This result also holds in the case of non-zero-mean Gaussians since, for

ν=N (µ, X ),

(1−t)W 2
2 (N (µ1, U),ν)+tW 2

2 (N (µ2, V ),ν)−W 2
2 (N ((1−t)µ1+tµ2, HU ,V (t)),ν)

= (1− t)W 2
2 (U , X ) + tW 2

2 (V, X )−W 2
2 (HU ,V (t), X ) ,

which is a consequence of the law of cosines and the planar geometry nature

of the contribution of the means to the Wasserstein distance.

The following proposition shows that, on the other hand, condition (5) does

not hold when the merging function is the arithmetic mean. Nevertheless, the

arithmetic mean still gives better approximations in the Wasserstein sense than

the moment preserving merge of the original Runnalls’ method.

Proposition 9. For positive definite matrices U and V , their arithmetic mean is

such that

MU ,V (t)≥ Γ (t), t ∈ [0,1] ,

where Γ (t) is the geodesic matrix in Proposition 7. Moreover, any matrix X ≥
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MU ,V (t) is farther than MU ,V (t) from the barycenter Γ (t) in the sense that

(1− t)W 2
2 (U , MU ,V (t))+ tW 2

2 (V, MU ,V (t))≤ (1− t)W 2
2 (U , X )+ tW 2

2 (V, X ) .

On the other hand, for positive semidefinite X , the positive valued map

X 7→ (1− t)W 2
2 (U , X ) + tW 2

2 (V, X )−W 2
2 (MU ,V (t), X )

is unbounded when U 6= V and t ∈ (0, 1).

Proof. The first statement is found in [20, Theorem 6]. For the second part,

we consider once again the derivative of the functional ϕ(X ):

Dϕ(X ) = (1− t)(I − U#X−1) + t(I − V#X−1)≥ I − ((1− t)U + tV )#X−1 ,

where the inequality follows from the concavity of the matrix geometric mean.

From the monotonicity of the geometric mean, if X ≥ (1− t)U + tV , then

Dϕ(X )≥ I − ((1− t)U + tV )#((1− t)U + tV )−1 = 0 .

For the third part, we use the strict concavity of Z 7→ tr(Z1/2) [20, Theorem 7]

to find that, for α > 0 and t ∈ (0, 1),

(1− t)W 2
2 (U ,αX ) + tW 2

2 (V,αX )−W 2
2 (MU ,V (t),αX )

= 2α1/2
�

−(1− t) tr(X 1/2UX 1/2)1/2 − t tr(X 1/2V X 1/2)1/2 + tr(X 1/2MU ,V (t)X
1/2)1/2

�

> 2α1/2ε

for some ε > 0. Taking α to infinity we see that the functional is unbounded.

Despite the unboundedness of D̄t in the case of the merge with the arith-
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metic mean, it turns out that the arithmetic mean gives a tighter approximation

of the Wasserstein geodesic for small distances. This assertion is related to the

following theorem.

Theorem 10. For positive definite matrices Σ1 and Σ2, the Wasserstein distance

between them is bounded by

W 2
2 (Σ1,Σ2)≤

1
4

tr(Σ1 −Σ2)Σ
−1
1 (Σ1 −Σ2) .

Proof. Let γ(t) = Σ1+ t(Σ2−Σ1)), t ∈ [0,1], be a non-geodesic curve connect-

ing Σ1 and Σ2 on P(d). Since W2 is a geodesic distance, it is upper bounded

by the length of γ(t). In order to compute the length of γ(t), we first consider

the expression for the metric tensor that induces W2 and that is given in [20,

Equation (32)]:

gΣ(U , U) =
d
∑

i=1

d
∑

j=1

σi

u2
i j

(σi +σ j)2
,

where Σ = diag(σ1,σ2, . . . ,σd) ∈ P(d) and the tangent vector U = [ui j] is a

symmetric matrix in Rd×d . Making use of the fact that 4σiσ j ≤ (σi +σ j)2, we

have that

gΣ(U , U) =
d
∑

i=1

d
∑

j=1

σiσ j

(σi +σ j)2
σ−1

j u2
i j ≤

d
∑

i=1

d
∑

j=1

1
4
σ−1

j u2
i j =

1
4

tr UΣ−1U . (17)

Since tr UΣ−1U is invariant under similarity transformations, it also defines an

upper bound when Σ is non-diagonal. Incidentally, one can verify that this

bound is tight in the sense that, under the metric ḡΣ(U , U) = 1/4 tr UΣ−1U ,

the geodesic Γ (t) in Proposition 7 has constant speed and has length equal to

the Wasserstein distance. Moreover, we see from (17) that the two metrics

coincide in the scalar case.
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Now we can find an upper bound on the arc length of γ(t) using the upper

bound on the metric above. From the definition of arc length:

W 2
2 (Σ1,Σ2) =

�

∫ 1

0

q

gΓ (t)(Γ̇ (t), Γ̇ (t)) d t

�2

≤

�

∫ 1

0

q

gγ(t)(γ̇(t), γ̇(t)) d t

�2

≤
∫ 1

0

gγ(t)(γ̇(t), γ̇(t)) d t ,

where the first inequality follows from the minimizing property of geodesics

and the second one follows from convexity. Using the metric ḡ above, and

rearranging terms such that we have an analytic function of the matrix Z =

Σ
−1/2
1 Σ2Σ

−1/2
1 − I in the integrand, we have

W 2
2 (Σ1,Σ2)≤

∫ 1

0

1
4

tr(Σ2 −Σ1) (Σ1 + t(Σ2 −Σ1))
−1 (Σ2 −Σ1) d t

=
1
4

tr(Σ2 −Σ1)Σ
−1/2
1

∫ 1

0

�

I + t(Σ−1/2
1 Σ2Σ

−1/2
1 − I)

�−1
d t Σ−1/2

1 (Σ2 −Σ1)

=
1
4

tr(Σ2 −Σ1)Σ
−1/2
1 Z−1 ln(I + Z)Σ−1/2

1 (Σ2 −Σ1) .

Using the fact that ln(I + X )≤ X for a semidefinite matrix X , we have

W 2
2 (Σ1,Σ2)≤

1
4

tr(Σ2 −Σ1)Σ
−1
1 (Σ2 −Σ1) .

From Theorem 10 and its proof we see that the Wasserstein geometry ap-

proximates the Euclidean geometry when Σ−1
1 and Σ−1

2 are close enough so

that Γ (t)−1 is approximately constant. This approximation justifies the use of
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the arithmetic mean as a merging function with

D̄t(Σ1,Σ2) = t2(1−t)min
�

tr(Σ1 −Σ2)Σ
−1
1 (Σ1 −Σ2), tr(Σ1 −Σ2)MΣ1,Σ2

(t)−1(Σ1 −Σ2)
	

+t(1−t)2 min
�

tr(Σ1 −Σ2)Σ
−1
2 (Σ1 −Σ2), tr(Σ1 −Σ2)MΣ1,Σ2

(t)−1(Σ1 −Σ2)
	

,

where the symmetry of the Wasserstein distance was used to choose the small-

est of the two possible bounds. In our experiments, to avoid the computation

of inverses, we adopt the loose approximation

min{Σ−1
1 , MΣ1,Σ2

(t)−1} ≈ diagm(max{diag(Σ1)
−1, diag(MΣ1,Σ2

(t))−1}) , (18)

where the maximum is taken elementwise and where diag(·) denotes the vector

of diagonal elements of a matrix and diagm(·) indicates the diagonal matrix

with given entries.

5.3 Controlling the Mean Absolute Estimation Error

In this section we show how a proper choice of Wasserstein distance may be

used to control the mean absolute estimation error. To this purpose, we ex-

tend the definition of W2 above replacing the Euclidean norm by the matrix

weighted norm ‖ · ‖H , for some positive definite matrix H.

We restrict our analysis to the system presented in Section 2 to take ad-

vantage of its mode-independent dynamics in order to obtain formal bounds

between the time-averaged mean absolute estimation error and the Wasser-

stein distance.

Consider the approximation of the N -component Gaussian mixture

φ =
N
∑

i=1

wiφi :=
N
∑

i=1

wiN (µi, Σ̄)
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by Nc clusters as given by the probability density

φ̃ =
Nc
∑

j=1

w̃ jφ̃ j :=
Nc
∑

j=1

w̃ jN (µ̃ j, Σ̄)

such that, for each cluster C j, w̃ j =
∑

i∈C j
wi, µ̃ j =

∑

i∈C j
wi/w̃ j µi and Σ̄ is

the posterior covariance at equilibrium. Let xk|k and x̃k|k denote the posterior

estimates of xk when x0 is distributed with priors φ and φ̃ respectively. Define

the likelihood function for the output sequence y1:k and the n-th possible mode

sequence m(n)1:k, n= 1, . . . , M k, as

`i,k,n :=

∫

p
�

y1:k, m(n)1:k|m0, x0

�

φi(x0)d x0

and define ˜̀
i,k,n analogously for φ̃. Likewise, denote by µi,k,n and µ̃ j,k,n the

posterior means at time k corresponding to the n-th mode sequence and to

priors φi and φ̃ j respectively.

Then, by the hidden Markov structure of the process, the posterior means

xk|k and x̃k|k are given by the sum of the means for the continuous filters

weighted by the posterior probability for each component:

xk|k − x̃k|k =
∑

i,n

wi`i,k,n

`k
µi,k,n −

∑

j,n

w̃ j
˜̀

j,k,n

˜̀
k

µ̃ j,k,n

=
∑

j,n

∑

i∈C j

wi`i,k,n

`k
(µi,k,n − µ̃ j,k,n)−

∑

j,n

 

w̃ j
˜̀

j,k,n

˜̀
k

−
∑

i∈C j

wi`i,k,n

`k

!

µ̃ j,k,n ,

where `k =
∑

i,n `i,k,n and ˜̀
k =

∑

j,n
˜̀

j,k,n and where in the last equality we

collected the intra- and inter-cluster deviations in separate terms.

Now, recall that the estimation error dynamics for a Kalman filter is given
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by

ek+1 = (I − LC)Aek + Lvk − (I − LC)ωk .

Therefore, if two Kalman filters are initialized with means that differ by ∆µ,

this difference will evolve with k according to (A− LCA)k∆µ independently

of the noise. This implies that the same evolution will apply for the hybrid

system when we compare posterior means with equal mode sequences m1:k.

Therefore, by denoting mean deviations by∆µi,k = (A− LCA)k(µi− µ̃ j), i ∈ C j,

and defining ¯̀
j,k,n =

∑

i∈C j
wi`i,k,n/`k, we can write

xk|k − x̃k|k =
∑

j,n

∑

i∈C j

wi`i,k,n

`k
∆µi,k −

∑

j,n

w̃ j

�

˜̀
j,k,n

˜̀
k

−
¯̀

j,k,n

`k

�

µ̃ j,k,n

=
∑

j,n

∑

i∈C j

wi

`i,k,n − ˜̀
j,k,n

`k
∆µi,k −

∑

j,n

w̃ j

�

˜̀
j,k,n

˜̀
k

−
¯̀

j,k,n

`k

�

(µ̃ j,k,n − µ̃k) ,

where in the last equality we used the fact that
∑

i∈C j
wi∆µi,k = 0 and intro-

duced the full posterior mean µ̃k =
∑

j w̃ j,n
˜̀

j,k,nµ̃ j,k,n.

Taking the matrix weighted norm and expectations on y1:k and m1:k, we

have

E[‖xk|k − x̃k|k‖Q]≤
∑

j,n

∑

i∈C j

wi

∫

|`i,k,n − ˜̀
j,k,n|d y1:n ‖∆µi,k‖Q

+

∫

�

∑

j,n

w̃ j
˜̀

j,k,n

�

�

�

�

�

¯̀
j,k,n

˜̀
j,k,n

−
`k

˜̀
k

�

�

�

�

�

‖µ̃ j,k,n − µ̃k‖Q

�

d y1:n . (19)

Using the triangle inequality and the convexity of | · |, the last term can be
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bounded by

∫

∑

j,n

w̃ j
˜̀

j,k,n

�

�

�

�

�

�

¯̀
j,k,n

˜̀
j,k,n

− 1

�

�

�

�

�

+

�

�

�

�

`k

˜̀
k

− 1

�

�

�

�

�

‖µ̃ j,k,n − µ̃k‖Qd y1:n

≤
∫

∑

j,n

w̃ j

∑

i∈C j

wi

w̃ j

˜̀
j,k,n

�

1+
w̃ j

˜̀
j,k,n

˜̀
k

�

�

�

�

�

�

`i,k,n

˜̀
j,k,n

− 1

�

�

�

�

�

‖µ̃ j,k,n − µ̃k‖Qd y1:n

≤ 2
∑

j

w̃ j

 

∑

i∈C j

wi

w̃ j
χ2(˜̀ j,k,n,`i,k,n)

!1/2

VarQ(µ̃k)
1/2 ,

where the last inequality follows from Hölder’s inequality and where VarQ(µ̃k)

is the expected variance of the cluster centers at time k for the prior φ̃.

In order to compute the divergences between `i,k,n and ˜̀
j,k,n, note that

p(y1:k|m0:k, x0 ∼ φi) is a multivariate Gaussian distribution that may be com-

puted in closed form offline. Since the likelihoods tend to grow apart with

time, one may use p(y1:∞|x0 ∼ φi) to obtain an upper bound on their diver-

gences. Alternatively, we provide in the sequence a looser bound that may be

applied in more general situations.

To compute the f -divergence between the likelihoods, first notice that

`i,k,n =

∫

p
�

y1:k, m(n)1:k|m0, x0

�

φi(x0)d x0

=

∫ M
∑

m1=1

p
�

y1:k, m(n)2:k|m
(n)
1 , x1

�

πm(n)1 |m0
φ+i (x1|m

(n)
1 )d x1 ,

where φ+i (x1|m1) denotes the prior probability of x1 given x0 ∼ φi and m1.

From the convexity of the map (p, q) 7→ q f (p/q), we may pull out the integra-
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tion on πm(n)1 |m0
φ̃+i (x1)d x1 to obtain

∫

∑

m(n)k

˜̀
j,k,n f

�

`i,k,n

˜̀
j,k,n

�

d y1:n ≤
∑

m(n)1

πm(n)1 |m0

∫

φ̃+j (x1|m
(n)
1 ) f

 

φ+i (x1|m
(n)
1 )

φ̃+j (x1|m
(n)
1 )

!

d x1

From this, given that φ̃+j and φ+i both have covariance Σ̄+ := AΣ̄A′ + Rw

and means that differ by A∆µi,0 for all n and m1, we can apply (15) to obtain

χ2(˜̀ j,k,n,`i,k,n)≤ χ2(φ̃+j ,φ+i ) = exp
�

∆µ′i,0A′Σ̄−1
+ A∆µi,0

�

− 1

=∆µ′i,0A′Σ̄−1
+ A∆µi,0 +O ((∆µ′i,0A′Σ̄−1

+ A∆µi,0)
2) . (20)

From (14) and the inequality between the Hellinger divergence and the

total variation [23], we obtain:

�

∑

n

∫

|`i,k,n − ˜̀
j,k,n|d y1:n

�2

≤ 8H (`i,k,n,` j,k,n)
2 ≤ 8H (φ̃+i , φ̃+j )

2

= 8
�

1− exp
�

−
1
8
∆µ′i,0A′Σ̄−1

+ A∆µi,0

��

≤∆µ′i,0A′Σ̄−1
+ A∆µi,0 .

Replacing these bounds on (19) and applying Hölder’s inequality once again,

we find that

E[‖xk|k− x̃k|k‖Q]≤
Nc
∑

j=1

w̃ j





 

∑

i∈C j

wi

w̃ j



∆µi,k





2

Q

!1/2

+ 2σ0





 

∑

i∈C j

wi

w̃ j



∆µi,0





2

Q+

!1/2

,

where Q+ := A′Σ̄−1
+ A and where we assumed that VarQ(µ̃k)1/2 is at the equilib-

rium value σ0.

To compute the discounted cost, we apply Young’s inequality with factors

λ1β
k−1
1 and λ2 to turn the products of the square roots into sums and find that
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∞
∑

k=1

γk−1 E[‖xk|k − x̃k|k‖Q]

≤
Nc
∑

j=1

w̃ j

∑

i∈C j

wi

w̃ j

∞
∑

k=1

γk−1

�

λ1β
k−1
1

2



∆µi,k





2

Q +
λ−1

1 β
1−k
1

2



∆µi,0





2

Q+

�

+
Nc
∑

j=1

w̃ j

∑

i∈C j

wi

w̃ j

∞
∑

k=1

γk−1

�

λ2

2
4σ2

0 +
λ−1

2

2



∆µi,0





2

Q+

�

= 2
λ2

1− γ
σ2

0 +
Nc
∑

j=1

w̃ j

 

∑

i∈C j

wi

w̃ j
∆µ′i,0H∆µi,0

!

, (21)

where

H =

�

λ1

2
Hβ +

1
2

�

λ−1
1

1− γβ−1
1

+
λ−1

2

1− γ

�

Q+

�

and where, since ∆µi,k = (A− LCA)k∆µi,0, Hβ satisfies the Lyapunov equation

γβ1(A− LCA)′Hβ(A− LCA)−Hβ + (A− LCA)′Q(A− LCA) = 0 .

The last term in (21) corresponds to the bound Ek in Section 3 that would

be obtained when, replacing the Euclidean norm by the norm ‖ · ‖H , W 2
2 is

the divergence function. Therefore, by picking an appropriate H-norm for the

Wasserstein distance, we are able to control the mean absolute error for a given

Q-norm.

In choosing H, it would be interesting to enforce the contraction property

(A− LCA)H(A− LCA)′ < αH so that the filter would give a contraction in this

particular Wasserstein space. By definition, this property is already satisfied by

Hβ , but it may not be satisfied by Q+. Nevertheless, this contraction property

is true for the posterior covariance Σ̄−1, which could have been used instead

of Q+ in the derivations starting in (20).
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In practice, we note that the last term in (19) is a bound on the covariance

between the approximation error in cluster weights and the position of cluster

centers. We expect the correlation coefficient between these variables to be

small. Since this term takes an average over multiple weight errors that are not

strongly correlated, it would be reasonable to expect a time-varying correlation

coefficient ρk = ρ0/
p

Nc M k. This is in line with the known problem of weight

degeneration in Bayesian filtering. Indeed, as time evolves and we take more

process observations, one hypothesis will tend to have weight one whereas the

other weights will tend to zero. This implies that ρk should become small very

fast.

We may therefore replace σ0 in (21) by ρkσ0 and introduce a new factor

β k−1
2 when applying Young’s inequality. Then, in order to optimize the factors

λ1,β1 and λ2,β2, we may take the expected value on∆µi,0 in (21) and assume

that
Nc
∑

j=1

w̃ j

 

∑

i∈C j

wi

w̃ j
∆µ′i,0H∆µi,0

!

≈
tr HΣ0

Nc

and

σ2
0 = trQΣ0 ,

and then search for the factors that minimize such an expected value (note

that the actual value of Σ0 does not play an important role in this optimization

nor does the value of Nc).

29



6 Numerical Experiments

We conducted numerical experiments for the system described in Section 2 for

a marginally stable dynamics given by

A=







1 Ts T 2
s /2

0 1 Ts

0 0 1






, B =







0

0

1






, C =

�

1 0 0
�

,

where Ts = 0.3. The noise covariances were given by Rv = 1/3 · 10−4 and

Rw = diagm(10−6, 10−4, 10−5). The packet drop probability was p0 = 0.4. The

input u was given by the signal uk = 5 · 10−4 sin(2πk 20/T ) + 7.5 · 10−2w̃,

where w̃ is a unit variance white Gaussian noise and where T = 2000 is the

total simulation time. We run as many realizations as needed to attain 1%

precision in the cost estimates. We considered average costs (discount factor

γ= 1.0) instead of discounted costs.

We chose a matrix norm with Q = diagm(1,5, 10)Σ̄−1diagm(1,5, 10), for

Σ̄ being the posterior covariance at equilibrium. This norm indicates that we

give 5 and 10 times more importance to the estimation error of the velocity

and the acceleration respectively.

For the sake of comparison, we give the Cholesky factors of the computed

(normalized) H and Σ̄−1
+ matrices

chol(H) =







4.33 −0.22 −0.24

0 1.97 −2.97

0 0 3.9






, chol(Σ̄−1

+ ) =







1.0 −0.81 −0.12

0 1.38 −1.19

0 0 3.57






.

It is noticeable that H gives more weight to the position variable. The angle

∠(H, Σ̄−1) as given by the trace inner product is of 45.5o, which demonstrates

a substantial deviation from the behavior of the information divergences. On
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the other hand, ∠(H,Q) = 24.7o. In addition, we have that∆µ′H∆µ contracts

with rate at most 0.87.

Figure 1: Best average cost achieved by each divergence as a function of the
the processing time weight β . The labels W2Fixed and KLFixed
refer to setting κ0 = 0 in Algorithm 1 and varying Nmax from to 2 to 15 com-
ponents. The remaining curves refer to Algorithm 1 with Nmax = 30 and the
best value of κ0 for each β . Costs are normalized by the cost achieved by the
Wasserstein distance (shows as 0 in the plot).

We have performed experiments with all the proposed divergences. For

the sake of comparison, we have also tested the case in which the number

of reduced components is fixed as in the Runnalls’ approach so that there is

no closed-loop precision control. For the case of the Wasserstein distance, we

only present here the results for approximation given by (18) as they are sig-

nificantly faster.
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The results are summarized in Figures 1 and 2. A first conclusion is that

controlling the number of components gives noticeable improvement as com-

pared to using a fixed number of components. A second conclusion is that the

KL divergence is the most error efficient when we require smaller processing

times. The Wasserstein distance only improves over KL when very small errors

are required. Still, the total cost for KL was not 0.2% larger than that of the

Wasserstein distance. Finally, the reverse KL divergence gave the worst results.

To interpret such hierarchy of performances, recall the notion of entropic

means discussed in Section 4. Notice that KL is the only divergence whose

entropic mean is the arithmetic mean of the pdfs. Since the pdf of a mixture is

itself an arithmetic mean, the KL divergence is the only information divergence

with the correct target. Since the mean of the square roots is closer to the arith-

metic mean than the geometric mean, we have that the Hellinger divergence

provides better results than the reverse KL. Following the same reasoning, we

may conjecture that the results for the χ2-divergence should be even worse,

since the harmonic mean is the smallest of the means above.
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