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Optimal Redundant Transmission for State
Estimation with Packet Drops

Girish N. Nair Alexandre Mesquita Joao P. Hespanha

Abstract: In networked systems that suffer from data packet dropasinitting multiple, redundant
packets during each sampling interval can improve estonatierformance, but at the expense of
a higher communication rate. In recent work, this idea wagldped to introduce the notion of a
dynamic redundant transmission policy, with Markov demisiheory used to find the optimal policy
numerically. The purpose of this paper is to present anredtieme approach to this problem. By relaxing
the integer requirement on the number of packets tranghittbecomes possible to explicitly find a
real-time recursion for the optimal transmission functidhe theoretical properties of this recursion
are then analysed to propose a simple numerical procedurénting the minimum over all real-
valued transmission functions, by searching over a onesdgional parameter space. This then yields
an implementable, suboptimal policy when discretised tegar values. These results are supported by
numerical studies in MATLAB.
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1. INTRODUCTION be transmitted, then in Sinopoli et al. [2004] the optimaeéfil
at the receiver side is derived, and furthermore there igtiaair
In networked sensor and actuator systems, it is known thgfop probability above which mean-square bounded estimati
communication imperfections can have a significant impact ¢2rrors are impossible.

real-time estimation and control performance (see, e.tgaka The recent paper Mesquita et al. [2009], explored the piisgib

lis and Baillieul [2007] and the papers therein). Examples g . ltiol K lina i
such imperfections include channel noise, finite bit raies, qu)s(taragfsr:rl]ttgrgthrggéfa? Egﬁeﬁi pSeJCiargg It?r%elr_]t%rrv ?dr;e.:)gency-

ited communication bandwidth, dropped packets, etc. Fein su y;yision multiplexing (TDM/FDM). It is easy to see that by

systems, design.ing the commun!cations protocols With”efetransmitting multiple redundant packets at each time imsta
ence to the specific system objectives can improve perfatganye pronhability that at least one packet arrives at the vecei

significantly. increases, and consequently the estimation error imprates
In this paper, we are concerned with the problem of linedestathe expense of a higher communication load. With the further
estimation over a communication channel that largely dpera assumption that the receiver sends acknowledgements dack t
in a dichotomous fashion, i.e. either carrying a transmiittethe transmitter, this led to the notion of an optimediundant
data packet perfectly with no or constant delay, or dropjting transmission policywhereby the number of packets transmitted
entirely. Two instances include data links that have lowsaoi at each time instant is chosen dynamically based on availabl
and bit error rates but that lose packets at congested iaterninformation, so as to minimise a suitable cost that captbogis
diate nodes, and digital channels with error detectionrapdi the average estimation error and the average communication
whereby the receiver can determine if packets have been ctate. For situations where only moderate computationalgpow
rupted by bit errors but cannot correct them. Furthermore, wvas available at the receiver, the methods of Markov detisio
suppose that the number of bits in each packet is sufficientBfocess (MDP) theory, in particular value iteration, wesed
large that the effect of quantisation errors can be safelgrigd. 0 numerically determine optimal “simple” policies, whbye
Thus, we may assume that each packet carries a real-valdel number of packets transmitted at each time depends in a
scalar or vector. stationary way on just the current number of past consegutiv

. : . transmission failures.
Most previous work on this topic assumes that only one packet

can be sent over the channel from the sensor to the estimalde purpose of this paper is to explore an alternative agproa
during each sampling interval. If the channel drops packets to finding “simple” policies, without using the tools of MDP
an independent and identically distributed (iid) way aretétis theory. By relaxing the integer requirement on the number of
sufficient computational ability at the transmitter sideeri the packets transmitted, it becomes possible to explicitly fnd
mean-square-optimal strategy is to pre-filter the System_mel’ea|-time recursion for the optimal transmission functigve
surements by using a Kalman filter at the transmitter sidet&upanalyse the properties of this recursion to propose a simple
et al. [2007]. One the other hand, if there is no computatioferical procedure for finding the minimum over all real-\eadu
possible at the transmitter and only the raw measurement céignsmission functions, by searching over a one-dimeasion
parameteir € R. This then yields an implementable, subop-
* The 1st author is at Dept. Elect. & Electr. Eng., Uni. Melbmyrvic  timal policy when discretised to integer values. Theseltesu
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2. FORMULATION must be balanced. The first is the estimation error, as defined
by the average quadratic cost
Consider a fully observed, stochastic, linear time-ireati k=1
(LTI) system Je(V) f“mSUP E{E(QE}, (6)
k—o0 =
X1 =A% +W, Vi€ Zso, (1) o

whereE; = X — X% andQ is a given positive definite matrix,

. no n . .
with stateX; € R", noiseW € R" and dynamical matri# € while the second is the average communication rate

R™N, Assume thaA has at least one eigenvalue of magnitude
> 1 and that the noise proce¥$’ is independent 0Kp, has

zero mean, and is uncorrelated i.e. R(v): _I|msupk %E{M} (packets/sample). @)

k— o0

whens;ét It is clear that these criteria are in conflict, since inchegs
E{W , Vst € Zxo, 2 . !
(W'} = {ZW whens= 20 @) N: reduces the chances of transmission failure and therefore
whereZy is a constanh x n covariance matrix. estimation errors, but directly increases the commurooati

rate. In order to achieve a satisfactory trade-off, we seek t
Suppose that at each timethe state is coded into one or minimise the linear combination

more packets for transmission over a communication channel _

to an estimator located elsewhere. For simplicity suppasé e (V) = JelV) +AR(V), ®)
packet is dropped or transmitted with constant probabdjti
independently of every other packet and of the initial statghis optimisation problem was first posed in Mesquita et al.
and dynamical noise in (1). That is, any packet fails to @rriv[2009], where it was formulated in terms of a Markov decision
at the estimator, with probability € (0,1), or else arrives process (MDP). By placing a bound dhand using value iter-
uncorrupted before the next time instant, with probabtility  ation, a numerical procedure for finding the optimal staiign

p. Further suppose that the number of bits in each packetigdundant transmission policy was proposed and studied.

large enough that the effect of quantisation errors is géué ) . .
compared to that of packet loss. In this paper, we return to the same formulation but with a

different point of view. By relaxing the integer constraionN;
Assume the transmitter has only modest computational dapatand using alternative techniques, we explicitly deriveftren
ities. A simple strategy it can adopt to counteract packestds of the optimal real-valued policy. Rounding this up therigse
is to transmitN; identical packets at timg each carrying the a simple, near-optimal integer-valued policy.
value of X;. The transmission at timeis a success if at least
one of the copies arrives at the receiver, in which case a tim 3. COSTIN TERMS Ok
t+ 1 the controller knows the value of exactly. Plainly, the
probability of transmission failure ig. 1 Similar totransmis- The analysis of this problem hinges on the dynamics of the
sion control protocal just before time + 1 the receiver then past consecutive failure proces$. As described in Mesquita
sends a binary-valued acknowledgement= 0 or 1 back to et al. [2009], this is a Markov chain with dynamics that are
the transmitter, to indicate whether or not the transmissip independent of the noise proc&¥§ and the initial system state
timet failed or succeeded, respectively. For simplicity, assum¥y. There are two possible transitions from each possible stat
that this acknowledgement is received before timel. of the Markov chain: if transmission were to succeed at time
then the number of past consecutive failures would be reset t
0; otherwise it would increment by 1. That id, € Z>o,

whereA > 0 is a given weight.

In principle, the transmitter has available the entire pasbrd
of transmission successes and failures, and could usafbrs i
mation, together with the state history, to determine howyna _ gt 0y _ _
packetsN;,. However, suppose that, due to the computationalp{l‘t+1 =1+ 1L=1LoXoWo'} =P{Lisa =1 +1]Le =1}
restrictions mentioned above, the transmitter can stolyetba = p"<'>, (9)
numberl € Z-o of consecutive failures since the last success- pri - gL — | L1 X0 WY = P{Lsq — OlLs — |
ful transmission prior to timeand then choose¥; to be a static {Le+1=OlLy Xo.Wg'} =P{Lt11=0|Ly =1}
function of this number, i.eN\: = v(Lt). The processby then =1-p'0), (20)
evolves according to with P{Lo = 0} = 1. It can be shown that this Markov chain is
irreducible and aperiodic. Thus by ] there is a stationanbpr
P{d = 0jdh ™, Xo, W™, Vg } = P{® = O|L¢} = p ™Y (3)  ability mass function (pmfus.t. F{Ly =1} — p(l), VI € Zxo.
From the transition probabilities (9)—(10), it is straifgimtvard
P{d = 1oL Xo, W, V5 s = P{@ = 1|L} = 1— p'H)4) X (9)-(10) fn

to see thaftis uniquely defined by
Note that®, is dependent on past values, tia u() = pu(l — 1)p"-Y = po )pzl v v e Z>o, (11)
At the other end of the channel, the estimator stores an a&imyhere
X € R" of the plant state at timieand updates its estimate as 1

HO) = ———=— (12)
o AX if D = 2j=ov())
X { , Vt € Z>o. (5) . 21>0P .
1 AX if & = 5 since the pmf must sum to 1. Note that for the stationary

distribution to exist, we requi >0, i.e.
We do not address here the question of whether or not the g m( )

optimal estimator has the structure above. Instead, owsfsc Z} ij=0 < oo, (13)
solely on how to design the transmission redundancy functio

v, given this structure. In doing so, two competing objedive . . . .
9 g peting ob) The stationary pmf is thus directly determined by the trans-

1 We assume that is not dependent oN. mission redundancy function. The next step is to use this
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to express the average cost (8) in termyoDbserve that as 4. RELAXATION AND DIRECT OPTIMISATION

t — oo,

E{N\} = %V(l)P{Lt =1} - %V(UH(')- (14) The numberN; = v(L;) of packets transmitted at timieis
1> 1> a positive integer and the MDP-based optimisation method
That is, the summand in (7) approaches a limiting value witbtudied in Mesquita et al. [2009] accomodates this comgtrai
time, forcing the long-term average to take the same valee, i quite easily. However, the explicit cost representatiof) (1

st1y()) reveals a smooth dependence\d),v(1),... if the integer
RW) = S v(Du(l) = Si>oV(l)p=i=° . (15) requirement is relaxed. We exploit this observation to pegp
;) Sis0 pz',;%)VU') an alternative approach, based on using calculus to djrectl

minimise (19) over nonnegativesal-valuedv(0),v(1),.... We
show that the global minimum in the enlarged solution space
is, somewhat surprisingly, uniquely defined by a simpletdini

Next, observe from (1) and (5) that the estimation error dyna
ics are given by

AE 1 —W_1 if &_1=0 dimensional recursion.
Bo=1 W qifd g =1 : (16)
e Next, take a partial derivative of (19) with respectug) t
As the last successful transmission was, by definition,nae ti yield
t—Li—1,
0J(v) 1 ON(v) N(v) aD(v)
Z)AV\& 1-i. ov(l) — D(v) av(l) D(v)2 av(l)
1 <6N(v) J(V)OD(V)) ' 21)
= E{EE/|L} = zOA'E{W 1 W HATY %A'zw (A ~ D) \ av()) ov(l)
sinceWg® is an uncorrelated process and is also mdependent%?a global minimumy, we must thus have
LJ. Thus ag — oo,
0 N ~ 3w B iy s 0
v) ov(l) |,—
E[EE]) = 3 PIL =1} 3 AZw(A) () W) " - ®
t = t = W V=i | > J(V)——L|v=v, ifVi(l)=0
t I; iZO = ( )a\)(|) |V Vi ()

L - For anya € R let us now define sequenceg € R, and
- I;H(').Z)A Zw(A). Kq € R® by coupled recursions sitl € Z-o,

= E{E/QE} = t;(QE{EtEt,})

11y a—gl) 1 -
Yi—ov() va(l) —— + Ka(l =1)| , (23)

. sz oV . afl henvg(l) >0
= “all):= { ((exp(rv( >(>)/)A/i Ka(l — 1) %22&18 Zo 29

where
| ) .
)= _Z}tf (QAZw(AY)), ¥l € Zxo. (18)  where[]" := max{0,-}, ka(—1) := 0, g is given by (18), and
i=
As the LHS of (17) is the summand in the long-term average r=—Inp>0. (25)

cost (6), the latter must equal the limiting value of the ferm
Substituting this and (15) into (8) then yields

S1-0(a(l) +Mv() pE*0 N(v)

We have our first main result:

Theorem 2.The global minimisew. € V (20) of the costl(v)
(19) is uniquely given by the sequeneg (23)—(24), setting

= S0 pEi-o¥() “p(vy ¥ parameten=mincy I(v).
which expresses the cost directly in termwof Proof: Let J, = J(v,) andn = r/A. After substituting the

expressions for the numerathfv) and denominatoD(v) of

Observe that for this functional to be well-defined, we regui (19) into (22), and performing some lengthy manipulatioves

the denominatoD(v) = u(0)~! < «, which is equivalent to

X . S btai
the existence of the stationary distributipn(11)—(12). For obtain
convenience, define the sequence space
Vi={veRY;: N(v),D(V) < co}. (20) v ()+n(ol)—-J)+1

The following result is straightforward to establish: ZI':%) M —g(i) —rv.(j)) pzij;év*(i)
Lemma 1.The costJ (19) and its numerator and denominator | = = S if v.(I)>0
are continuous ol with respect to the metric - p=i=o el ,

dv(v,0): %|V —u()|, W,ueV. S ZJ:O(H(J**Q(J))*W (j)) pEi-ov: fv.()=0

= pzizov* I) *

Furthermore) possesses one or more global minima over

) which can be rearranged to yield
Proof: Omitted.
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X T ing the sequencey (23)—(24), the cost(vy) (19) and its

v.(l) = {J* —-g) 1 Theorem 4.For anya > 0, the following statements concern-
denominatoD(vq) are all equivalent.

-1 ; . +
+p Sigv(i) zo (‘]*79(]) — v*(j)) pZiJ_(:)LV*('):I(26) (1) vq €V, the sequence space defined in (20).
= A (2) Va(l) > Xa(1)/1, V1 > |g, wherelq, Xq are given by (30)—
_ [7 . 1)} | @7)  (3) Va(l) > Xa(l)/r whenl = 1.
A r (4) D(vq) < w0 andJ(vq) = a.
where
Proof: We show 1= 2= 3= 2=-4=-1. For convenience let
n:=r/A.

1= 2: We first show that(l) > 0, VI > l4. Suppose in
contradiction thaty(l) = 0 for somel > Ig. Thenrkq(l —

i (d—ai) R EN
(1) = p o) (7_\,*( J)) oo av-()2g)
5 (55

= PO (K1 1)+ (3 —g)A - v. (1) 1)< 1+ n(g(l) — ) by (23) andtke(l) = kel ~ 1) -n(g(l) -
(27) { pV-U)r if v,(1) >0 (29) o) < rkq (I — 1) by (24). Consequently,
k(=) +(a—g() /A ifv.(l)=0"

with k.(—1) := 0. Observe that (27) and (29) are identical td < rvg(I + 1) = [rkq(1) = 1—n(g(l + 1) — a)]*
(23) and (24) witho = J,.. Furthermore, since these recursions T N+
uniquely definev.(0),v.(1),..., there can be at most one <[ka(l=1)=1-n(g(l+1)—a)]

minimiser that achieves the global minimum castO <[rka(l =1) = 1—n(g(l) — )" =rvg(1) =0,

Thus we can compute the global minimiser € V via a sincegis increasing. By the same tokgfl +1) > a as well and
relatively simple, finite-dimensional recursion. In adifit we thus by upward inductiony (i) =0, Vi > |. However, this would
have reduced the potentially infinite-dimensional seaotvf makeD(vq) = o, contradicting the hypothesis of statement 1.
into the tuning of a single real parameterThe real numbers | |'> I implving th

v.(0),v.(1),... must of course be rounded to integer values fo‘?‘ovd( ) >0V 2 g, implying that

implementation, yielding a possibly suboptimal transioiss - ”

redundancy policy. Nonetheless the potential computation 23 _ 24) rva(l) _

savings afforded by the explicit recursion (23)—(24) make i Vall+1) =rka(l) —vall) =€ Va(l) = 0.1 = (84)
a viable alternative to MDP-based numerical optimisation. = 'Va(l) > Inya(l). (35)

addition, when memory at the transmitter is limited, we ca . : . : :
compute this transmission policy on the fly, instead of hgvinﬁzgerﬁff&gdnvglth I +1in (35) and then using (34) yields the

to store a large, pre-computed look-up table. Do o ) ]
rva(l) > In +Inya (1 +12)), VI >lq.
However, two important questions remain. Firstly, is there , q(, )= (YO'( ), Val ) “ ]
a way to findJ, that is simpler and more structured thanRepPlacind with | + 1 in this bound and then using (34) yields
generating an infinite sequenceg for different candidate the even tighter bound

values ofa and evaluating the corresponding infinite sums in rvg (1) > In(ya (1) +In (Yo (I + 1) + Inya (1 +2))), VI > Iq.
(19)? Secondly, for an arbitrary valueafwhat is the value of

I(va)? Continuing in this way indefinitely thus yields statement (2

o)

The answers to both questions will be seen to be related ré&efo2 = 3: Trivial.

presenting themya > 0 let 3= 2: Supposevq(l) > Xa(l) for somel > Iy, noting that by
lg ;= min{l € Z=0: g(1) > a}, (30) hyothesis this is true wheln=lq. As Xq(l) > 0, (24) implies

andvn € Z- andl > I, define thatrkq(l) = €va(). Substituting this into (23) yields

+
— |@vall) _ —gVval) _
e == I (al) + ol + ) +In( 4 el gy el +D = [0 Vo] =€y > xa(1 +2) >0
Ya(I) :=1+(g(1+1) —a)r/A, (32) sinceeVal) —y, (1) > Xq (I +1) > 0 by (33). Thus by induction
with g the increasing, positive function of (18). Observe thafVa(l) = Xa(l) > 0,1 > lq.
when| > lq, Ya(l) > 1 and is increasing and consequently — 4.
Yan(l) is positive and increasing. It is straighforward to show
thatl is right-continuous w.r.tx and thatyq (1) andyq (1) are  Note that (23) and (24), take the same form as (27) and (29)
continuous w.r.ta. The following result will also be useful. I the proof of Thm. 4, and can be rewritten in the more

- cumbersome forms of (26) and (28). Ag(l) > Xa(l) > 0,
Lemma 3.For anya > 0 andl > |4 (30), the limit vl > I, we can write

rI\iglo)(a’n(l) = Xa(l) >0 (33)
exists and is continuous with respectto Vall) = J—gl) 1
o) = _z
A r
Proof: Omitted. Briefly, it relies on induction, the inequality -1 /] . -
In(14x) < xand the fact thag(l) grows at most exponentially. +pZizovall) < * *)\9(1) —Va(j)) pZi=o V(i)
O £

We have the following result.
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o2 dvali) a—gl) 1 sy i) sums amounts to verifying thaby (1) is no smaller thaxq(1)
= Va(l)pi0el = | === — = | pr-o at thesingle point I= |4. This leads to the following result.
17— g(j) o Theorem 5.The minimum valuel, of the costl(v) (19) over
+ zo ( )\g ) _ Vu(j)) pZi=oVa(l), all sequences in the sequence spateC R%, (20) exists and
i= is given by
Splitting and collecting sums yields J.:=min{a € Roo: r'Vg(la) > Xa(la)}, (39)

wherevy is recursively generated by (23)—(24), withandXq
given by (30)—(33). The minimum cost is uniquely achieved by

=1y -1
Va(j)priovel = = 5 pli-o¥ell ith a —
JZO A JZO the sequencey with a = J,.

T o SO Proof: For reasons of limited space only a sketch of the proof
=5 2 9(j)psiotel — —psi=0™. s outlined here. It first uses the continuity w.atof yq(1) and
I= Xa(l) (Thm. 2) and the right-continuity df to show that the
[ i1 [ _ _ i1 infimum of the set in (39) must be an elementof the same.
=a zopzﬁo Valll = 5 (g(j) + Ava(j)) pZi-o¥e® Thus by Thm. 4](Va.) = a.. with va, € V.
J:

Furthermore,a, must equal the infimum cost over ali-

(36) parametrised policiegy € V. Otherwise, ifaf > s.t. J(vg) <
o N ) J(Va,) = o, with vg € V, then Thm. 4 implies that we would

As VI > lq, Va(l) = X(1), which 's a positive, monotonically haye(vg) = B and furthermore would also be an element of
increasing function, it follows that{_;va (i) increases at least the set of (39). S@ < a.., which would contradict the fact that
linearly with largej. Consequently the summands on the LHSy, is the minimum over that set.
of (36) decreases exponentially or faster with lajgesince L ) )
p € (0,1). Thus the sum on the LHS must convergé as o, However, by Thm. 2, the global minimiser is uniquely given by
and by definition its limit equals the denominaB®(vy) of the ~ V3., SO0 = J.. 0.

costd(va) (19). By virtue of the same, the last term on the RHSrhjs result is also useful because for each candidate vélug o

must— 0 asl — co. Thus, the remaining sum on the RHS mus{ye do not need to generate the entire sequegde search for
also converge to a finite limit, which by definition is the jt¢  the minimum.

cost numeratoN(vy). Thus we obtain
aD(va) =N(Va) = J(Vo) = a. 5. SIMULATION RESULTS
Finally, the wrap-around” implication 4- 1 s trivial. O In this section, we briefly present numerical MATLAB studies
This result is illuminating in several regards. Firstlyy o> 0  that illustrate the results of the preceding section. Fasoas
such that the cosl(vq) (19) and its denominatdd(vq) are of space and to enable comparisons, we consider only therscal
finite (as required for the cost to be well-defined), it pr@edgd system that was solved by value iteration in Mesquita et al.
a lower bound on the growth af (1) in terms ofxq(l). Thus [2009]. The
if the system matridA in (1) is unstable or marginally stable,
thenvy (1) — o, sinceg(l) and henceq(l) would increase
unboundedly withl. Together with (23) and (24), this also
implies thatvy can eventually be given by the one-dimensiona
recursion

To determine the minimum codt we first selected a candidate
value Jp that exceeds the desirdd, then implemented the re-
ursive equations (23)—(24) with= Jo, and then decremented
b in small steps ok = 0.01 until the defining condition of
the set in (39) was violated. The previous valueJpfwas

va(l) = a-g() + exp(rva *1))*17 vl >1g. (37) then guaranteed to be within of J.. (The initial value of

A r Jo was selected_b_y cons_idering a constant candidate sequence

Secondly, ifD(vq) < o then the cosi(vq) either equalst or  V(!) = ¢ >0, deriving a simple explicit upper bound ow) in =
is infinite. As Thm. 2 states that the global minimiser= vq terms ofc and the system parameters, and then minimising this

with a = J,, the minimum cost can be shown to be expressibf@nalytically w.r.t.c.)

as We first considered an unstable scalar system, with dynamica
J.=min{a € R.o: J(Va) < ,D(Vq) <} (38) constantA = 2, noise varianc&y = 3, error weightQ = 1
This characterisation, which we give withou proof, progdeand communication rate coefficient= 2.2. In Figs. 1 and 2
a simple way of findingl,. Beginning with an initial value we have plotted the costand communication ratR for the
o = Jo which upper-bounds,, we can reduce in small steps, global optimal sequence. as well as for the rounded, integer-
computingvq,J(a) andD(a) at each stage. As long as the lattevalued version 09... We note that the cost for, is smaller than
two are finite, we are guaranteed thé&), being equabl, will  that of the optimal simplified policy of Mesquita et al. [2Q09
also decrease. However, onzelrops belowd,, the costl will  which was derived using MDP-methods. This is because we
increase rapidly, and indeed be infinite. The previous vafue have relaxed the integer requirement here and have alsg let
a is then within a step-size df. be unbounded. On the other hand, after roundintp yield an
plementable policy, we obtain slightly worse performanc

The simple procedure above suffers from the drawback o
forcing us to compute the entire sequengeas well as the Figures 3 and 4 depict plots of the transmission redundancy
infinite sumsD(vy ) andN(vq)(at least, many terms thereof). atfunctions and stationary distributions for and its rounded
each stage. In this regard, statement 3 of Thm. 4 is impgortanersion, withp = 0.05. We remark that in general. grows
because it states that checking for the finiteness of théiséién extremely quickly (note the logarithmic scale) and indestdo
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6. CONCLUSION

In this paper, we have presented and analysed an alternative
approach to designing redundant transmission policiestéde
estimation of unstable stochastic linear systems overgiack
dropping channels. By relaxing the integer requirementen t
number of packets transmitted during each sampling inkerva
we explicitly obtained a real-time recursion for the optima
transmission function. We then analysed the propertiekisf t
recursion to propose a simple numerical procedure for fgndin
the minimum over all real-valued transmission functionsich
yields an implementable policy when discretised. Our tssul
were supported by numerical studies in MATLAB.

Several important directions for future research include t
incorporation of bounds on the number of packets that can be
transmitted in each sampling interval, the study of dissatibn
strategies other than simple rounding, and the extensitiresé
results to feedback control systems and costs.
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