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Abstract: In networked systems that suffer from data packet drops, transmitting multiple, redundant
packets during each sampling interval can improve estimation performance, but at the expense of
a higher communication rate. In recent work, this idea was developed to introduce the notion of a
dynamic redundant transmission policy, with Markov decision theory used to find the optimal policy
numerically. The purpose of this paper is to present an alternative approach to this problem. By relaxing
the integer requirement on the number of packets transmitted, it becomes possible to explicitly find a
real-time recursion for the optimal transmission function. The theoretical properties of this recursion
are then analysed to propose a simple numerical procedure for finding the minimum over all real-
valued transmission functions, by searching over a one-dimensional parameter space. This then yields
an implementable, suboptimal policy when discretised to integer values. These results are supported by
numerical studies in MATLAB.
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1. INTRODUCTION

In networked sensor and actuator systems, it is known that
communication imperfections can have a significant impact on
real-time estimation and control performance (see, e.g. Antsak-
lis and Baillieul [2007] and the papers therein). Examples of
such imperfections include channel noise, finite bit rates,lim-
ited communication bandwidth, dropped packets, etc. For such
systems, designing the communications protocols with refer-
ence to the specific system objectives can improve performance
significantly.

In this paper, we are concerned with the problem of linear state
estimation over a communication channel that largely operates
in a dichotomous fashion, i.e. either carrying a transmitted
data packet perfectly with no or constant delay, or droppingit
entirely. Two instances include data links that have low noise
and bit error rates but that lose packets at congested interme-
diate nodes, and digital channels with error detection coding,
whereby the receiver can determine if packets have been cor-
rupted by bit errors but cannot correct them. Furthermore, we
suppose that the number of bits in each packet is sufficiently
large that the effect of quantisation errors can be safely ignored.
Thus, we may assume that each packet carries a real-valued
scalar or vector.

Most previous work on this topic assumes that only one packet
can be sent over the channel from the sensor to the estimator
during each sampling interval. If the channel drops packetsin
an independent and identically distributed (iid) way and there is
sufficient computational ability at the transmitter side, then the
mean-square-optimal strategy is to pre-filter the system mea-
surements by using a Kalman filter at the transmitter side Gupta
et al. [2007]. One the other hand, if there is no computation
possible at the transmitter and only the raw measurement can
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be transmitted, then in Sinopoli et al. [2004] the optimal filter
at the receiver side is derived, and furthermore there is a critical
drop probability above which mean-square bounded estimation
errors are impossible.

The recent paper Mesquita et al. [2009], explored the possibility
of transmitting multiple packets per sampling interval, e.g. by
use of an orthogonal scheme such as time- or frequency-
division multiplexing (TDM/FDM). It is easy to see that by
transmitting multiple redundant packets at each time instant,
the probability that at least one packet arrives at the receiver
increases, and consequently the estimation error improvesat
the expense of a higher communication load. With the further
assumption that the receiver sends acknowledgements back to
the transmitter, this led to the notion of an optimalredundant
transmission policy, whereby the number of packets transmitted
at each time instant is chosen dynamically based on available
information, so as to minimise a suitable cost that capturesboth
the average estimation error and the average communication
rate. For situations where only moderate computational power
was available at the receiver, the methods of Markov decision
process (MDP) theory, in particular value iteration, were used
to numerically determine optimal “simple” policies, whereby
the number of packets transmitted at each time depends in a
stationary way on just the current number of past consecutive
transmission failures.

The purpose of this paper is to explore an alternative approach
to finding “simple” policies, without using the tools of MDP
theory. By relaxing the integer requirement on the number of
packets transmitted, it becomes possible to explicitly finda
real-time recursion for the optimal transmission function. We
analyse the properties of this recursion to propose a simplenu-
merical procedure for finding the minimum over all real-valued
transmission functions, by searching over a one-dimensional
parameterα ∈ R. This then yields an implementable, subop-
timal policy when discretised to integer values. These results
are supported by numerical studies in MATLAB.
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2. FORMULATION

Consider a fully observed, stochastic, linear time-invariant
(LTI) system

Xt+1 = AXt +Wt , ∀t ∈ Z≥0, (1)

with stateXt ∈ R
n, noiseWt ∈ R

n and dynamical matrixA ∈
R

n×n. Assume thatA has at least one eigenvalue of magnitude
≥ 1 and that the noise processW∞

0 is independent ofX0, has
zero mean, and is uncorrelated i.e.

E{WsW
′
t } =

{

0 whens 6= t
ΣW whens= t , ∀s,t ∈ Z≥0, (2)

whereΣW is a constantn×n covariance matrix.

Suppose that at each timet the state is coded into one or
more packets for transmission over a communication channel
to an estimator located elsewhere. For simplicity suppose each
packet is dropped or transmitted with constant probabilities,
independently of every other packet and of the initial state
and dynamical noise in (1). That is, any packet fails to arrive
at the estimator, with probabilityp ∈ (0,1), or else arrives
uncorrupted before the next time instant, with probability1−
p. Further suppose that the number of bits in each packet is
large enough that the effect of quantisation errors is negligible
compared to that of packet loss.

Assume the transmitter has only modest computational capabil-
ities. A simple strategy it can adopt to counteract packet losses
is to transmitNt identical packets at timet, each carrying the
value ofXt . The transmission at timet is a success if at least
one of the copies arrives at the receiver, in which case at time
t + 1 the controller knows the value ofXt exactly. Plainly, the
probability of transmission failure ispNt . 1 Similar totransmis-
sion control protocol, just before timet + 1 the receiver then
sends a binary-valued acknowledgementΦt = 0 or 1 back to
the transmitter, to indicate whether or not the transmission at
time t failed or succeeded, respectively. For simplicity, assume
that this acknowledgement is received before timet +1.

In principle, the transmitter has available the entire pastrecord
of transmission successes and failures, and could use this infor-
mation, together with the state history, to determine how many
packetsNt . However, suppose that, due to the computational
restrictions mentioned above, the transmitter can store only the
numberLt ∈ Z≥0 of consecutive failures since the last success-
ful transmission prior to timet and then choosesNt to be a static
function of this number, i.e.Nt ≡ ν(Lt). The processΦ∞

0 then
evolves according to

P
{

Φt = 0|Φt−1
0 ,X0,W

∞
0 ,V∞

0

}

= P{Φt = 0|Lt} = pν(Lt) (3)

P
{

Φt = 1|Φt−1
0 ,X0,W

∞
0 ,V∞

0

}

= P{Φt = 1|Lt} = 1− pν(Lt).(4)

Note thatΦt is dependent on past values, viaLt .

At the other end of the channel, the estimator stores an estimate
X̂t ∈ R

n of the plant state at timet and updates its estimate as

X̂t+1 =

{

AX̂t if Φt = 0
AXt if Φt = 1

, ∀t ∈ Z≥0. (5)

We do not address here the question of whether or not the
optimal estimator has the structure above. Instead, our focus is
solely on how to design the transmission redundancy function
ν, given this structure. In doing so, two competing objectives

1 We assume thatp is not dependent onNt .

must be balanced. The first is the estimation error, as defined
by the average quadratic cost

Je(ν) := limsup
k→∞

1
k

k−1

∑
t=0

E{E′
t QEt}, (6)

whereEt := X̂t −Xt andQ is a given positive definite matrix,
while the second is the average communication rate

R(ν) := limsup
k→∞

1
k

k−1

∑
t=0

E{Nt} (packets/sample). (7)

It is clear that these criteria are in conflict, since increasing
Nt reduces the chances of transmission failure and therefore
estimation errors, but directly increases the communication
rate. In order to achieve a satisfactory trade-off, we seek to
minimise the linear combination

J(ν) = Je(ν)+ λR(ν), (8)
whereλ > 0 is a given weight.

This optimisation problem was first posed in Mesquita et al.
[2009], where it was formulated in terms of a Markov decision
process (MDP). By placing a bound onNt and using value iter-
ation, a numerical procedure for finding the optimal stationary
redundant transmission policy was proposed and studied.

In this paper, we return to the same formulation but with a
different point of view. By relaxing the integer constraints onNt
and using alternative techniques, we explicitly derive theform
of the optimal real-valued policy. Rounding this up then yields
a simple, near-optimal integer-valued policy.

3. COST IN TERMS OFν

The analysis of this problem hinges on the dynamics of the
past consecutive failure processL∞

0 . As described in Mesquita
et al. [2009], this is a Markov chain with dynamics that are
independent of the noise processW∞

0 and the initial system state
X0. There are two possible transitions from each possible state
of the Markov chain: if transmission were to succeed at timet
then the number of past consecutive failures would be reset to
0; otherwise it would increment by 1. That is,∀l ∈ Z≥0,

P{Lt+1 = l +1|Lt = l ,Lt
0,X0,W

∞
0 }= P{Lt+1 = l +1|Lt = l}

= pν(l), (9)

P{Lt+1 = 0|Lt = l ,Lt−1
0 ,X0,W

∞
0 }= P{Lt+1 = 0|Lt = l}

= 1− pν(l), (10)
with P{L0 = 0} = 1. It can be shown that this Markov chain is
irreducible and aperiodic. Thus by ] there is a stationary prob-
ability mass function (pmf)µ s.t. P{Lt = l} → µ(l), ∀l ∈ Z≥0.
From the transition probabilities (9)–(10), it is straightforward
to see thatµ is uniquely defined by

µ(l) = µ(l −1)pν(l−1) = µ(0)p∑l−1
j=0 ν( j), ∀l ∈ Z≥0, (11)

where

µ(0) =
1

∑l≥0 p∑l−1
j=0 ν( j)

(12)

since the pmf must sum to 1. Note that for the stationary
distribution to exist, we requireµ(0) > 0, i.e.

∑
l≥0

p∑l−1
j=0 ν( j) < ∞. (13)

The stationary pmf is thus directly determined by the trans-
mission redundancy functionν. The next step is to use this
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to express the average cost (8) in terms ofν. Observe that as
t → ∞,

E{Nt} ≡ ∑
l≥0

ν(l)P{Lt = l}→ ∑
l≥0

ν(l)µ(l). (14)

That is, the summand in (7) approaches a limiting value with
time, forcing the long-term average to take the same value, i.e.

R(ν) = ∑
l≥0

ν(l)µ(l) =
∑l≥0 ν(l)p∑l−1

j=0 ν( j)

∑l≥0 p∑l−1
j=0 ν( j)

. (15)

Next, observe from (1) and (5) that the estimation error dynam-
ics are given by

Et =

{

AEt−1−Wt−1 if Φt−1 = 0
−Wt−1if Φt−1 = 1 . (16)

As the last successful transmission was, by definition, at time
t −Lt −1,

Et =−
Lt

∑
i=0

AiWt−1−i .

⇒ E{EtE
′
t |Lt}=

Lt

∑
i=0

AiE{Wt−1−iW
′
t−1−i}(A

i)′ ≡
Lt

∑
i=0

AiΣW(Ai)′,

sinceW∞
0 is an uncorrelated process and is also independent of

L∞
0 . Thus ast → ∞,

E{EtE
′
t} = ∑

l≥0

P{Lt = l}
l

∑
i=0

AiΣW(Ai)′

→ ∑
l≥0

µ(l)
l

∑
i=0

AiΣW(Ai)′.

⇒ E{E′
t QEt} = tr

(

QE{EtE
′
t}

)

→ ∑
l≥0

µ(l)g(l) ≡
∑l≥0g(l)p∑l−1

j=0 ν( j)

∑l≥0 p∑l−1
j=0 ν( j)

, (17)

where

g(l) :=
l

∑
i=0

tr
(

QAiΣW(Ai)′
)

, ∀l ∈ Z≥0. (18)

As the LHS of (17) is the summand in the long-term average
cost (6), the latter must equal the limiting value of the former.
Substituting this and (15) into (8) then yields

J(ν) =
∑l≥0 (g(l)+ λν(l)) p∑l−1

j=0 ν( j)

∑l≥0 p∑l−1
j=0 ν( j)

≡
N(ν)

D(ν)
, (19)

which expresses the cost directly in terms ofν.

Observe that for this functional to be well-defined, we require
the denominatorD(ν) ≡ µ(0)−1 < ∞, which is equivalent to
the existence of the stationary distributionµ (11)–(12). For
convenience, define the sequence space

V :=
{

ν ∈ R
∞
≥0 : N(ν),D(ν) < ∞

}

. (20)

The following result is straightforward to establish:

Lemma 1.The costJ (19) and its numerator and denominator
are continuous onV with respect to the metric

dV(ν,υ) := ∑
l≥0

|ν(l)−υ(l)|, ∀ν,υ ∈ V.

Furthermore,J possesses one or more global minima overV.

Proof: Omitted.

4. RELAXATION AND DIRECT OPTIMISATION

The numberNt = ν(Lt ) of packets transmitted at timet is
a positive integer and the MDP-based optimisation method
studied in Mesquita et al. [2009] accomodates this constraint
quite easily. However, the explicit cost representation (19)
reveals a smooth dependence onν(0),ν(1), . . . if the integer
requirement is relaxed. We exploit this observation to propose
an alternative approach, based on using calculus to directly
minimise (19) over nonnegative,real-valuedν(0),ν(1), . . .. We
show that the global minimum in the enlarged solution spaceV
is, somewhat surprisingly, uniquely defined by a simple, finite-
dimensional recursion.

Next, take a partial derivative of (19) with respect toν(l) to
yield

∂J(ν)

∂ν(l)
=

1
D(ν)

∂N(ν)

∂ν(l)
−

N(ν)

D(ν)2

∂D(ν)

∂ν(l)

≡
1

D(ν)

(

∂N(ν)

∂ν(l)
−J(ν)

∂D(ν)

∂ν(l)

)

. (21)

At a global minimumν∗ we must thus have

∂N(ν)

∂ν(l)

∣

∣

∣

∣

ν=ν∗















= J(ν)
∂D(ν)

∂ν(l)

∣

∣

∣

∣

ν=ν∗
if ν∗(l) > 0

≥ J(ν)
∂D(ν)

∂ν(l)
|ν=ν∗ if ν∗(l) = 0

. (22)

For any α ∈ R let us now define sequencesνα ∈ R
∞
≥0 and

κα ∈ R
∞ by coupled recursions s.t.∀l ∈ Z≥0,

να(l) :=

[

α−g(l)
λ

−
1
r

+ κα(l −1)

]+

, (23)

κα(l) :=

{

exp(rνα(l))/r whenνα(l) > 0
(α−g(l))/λ + κα(l −1) whenνα(l) = 0 ,(24)

where[·]+ := max{0, ·}, κα(−1) := 0, g is given by (18), and

r := − ln p > 0. (25)

We have our first main result:

Theorem 2.The global minimiserν∗ ∈ V (20) of the costJ(ν)
(19) is uniquely given by the sequenceνα (23)–(24), setting
parameterα = minν∈V J(ν).

Proof: Let J∗ = J(ν∗) and η = r/λ. After substituting the
expressions for the numeratorN(ν) and denominatorD(ν) of
(19) into (22), and performing some lengthy manipulations,we
obtain

rν∗(l)+ η(g(l)−J∗)+1






















=
∑l−1

j=0(η(J∗−g( j))− rν∗( j)) p∑ j−1
i=0 ν∗(i)

p∑l−1
i=0 ν∗(i)

if ν∗(l) > 0

≥
∑l−1

j=0(η(J∗−g( j))− rν∗( j)) p∑ j−1
i=0 ν∗(i)

p∑l−1
i=0 ν∗(i)

if ν∗(l) = 0

,

which can be rearranged to yield
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ν∗(l) =

[

J∗−g(l)
λ

−
1
r

+ p−∑l−1
i=0 ν∗(i)

l−1

∑
j=0

(

J∗−g( j)
λ

−ν∗( j)

)

p∑ j−1
i=0 ν∗(i)

]+

(26)

≡

[

J∗−g(l)
λ

−
1
r

+ κ∗(l −1)

]+

, (27)

where

κ∗(l) := p−∑l
i=0ν∗(i)

l

∑
j=0

(

J∗−g( j)
λ

−ν∗( j)

)

p∑ j−1
i=0 ν∗(i)(28)

≡ p−ν∗(l) (κ∗(l −1)+ (J∗−g(l)/λ−ν∗(l))
(27)
=

{

p−ν∗(l)/r if ν∗(l) > 0
κ∗(l −1)+ (α−g(l))/λ if ν∗(l) = 0

, (29)

with κ∗(−1) := 0. Observe that (27) and (29) are identical to
(23) and (24) withα = J∗. Furthermore, since these recursions
uniquely defineν∗(0),ν∗(1), . . ., there can be at most one
minimiser that achieves the global minimum costJ∗. 2

Thus we can compute the global minimiserν∗ ∈ V via a
relatively simple, finite-dimensional recursion. In addition, we
have reduced the potentially infinite-dimensional search for ν∗
into the tuning of a single real parameterα. The real numbers
ν∗(0),ν∗(1), . . . must of course be rounded to integer values for
implementation, yielding a possibly suboptimal transmission
redundancy policy. Nonetheless the potential computational
savings afforded by the explicit recursion (23)–(24) make it
a viable alternative to MDP-based numerical optimisation.In
addition, when memory at the transmitter is limited, we can
compute this transmission policy on the fly, instead of having
to store a large, pre-computed look-up table.

However, two important questions remain. Firstly, is there
a way to find J∗ that is simpler and more structured than
generating an infinite sequencesνα for different candidate
values ofα and evaluating the corresponding infinite sums in
(19)? Secondly, for an arbitrary value ofα, what is the value of
J(να)?

The answers to both questions will be seen to be related. Before
presenting them,∀α > 0 let

lα := min{l ∈ Z≥0 : g(l) > α}, (30)
and∀n∈ Z≥0 andl ≥ lα define

χα,n(l) := ln(γα(l)+ ln(γα(l +1)+ ln(· · ·+ ln(γα(l +n)))))(31)

γα(l) := 1+(g(l +1)−α)r/λ, (32)

with g the increasing, positive function of (18). Observe that
when l ≥ lα, γα(l) > 1 and is increasing and consequently
γα,n(l) is positive and increasing. It is straighforward to show
that lα is right-continuous w.r.t.α and thatγα(l) andχα,n(l) are
continuous w.r.t.α. The following result will also be useful.
Lemma 3.For anyα > 0 andl ≥ lα (30), the limit

lim
n→∞

χα,n(l) =: χα(l) > 0 (33)

exists and is continuous with respect toα.

Proof: Omitted. Briefly, it relies on induction, the inequality
ln(1+x)≤ x and the fact thatg(l) grows at most exponentially.
2

We have the following result.

Theorem 4.For anyα > 0, the following statements concern-
ing the sequenceνα (23)–(24), the costJ(να) (19) and its
denominatorD(να) are all equivalent.

(1) να ∈ V, the sequence space defined in (20).
(2) να(l) ≥ χα(l)/r, ∀l ≥ lα, wherelα,χα are given by (30)–

(33).
(3) να(l) ≥ χα(l)/r whenl = lα.
(4) D(να) < ∞ andJ(να) = α.

Proof: We show 1⇒ 2⇒ 3⇒ 2⇒ 4⇒ 1. For convenience let
η := r/λ.

1 ⇒ 2: We first show thatνα(l) > 0, ∀l ≥ lα. Suppose in
contradiction thatνα(l) = 0 for somel ≥ lα. Then rκα(l −
1)≤ 1+η(g(l)−α) by (23) andrκα(l) = rκα(l −1)−η(g(l)−
α) ≤ rκα(l −1) by (24). Consequently,

0≤ rνα(l +1)≡ [rκα(l)−1−η(g(l +1)−α)]+

≤ [rκα(l −1)−1−η(g(l +1)−α)]+

≤ [rκα(l −1)−1−η(g(l)−α)]+ ≡ rνα(l) = 0,

sinceg is increasing. By the same tokeng(l +1)> α as well and
thus by upward inductionνα(i)= 0,∀i ≥ l . However, this would
makeD(να) = ∞, contradicting the hypothesis of statement 1.

Soνα(l) > 0 ∀l ≥ lα, implying that

rνα(l +1)
(23)
= rκα(l)− γα(l)

(24)
= erνα(l) − γα(l) ≥ 0,∀l ≥ lα.(34)

⇒ rνα(l) ≥ lnγα(l). (35)

Replacingl with l + 1 in (35) and then using (34) yields the
tighter bound

rνα(l) ≥ ln(γα(l)+ lnγα(l +1)) , ∀l ≥ lα.

Replacingl with l +1 in this bound and then using (34) yields
the even tighter bound

rνα(l) ≥ ln(γα(l)+ ln(γα(l +1)+ lnγα(l +2))) , ∀l ≥ lα.

Continuing in this way indefinitely thus yields statement (2).

2⇒ 3: Trivial.

3⇒ 2: Supposerνα(l) ≥ χα(l) for somel ≥ lα, noting that by
hyothesis this is true whenl = lα. As χα(l) > 0, (24) implies
thatrκα(l) = erνα(l). Substituting this into (23) yields

rνα(l +1)=
[

erνα(l)− γα(l)
]+

= erνα(l)−γα(l)≥ χα(l +1)> 0,

sinceerνα(l)− γα(l) ≥ χα(l +1) > 0 by (33). Thus by induction
rνα(l) ≥ χα(l) > 0,∀l ≥ lα.

2⇒ 4.

Note that (23) and (24), take the same form as (27) and (29)
in the proof of Thm. 4, and can be rewritten in the more
cumbersome forms of (26) and (28). Asνα(l) ≥ χα(l) > 0,
∀l ≥ lα we can write

να(l) =
J∗−g(l)

λ
−

1
r

+ p−∑l−1
i=0 να(i)

l−1

∑
j=0

(

J∗−g( j)
λ

−να( j)

)

p∑ j−1
i=0 να(i).
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⇒ να(l)p∑l−1
i=0 να(i) =

(

α−g(l)
λ

−
1
r

)

p∑l−1
i=0 να(i)

+
l−1

∑
j=0

(

α−g( j)
λ

−να( j)

)

p∑ j−1
i=0 να(i).

Splitting and collecting sums yields

l

∑
j=0

να( j)p∑ j−1
i=0 να(i) =

α
λ

l

∑
j=0

p∑ j−1
i=0 να(i)

−
1
λ

l

∑
j=0

g( j)p∑ j−1
i=0 να(i)−

1
r

p∑l−1
i=0 να(i).

⇒ α
l

∑
j=0

p∑ j−1
i=0 να(i) =

l

∑
j=0

(g( j)+ λνα( j))p∑ j−1
i=0 να(i)

+
λ
r

p∑l−1
i=0 να(i). (36)

As ∀l ≥ lα, να(l) ≥ χ(l), which is a positive, monotonically
increasing function, it follows that∑ j−1

i=0 να(i) increases at least
linearly with large j. Consequently the summands on the LHS
of (36) decreases exponentially or faster with largej, since
p∈ (0,1). Thus the sum on the LHS must converge asl → ∞,
and by definition its limit equals the denominatorD(να) of the
costJ(να) (19). By virtue of the same, the last term on the RHS
must→ 0 asl → ∞. Thus, the remaining sum on the RHS must
also converge to a finite limit, which by definition is the justthe
cost numeratorN(να). Thus we obtain

αD(να) = N(να) ⇒ J(να) = α.

Finally, the wrap-around’ implication 4⇒ 1 is trivial. 2

This result is illuminating in several regards. Firstly, for α > 0
such that the costJ(να) (19) and its denominatorD(να) are
finite (as required for the cost to be well-defined), it provides
a lower bound on the growth ofνα(l) in terms ofχα(l). Thus
if the system matrixA in (1) is unstable or marginally stable,
then να(l) → ∞, sinceg(l) and henceχα(l) would increase
unboundedly withl . Together with (23) and (24), this also
implies thatνα can eventually be given by the one-dimensional
recursion

να(l) =
α−g(l)

λ
+

exp(rνα(l −1))−1
r

, ∀l > lα. (37)

Secondly, ifD(να) < ∞ then the costJ(να) either equalsα or
is infinite. As Thm. 2 states that the global minimiserν∗ = να
with α = J∗, the minimum cost can be shown to be expressible
as

J∗ = min{α ∈ R>0 : J(να) < ∞,D(να) < ∞}. (38)
This characterisation, which we give withou proof, provides
a simple way of findingJ∗. Beginning with an initial value
α = J0 which upper-boundsJ∗, we can reduceα in small steps,
computingνα,J(α) andD(α) at each stage. As long as the latter
two are finite, we are guaranteed thatJ(α), being equalα, will
also decrease. However, onceα drops belowJ∗, the costJ will
increase rapidly, and indeed be infinite. The previous valueof
α is then within a step-size ofJ0.

The simple procedure above suffers from the drawback of
forcing us to compute the entire sequenceνα as well as the
infinite sumsD(να) andN(να)(at least, many terms thereof). at
each stage. In this regard, statement 3 of Thm. 4 is important,
because it states that checking for the finiteness of these infinite

sums amounts to verifying thatrνα(l) is no smaller thanχα(l)
at thesingle point l= lα. This leads to the following result.

Theorem 5.The minimum valueJ∗ of the costJ(ν) (19) over
all sequencesν in the sequence spaceV ⊂ R

∞
≥0 (20) exists and

is given by

J∗ := min{α ∈ R>0 : rνα(lα) ≥ χα(lα)} , (39)

whereνα is recursively generated by (23)–(24), withlα andχα
given by (30)–(33). The minimum cost is uniquely achieved by
the sequenceνα with α = J∗.

Proof: For reasons of limited space only a sketch of the proof
is outlined here. It first uses the continuity w.r.t.α of γα(l) and
χα(l) (Thm. 2) and the right-continuity oflα to show that the
infimum of the set in (39) must be an elementα∗ of the same.
Thus by Thm. 4,J(να∗) = α∗ with να∗ ∈ V.

Furthermore,α∗ must equal the infimum cost over allα-
parametrised policiesνα ∈ V. Otherwise, if∃β > s.t.J(νβ) <
J(να∗) ≡ α∗ with νβ ∈ V, then Thm. 4 implies that we would
haveJ(νβ) = β and furthermore,β would also be an element of
the set of (39). Soβ < α∗, which would contradict the fact that
α∗ is the minimum over that set.

However, by Thm. 2, the global minimiser is uniquely given by
νJ∗ , soα∗ = J∗. 2.

This result is also useful because for each candidate value of α,
we do not need to generate the entire sequenceνα to search for
the minimum.

5. SIMULATION RESULTS

In this section, we briefly present numerical MATLAB studies
that illustrate the results of the preceding section. For reasons
of space and to enable comparisons, we consider only the scalar
system that was solved by value iteration in Mesquita et al.
[2009]. The

To determine the minimum costJ∗ we first selected a candidate
valueJ0 that exceeds the desiredJ∗, then implemented the re-
cursive equations (23)–(24) withα = J0, and then decremented
J0 in small steps ofε = 0.01 until the defining condition of
the set in (39) was violated. The previous value ofJ0 was
then guaranteed to be withinε of J∗. (The initial value of
J0 was selected by considering a constant candidate sequence
ν(l) = c > 0, deriving a simple explicit upper bound onJ(ν) in
terms ofc and the system parameters, and then minimising this
analytically w.r.t.c.)

We first considered an unstable scalar system, with dynamical
constantA = 2, noise varianceΣW = 3, error weightQ = 1
and communication rate coefficientλ = 2.2. In Figs. 1 and 2
we have plotted the costJ and communication rateR for the
global optimal sequenceν∗ as well as for the rounded, integer-
valued version ofν∗. We note that the cost forν∗ is smaller than
that of the optimal simplified policy of Mesquita et al. [2009],
which was derived using MDP-methods. This is because we
have relaxed the integer requirement here and have also letν∗
be unbounded. On the other hand, after roundingν∗ to yield an
implementable policy, we obtain slightly worse performance.

Figures 3 and 4 depict plots of the transmission redundancy
functions and stationary distributions forν∗ and its rounded
version, with p = 0.05. We remark that in generalν∗ grows
extremely quickly (note the logarithmic scale) and indeed is too
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Fig. 1.J vs. p plots forν∗ (circles) and roundedν∗ (crosses).
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Fig. 2.R vs. p plots forν∗ (circles) and roundedν∗ (crosses).
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Fig. 3. Redundandt transmission functionsν∗ (circles) and
rounded version (crosses).

large for MATLAB to handle after aboutl = 3 or 4. However,
its stationary distribution decays with corresponding rapidity,
so that the average communication rate remains finite.
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Fig. 4. Stationary distributionsµ for ν∗ (circles) and rounded
version (crosses).

6. CONCLUSION

In this paper, we have presented and analysed an alternative
approach to designing redundant transmission policies forstate
estimation of unstable stochastic linear systems over packet-
dropping channels. By relaxing the integer requirement on the
number of packets transmitted during each sampling interval,
we explicitly obtained a real-time recursion for the optimal
transmission function. We then analysed the properties of this
recursion to propose a simple numerical procedure for finding
the minimum over all real-valued transmission functions, which
yields an implementable policy when discretised. Our results
were supported by numerical studies in MATLAB.

Several important directions for future research include the
incorporation of bounds on the number of packets that can be
transmitted in each sampling interval, the study of discretisation
strategies other than simple rounding, and the extension ofthese
results to feedback control systems and costs.
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