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Abstract— In wireless networks the probability of successful
communication can be significantly increased by transmitting
multiple copies of a same packet. Communication protocols that
exploit this by dynamically assigning the number of transmitted
copies of the same data can significantly improve the control
performance in a networked control system with only a modest
increase in the total number of transmissions. In this paper
we develop techniques to design communication protocols that
exploit multiple packets transmissions while seeking a balance
between stability/estimation performance and communication
rate. An average cost optimality criterion is employed to obtain
optimal protocols. Optimal protocols are also obtained for
networks whose nodes are subject to limited computation.

I. INTRODUCTION

Packet losses in wireless networks have a critical role in
determining the performance of networked control systems
(NCS). Losses due to fading can generally be mitigated
through the use of diversity, i.e., the transmission of redun-
dant signals through mostly independent channel realizations.
In general, this leads to an overuse of communication re-
sources, but in NCSs it is possible to use redundant trans-
missions judiciously so as to reap the benefits of diversity
with limited communication overload.

Diversity schemes include time-domain, frequency-
domain and space redundancy [1]. In a time diversity scheme,
multiple instances of a same signal are sent at different
time instants. This scheme is particularly suitable for mobile
nodes, that exhibit relatively short coherence time. In the
frequency diversity scheme, multiple versions of the signal
are spreaded over a wide spectrum. The space diversity
scheme consists of transmitting the signal over different
propagation paths, which is typically achieved by the use
of multiple antennas. In higher layers, path diversity is
also possible by sending packets through multiple routes.
Although many diversity schemes are dynamically exploited
in data networks (see e.g. [2], [3]), where transmissions are
scheduled according to the network status, these techniques
do not take into account nor benefit from the dynamical
nature of NCSs.

This paper is concerned with diversity techniques specifi-
cally applied to NCSs. The results presented are independent
of the scheme used for diversity and simply assume that a
number of independent redundant channels are available for
data transmission. For simplicity data drops in the different
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channels are assumed i.i.d. Our focus is on deciding how
many redundant copies of a packet should be transmitted
at each sampling time and what benefits can be drawn from
this. We initially show how diversity scheduling can improve
the stability properties of a NCS. Next, we design scheduling
techniques that optimize a criterion that involves the conflict-
ing objectives of high control/estimation performance and
low transmission rate.

The adopted NCS architecture is depicted in Fig. 1, which
considers the case of a single sensor and a controller. At each
time step, the sensor sends measurements to the controller
with a certain redundancy degree. As discussed above, we
assume that the network drops packets with a given proba-
bilty (i.i.d.) and that some acknowledgement mechanism is
available so that the sensor knows which measurements were
received by the controller. Along with packet redundancy, we
also consider the possibility of not sending packets at a given
time instant, which may prevent unnecessary transmissions
when the control/estimation behavior is satisfactory. This
idea has also been explored in [4], [5].

Fig. 1. NCS architecture

In the first part of the paper we focus our attention on the
control of a simple scalar unstable process. For such process
it is well know that mean-square instability arises when-
ever the drop probability raises above a certain threshold.
Moreover, no matter how small the drop probability is, some
statistical moments of the process’ state will always be un-
bounded. It turns out that the use of redundant transmissions
can be used to stabilize any given statistical moments for
any probability of drop. Surprisingly, we show that this can
be achieved with no significant increase in communications
by a judicious use of redundant transmissions.

In the second part we consider a general linear time-
invariant process with a certainty equivalence control on the
same NCS of Fig. 1. The controller constructs estimates
of the process state using the measurements transmitted by
the sensor, which uses a redundant transmissions policy that
minimizes the combined average cost of the estimation error



in the controller and the number of packets sent. First, we
consider the ideal case in which the sensor can reconstruct
the state estimates available to the controller from the
acknowledgement information. Secondly, and motivated by
the fact that in some applications sensors have very limited
computation capabilities, we find policies that minimize the
same cost as above but base their decisions solely on the
number of consecutive transmission failures.

For simplicity of presentation, we considered NCSs with
full local state measurements and no network delays. How-
ever, the results obtained can be readily extended to the case
of partial state measurements, multiple nodes, and delays in
the network by following the procedure in [6].

Overall, our results suggest that a very small redundancy
level is actually sufficient for drastic performance gains.
In fact, our results led us to the belief that a redundancy
degree higher than two is seldom necessary in practical
applications, which would imply that the implementation of
diversity schemes does not demand an extremely expensive
infra-structure.

II. MOMENT STABILIZATION USING PACKET
REDUNDANCY

In this section we use a first order process to show how
packet redundancy can be used to improve the stability prop-
erties of a networked control process, by keeping bounded
the statistical moments of the controlled process in the
presence of communication drops. We consider the following
unstable scalar process

x(k + 1) = ax(k) + u(k) + w(k) , (1)

where |a| > 1, x(k) ∈ R is the state at an integer time
k, u(k) is the control variable at the same instant of time
and w(k) is a zero-mean Gaussian white noise process with
variance σ2. A sensor that measures the state x(k) and
the paired [pair] controller/actuator are connected through a
network that drops packets independently of each other, with
a probability probability p ∈ (0, 1). In order to improve the
probability that the measurement x(k) reaches the controller,
the sensor may transmit multiple copies of this message in
different packets.

For simplicity, we consider a deadbeat controller of the
type:

u(k) =
{
−ax(k) if no drop at time k
0 if drop at time k .

(2)

A convenient fact about this control strategy is that the
statistical moments of the state can be easily computed from
the number of consecutive transmission failures, where a
transmission failure is characterized by the failure of all
the tentatives of transmitting x(k) at time k. Let us denote
by l(k) the number of consecutive transmission failures
that occurred before time k. We are interested in designing
protocols that determine how many identical packets to send
at time k as a function of how many consecutive transmission

failures occurred before time k. Such protocols can be
specified by a function v that maps the number of consecutive
drops l(k) to the number of packets to send. For example,
if v(l) = l, then l(k) identical packets will be sent at time k
(note that we do not exclude the possibility of sending zero
packets).

Under the assumption of independent drops, l(k) can be
written as an infinite Markov chain with transition probabil-
ities

Pr (l(k + 1) = l(k) + 1|l(k)) = pv(l(k)), k ≥ 0 (3)

Pr (l(k + 1) = 0|l(k)) = 1− pv(l(k)), k ≥ 0 . (4)

The stationary probabilities µ(l) for this Markov chain must
therefore satisfy

µ(l + 1) = pv(l)µ(l) = p
Pl

m=0 v(m)µ(0), l ≥ 0 (5)
∞∑
l=0

µ(l) = 1 , (6)

which allows us to conclude that

µ(0) =

(
1 +

∞∑
l=1

p
Pl−1

m=0 v(m)

)−1

(7)

and, for l > 1,

µ(l) = p
Pl−1

m=0 v(m)

(
1 +

∞∑
m=1

p
Pm−1

n=0 v(n)

)−1

. (8)

Notice that µ(0) is well defined as long as there exits a L > 0
such that v(l) ≥ 1, ∀l ≥ L. Under this condition one can
also verify that the chain is aperiodic and recurrent (see e.g.
[7, Chap. 8]). Therefore, we can apply [7, Thm. 14.3.3] to
conclude that

lim
k→∞

E
[
|x(k)|2

]
=
∞∑
l=0

E
[
|x(k)|2

∣∣ l(k) = l
]
µ(l) . (9)

In view of (1) and (2), we have that

E
[
|x(k)|2

∣∣ l(k)
]

= E

( l∑
m=0

amw(k −m)

)2
 , (10)

wich can be used in (9) to obtain

E
[
|x(k)|2

]
→ σ2µ(0)

(
1 +

∞∑
l=1

p
Pl−1

m=0 v(m)
l∑

m=0

|a|2m
)
(11)

as k →∞. Using the the ratio test, we can state the following
theorem.

Theorem 1: The second moment of x(k) will be bounded
if

lim
l→∞

|a|2pv(l) < 1 . (12)

We conclude from here that mean-square stability can be
achieved for any unstable pole a and any drop probability
p < 1 by a proper choice of the redundant packet transmis-
sion protocol that specifies the function v(l). In fact, all that



is needed is to select v(l) sufficiently large for large values
of l:

lim
l→∞

v(l) >
2 log |a|
− log p

(13)

Analogously, the condition

lim
l→∞

v(l) >
q log |a|
− log p

(14)

can be shown to guarantee boundedness of the q-th moment.

From (14), we can see that to achieve stability one may
require a protocol that, at times, sends a large number of
packets, which would require a large communication rate. It
is important thus to study the communication requirements
of these protocols. To this effect let us derive the expected
communication rate for a given function v(l). We assume
that the packet sizes are constant and sufficiently large so
that the controller receives x(k) with negligible quantization
loss. In this case, the expected asymptotic transmission rate
is

R̄ := lim
k→∞

E[v(l(k))] = Sµ(0)
(

1 +
∞∑
l=1

v(l)p
Pl−1

m=0 v(m)

)
,

(15)
where S denotes the size of a single packet.

Interestingly, one can find stabilizing protocols with rate
R̄ arbitrarily close to S. Consider for example the case of
v(l) = 1 for l ≤ N and v(l) = M for l > N , where M is
a redundancy degree satisfying (14). A Taylor expansion of
(15) around p = 0 leads to

R̄ = S(1 +O(pN+1)) , (16)

that is, the expected transmission rate is order pN+1 larger
than S. We note that such a strong result would no longer
hold when packet sizes increase with l, as indicated by some
[our] preliminary results in the case where quantization is
necessary before to transmitting [we use a finite alphabet to
transmit] x(k). Evidently, the larger we make N the larger
the moments will be. This relationship between average
transmission rate and control performance is investigated in
the following sections.

III. A GENERAL NCS

In the remainder of the paper we consider a more general
NCS and study the effect of using packet redundancy in the
control performance of the system (as opposed to just its
stability). In this architecture our goal is to stabilize a linear
time-invariant process

x(k + 1) = Ax(k) +Bu(k) + w(k) (17)

where x ∈ Rn denotes the state of the process, u ∈ Rn1 the
control input, and w(k) ∈ Rn an n-dimensional zero-mean
Gaussian white noise process. As in the previous section,
we assume that the whole state x(k) can be measured by
a sensor which communicates with the controller through
a network that drops packets independently of each other,

with a probability p ∈ (0, 1). We shall assume that we use
a certainty equivalence control law of the form

u(k) = Kx̂(k) (18)

where the matrix K is chosen such that A+BK is Schur and
x̂(k) is an optimal estimate of x(k) obtained by the controller
based on the measurements that successfully reached the
controller up to time k. In particular,

x̂(k) := E
[
x(k)

∣∣x(s), s < k, s ∈ Tsuccess

]
(19)

where Tsuccess denotes the set of times at which the sensor
succeeded in transmitting the measured state to the controller.
This optimal state estimate can be computed recursively
using

x̂(k + 1) =

{
Ax̂(k) +Bu(k) if k 6∈ Tsuccess

Ax(k) +Bu(k) if k ∈ Tsuccess.
(20)

From (17) and (20), we conclude that the estimation error
e(k) := x̂(k) − x(k) evolves according to the following
dynamics:

e(k + 1) =

{
Ae(k)− w(k) if k 6∈ Tsuccess

−w(k) if k ∈ Tsuccess.
(21)

The closed-loop dynamics (17)–(18) can be expressed in
terms of this error using

x(k + 1) = (A+BK)x(k) +BKe(k) + w(k). (22)

Since the separation principle is known to hold under
the assumption of perfect acknowledgement [8], we have
that minimizing the estimation error will also minimize the
control performance.

IV. OPTIMAL COMMUNICATION PROTOCOL

Our goal now is to determine an optimal policy that
decides when to send multiple copies of the same packet
and how many copies to send. This policy should be optimal
in the sense that it achieves a desirable trade off between
the conflicting objectives of keeping small the estimation
error e(k), that drives the closed-loop dynamics (22), while
achieving this with a minimal amount of communication.

To this effect, we consider the following average cost (AC)
minimization criterion

J(π, e0) := Jest(π, e0) + λJcom(π, e0) (23)

where

Jest(π, e0) := lim
N→∞

1
N

Eπe0
[N−1∑
k=0

e(k + 1)′Qe(k + 1)
]

(24)

Jcom(π, e0) := lim
N→∞

1
N

Eπe0
[N−1∑
k=0

v(k)
]

(25)

where λ is a positive scalar, Q a positive definite matrix,
v(k) ≥ 0 is the number of packets sent at time k, and Eπe0



denotes the expectation given a policy π and an initial state
e(0) = e0. We consider policies π to be functions that map
e(k) to v(k). For technical reasons, we restrict our attention
to policies π for which

π(e(k)) = M > 0 (26)

whenever ‖e(k)‖ exceeds some pre-specified constant L.

The criterion in (23) is a weighted sum of two terms:
the first term Jest(π, e0) penalizes the [(time-averaged) vari-
ance of the (reviewer suggested Q = I)] time-averaged
expected quadratic estimation error, whereas the second
term Jcom(π, e0) penalizes the average communication rate,
measured in terms of the number of messages sent per unit
of time. The constant λ allows one to adjust the relative
weight of the two terms. As λ → 0, communication is not
penalized, whereas as λ → ∞, communication is heavily
penalized. Intermediate values of λ will yield Pareto-optimal
compromises between the two conflicting criteria.

The number v(k) of packets sent at time k essentially
controls the probability of a successful transmission. In
particular, since drops are assumed independent,

P
(
k 6∈ Tsuccess

)
= pv(k). (27)

It is therefore convenient to imagine that policies π are actu-
ally directly controlling this probability. Redefining [Defin-
ing]

π(k) := pv(k), (28)

we can thus re-write

Jcom(π, e0) := lim
N→∞

1
N

Eπe0

[
N−1∑
k=0

log π(k)
log p

]
. (29)

The set of admissible control actions is therefore Π(e) :=
{pv : v ∈ {0, . . . ,M}} if ‖e‖ ≤ L and Π(e) := {pM} if
‖e‖ > L. We denote the set of all control policies by ∆
(this includes time-variant and random policies). The set ∆0

of stationary policies is the set of measurable functions b
such that b(e) ∈ Π(e) for all e ∈ Rn. [and (26) means that
π(e(k)) = pM whenever ‖e(k)‖ > L. We denote the set of
stationary policies by ∆0 and the set of admissible controls
by Π(e) := {b : b = π(e), π ∈ ∆0}.]

A policy π∗ is said to be AC-optimal if

J(π∗, e) = inf
π∈∆

J(π, e) =: J∗(e), ∀e ∈ Rn, (30)

and J∗ is called the optimal AC-function.

Using (21), we can rewrite the cost function (23) as
follows

J(π, e) = lim
N→∞

1
N

Eπe
N−1∑
k=0

c(e(k), b(k)) (31)

where b(k) = π(e(k)),

c(e, b) = be′A′QAe+ λ logp b
−1 + traceQΣ , (32)

and Σ denotes the covariance matrix of w(k).

To formulate the main result of this section we need
to define the transition probability measure P (Y |e, b) =
Pr{e(k + 1) ∈ Y |e(k) = e, b(k) = b}. From (21), we have
that

P (dy|e, b) = (1− b)f(y) + bf(y −Ae) , (33)

where f is the p.d.f. of the normal distribution with zero
mean and covariance Σ.

Assumption 1: a) The constant M in (26) is chosen suf-
ficiently large so that

pM <
1

ρ(A)2
, (34)

where ρ(A) denotes the spectral radius of the matrix A.
b) The constant L in (26) is chosen so that there exist scalars

r ≥ L and α < 1 such that

ν(Cr) ≤
α
(
λmin(Q)r2 − pM trace(HΣ)

)
λmin(Q)(r2 − L2) + αλmax(H)(1− pM )L2

(35)
where Cr denotes the [open ball with radius r] r-radius
open ball centered at the origin in Rn, ν(·) denotes the
measure corresponding to the density f [multi-variable
normal distribution with zero mean and covariance Σ],
and H is the unique positive definite solution of

pMA′HA− αH = −Q . (36)

Remark 1: We note that, for α sufficiently close to 1,
(36) has a unique positive definite solution provided that
Assumption 1(a) guarantees that pM/2A is Schur. Although
the condition in Assumption 1(b) is not very restrictive, we
conjecture that it is actually not necessary for the result in
Theorem 2.

The next theorem states the existence of a solution to the
AC-optimality problem.

Theorem 2: If Assumption 1 holds, then:
1) There exist a constant %∗ ≥ 0, a continuous function

ϕ∗ and a stationary policy π∗ ∈ ∆0 such that the
triplet (%∗, ϕ∗, π∗) satisfies the average cost optimality
equation (ACOE):

%∗ + ϕ∗(e) = min
b∈Π(e)

[
c(e, b) +

∫
ϕ∗(y)P (dy|e, b)

]
= c(e, π∗(e)) +

∫
ϕ∗(y)P (dy|e, π∗(e)), ∀e ∈ Rn ;

(37)

2) π∗ is AC-optimal and the optimal AC-function is
the constant %∗. [the constant %∗ is the optimal AC-
function.]

Proof. The proof is based on [9, Thm. 2.5]. We start by
proving Assumption 2.3 of [9]. Define hπ(e) := 1 − π(e).
Then, we have from (33) that

P (C|e, π(e)) ≥ hπ(e)ν(C) . (38)



By Assumption 1(a), we have that H in (36) is well defined
for α close enough to 1. Define V (e) := γe′He + 1Cr

(e),
where

γ =
αpM

λmin(Q)(r2 − L2) + αλmax(H)(1− pM )L2
. (39)

Next we show that V satisfies the Assumption 2.3(b) of [9],
which in our formalism can be written as follows.∫

V (y)P (dy|e, π(e)) ≤ αV (e) + hπ(e)
∫
V (y)dν(y) .

(40)
This condition can be understood as a Lyapunov-Foster
condition that is satisfied uniformly on the set of policies.
To verify that (40) indeed holds, we define

∆V (e) :=
∫
V (y)P (dy|e, π))− hπ(e)

∫
V (y)dν(y)

=
∫
πV (y)f(y −Ae)dy ≤ πγe′AHAe+ πγ trace(HΣ)

+πν(Cr) =
π

pM
γe′(αH−Q)e+πγ trace(HΣ)+πν(Cr) ,

(41)

where the last equality comes from (36) and the dependence
of π on e was omitted to simplify the notation. From this it
follows that

∆V (e)− αV ≤ γe′
(
α

(
π

pM
− 1
)
H −Q

)
e+

πγ trace(HΣ) + πν(Cr)− α1Cr
(e) . (42)

In the region ‖e‖ < L, we can upper bound the right-hand
side of (42) by using the fact that π(e) ≤ 1 and ‖e‖2 ≤ L2

to obtain

∆V − αV ≤ αγ
(

1
pM
− 1
)
λmax(H)L2 − γ

pM
λmin(Q)L2

+γ trace(HΣ) + ν(Cr)− α ≤ 0 ,
(43)

where the last inequality is obtained by using (35) and (39).

In the region ‖e‖ ≥ L, we have that π(e) = pM , which
implies that the right-hand side of (42) decreases strictly with
‖e‖ in this region, except for ‖e‖ = r, where it jumps. Thus,
it only remains to investigate if (40) is satisfied at ‖e‖ = r.
For ‖e‖ = r, the following upper bound can be obtained

∆V − αV ≤ −γe′Qe+ γpM trace(HΣ) + pMν(Cr)

≤ −γλmin(Q)r2 + γpM trace(HΣ) + pMν(Cr) ≤ 0 ,
(44)

where again the last inequality follows from (35) and (39).
Therefore, we have verified (40).

It follows easily that infπ
∫
hπ(e)V (e) > 0 since π(e) =

pM for ‖e‖ ≥ L and therefore Assumption 2.3 of [9] is also
satisfied.

By our choice of V , there exists a positive constant δ such
that supΠ(e) c(e, b) < δV (e), which verifies Assumption 2.1
of [9].

From our definition of hπ(e), it follows that the set {e :
hπ(e) > 0} is petite [7, Chap. 5]. Therefore, for each policy
π, (40) satisfies a Foster-Lyapunov condition as in [7, Thm.
11.3.4]. From this it follows that the process is positive Harris
recurrent for each policy π, which fulfills Assumption 2.2 of
[9]. [Reviewer suggested comment more on petite sets and
Harris recurrence, but I don’t think there is much to say
about it. The whole proof won’t indeed make much sense if
you don’t look at the cited reference.]

Finally, we verify Assumption 2.4 of [9]. To this effect,
let d(·, ·) be the discrete metric on Π(e). Then, we have

|c(e, b)− c(ẽ, b̃)| = be′A′QAe− λ logp b− b̃ẽ′A′QAẽ+
λ logp b̃ ≤ (b− b̃)e′A′QAe+ b̃(e− ẽ)′A′Q(e− ẽ)

+κ1d(b, b̃) ≤ κ2(e)d(b, b̃) + κ3‖e− ẽ‖2

≤ κ(e)
(

max{d(b, b̃), ‖e− ẽ‖}
)2

,

(45)

for some properly chosen nonnegative and finite κ1, κ2(e),
κ3 and κ(e). In a similar way we can find a nonnegative
function κP (e) such that∣∣∣∣∫ V (y)

(
P (dy|e, b)− P (dy|ẽ, b̃)

)∣∣∣∣
≤ κP (e)

(
max{d(b, b̃), ‖e− ẽ‖}

)2

. (46)

The application of [9, Thm. 2.5] completes the proof.

The solution to the ACOE can be obtained using the
following value iteration algorithm. Let sN (that can be seen
as a N -th stage cost) and πN be defined as follows:

sN (e) := min
b∈Π(e)

[
c(e, b) +

∫
sN−1(y)P (dy|e, b)

]
(47)

=: c(e, πN (e)) +
∫
sN−1(y)P (dy|e, pN (e)) , (48)

where s0 ≡ 0. Let z ∈ Rn be an arbitrary but fixed
state. Define a sequence of constants jN and a sequence
of functions ϕN (e) as

jN := sN (z)− sN−1(z) and ϕN (e) := sN (e)− sN (z) .
(49)

Then, the value iteration algorithm is said to converge if

jN → %∗ and ϕN (x)→ ϕ∗(x) as N →∞ . (50)

Under the conditions of Theorem 2, [9, Thm. 2.6] guar-
antees that this value iteration algorithm always converges.
Further, according to [9, Cor. 2.9], there exists an AC-optimal
policy that is an accumulation point of {πN (e)}.

[One reviewer questioned the use of value iteration online,
so I say. . . ] Given the infinite-dimensionality of the value
iteration algorithm, in most cases the protocol should be
constructed offline and then a look-up table would be used.



V. A SIMPLIFIED OPTIMAL PROTOCOL

In many applications sensors have limited computational
capabilities that could prevent them from using optimal
elaborate protocols that require the computation of estimation
errors. In addition, solving for the optimal policy may be
computationally intense for high-dimensional systems. To
address these cases, we can design a simplified protocol
that bases its decision rule only the consecutive number of
failures l(k) that occurred prior to the k-th sampling time,
much like the protocols considered in Sec. II.

In general, this would lead to Partially Observable Markov
Processes. Fortunately, for this estimation problem, the be-
liefs for e(k) (probability distributions given the history of
{l(s); s ≤ k}) converge almost surely to an invariant set
where they are completely determined by l(k), i.e., they
do not depend on the history {l(j), j < k} or on the
previous beliefs. This is because once a packet is successfully
transmited, the belief for e(k) is solely given by f(e) and it
does not depend on any previous beliefs. Hence, the average
cost criterion does not depend on the initial belief. Thus,
without loss of generality, we can restrict our search for
optimal policies to the case where l0 = 0 and e0 ∼ f(·).
This implies that e ∼

∑l
m=0A

m(k)ωm, where ωm are i.i.d.
variables with density f(·).

Thus, we can redefine the per-stage cost as

c̄(l, b) = E
[
c(e(k), b(k))

∣∣ l(k) = l
]
, (51)

which can be written as

c̄(l, b) = b trace(A′QAΣl) +λ logp b
−1 + traceQΣ , (52)

where

Σl := E
[
e(k)e(k)′

∣∣ l(k) = l
]

=
l∑

m=0

A′mΣAm . (53)

[Moreover, if we restrict the set of policies to be such that
b = pM for l ≥ T , we can truncate the Markov chain
without affecting the optimal policy and the optimal cost
by redirecting the jumps T → T + 1 to T → T . Thus, we
have moved from the infinite dimensional problem in Sec.
IV to a finite dimensional problem.] Using the per-stage cost
c̄ and the transition probabilities for l that we described in
Sec. II, one can calculate AC-optimal policies that depend on
l only. This could be done either via dynamic programming
or via direct optimization, since the average costs can be
directly calculated using the stationary distribution as in Sec.
II. Note that the average cost being optimized is indeed the
same one as in Sec. IV. A finite protocol is then obtained if,
for some positive integer T , we truncate the Markov chain
by redirecting the jumps T → T + 1 to T → T .

VI. NUMERICAL EXAMPLES

The results in the previous sections were applied to a scalar
example with A = 2, Σ = 3, Q = 1, p = 0.15 and L = 10.
By varying λ from 0.001 to 200, we constructed the Pareto
frontiers shown in Fig. 2.

To show the performance improvement that arises from
judiciously sending redundant information, we considered
also the base case which sends one packet per time step.
We also restricted our policies to a minimum number of
transmissions denoted by M. Several important observations
can be deduced from Fig. 2:

1) Using the trivial policy v(k) = 1, ∀k, will of course
minimize communication (x-axis), but this is at the
expense of a significant larger estimation error (y-axis).
In fact, based on the results of Section II, we know
that for unstable systems and large drop probabilities,
v(k) ≡ 1 can lead to instability.

2) The policy that uses M = 1 and M = 2 is able to
decrease the estimation cost by 30% while increasing
the communication cost by only 6%.

3) Increasing the maximum number of redundant pack-
ets M beyond 2, hardly improves the Pareto-optimal
boundary.

4) The simplified optimal policy discussed in Section IV
produces protocols that can be quite close to the Pareto-
optimal boundary.

5) A number of the simplified optimal policies are nontriv-
ial, that is, their redundancy degree is not constant. To
see that, notice that trivial policies must have an integer
communication cost.

6) If one were to allow no transmissions at some time
instants (i.e., [just] v(k) ≥ 0 instead of v(k) ≥ 1) then
one could further improve the optimal Pareto-optimal
boundary.

[New paragraph] A commonly observed phenomenon in
multi-objective MDPs is that points on the Pareto frontier not
always correspond to determistic policies. This is the case
for the Pareto frontier of the simplified protocol, where only
the points marked with a cross correspond to deterministic
policies and the lines linking those points correspond to ran-
domized policies that can be derived from the deterministic
ones as explained in [10].

Figure 3 illustrates the fact that the use of optimal policies
becomes more advantageous as the drop out probability p
is increased. We note that to construct this figure we also
considered values for p that do not satisfy Assumption 1(b)
but we still had convergence of the value iteration algorithm,
which strengthens our conjecture that this assumption is not
necessary.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we introduced new communication protocols
for networked control systems that adjust the probability of
successful communication by the transmission of redundant
packets. We considered protocols that optimize an average
cost criterion that seeks to improve the control performance
and to reduce the transmission rates at the same time.
Two different types of protocols were proposed, one for
nodes with reasonable computational capabilities and a much
simpler one suitable for nodes with limited computational
capabilities.
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Fig. 2. Pareto Frontiers for: policy v(k) ≡ 1 (*); optimal policy with
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(dashed); optimal policy with M = 0 and M = 2 (dash-dotted); simplified
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Fig. 3. Optimal costs (λ = 2.2) as a function of the drop out probability
for: policy v(k) ≡ 1 (o); optimal policy with M = 1 and M = 2 (solid);
optimal policy with M = 1 and M = 3 (dashed); optimal policy with
M = 0 and M = 2 (dash-dotted); simplified optimal policy with M = 1,
M = 3 and T = 5 (cross).

Future work includes considering the case when the drops
for different packets are not independent of each other. This
would be important to consider communication faults due to
collisions when this type of redundancy strategy is employed
by different nodes at the same time. One should also consider
the case in which nodes do not share the same information
on what was broadcasted to the network. The development
of new acknowledgement mechanisms would be a valuable
approach in this case. In particular, there are cases where
nodes can efficiently detect the occurrence of drops through
the plant (as opposed to an acknowledgement signal in the
network) as described in [11].

Another interesting variation of this problem would in-
volve the case where packet sizes depend on the estima-
tion error, which would arise when quantization [a finite
alphabet] is used to transmit measurements. For this case
one can expect that redundant transmissions are even more
beneficial, since high estimation errors would demand high
communication rates.
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